

KANSAS CORPORATION COMMISSION OIL & GAS CONSERVATION DIVISION

Form must be typed March 2009

Form ACO-4

APPLICATION FOR COMMINGLING OF

Commingling ID #

PRODUCTION (K.A.R. 82-3-123) OR FLUIDS (K.A.R. 82-3-123a)

OPERAT	TOR: License #	API No. 15 -			
Name:_		Spot Descri	ption:		
Address	1:		Sec	Twp S.	R East West
Address	2:		Fee	t from North /	South Line of Section
City:	State: Zip:+		Fee	t from 🗌 East /	West Line of Section
Contact	Person:	County:			
Phone:	()	Lease Name	e:	Well #: _	
		h a sa maria al a da			
∟ 1.	Name and upper and lower limit of each production interval to	0			
	Formation:		*		
	Formation:	,			
	Formation:	,			
	Formation:	(Perfs):		
	Formation:	(Perfs):		
2.	Estimated amount of fluid production to be commingled from e	each interval:			
	Formation:	BOPD:	MCF	-PD:	BWPD:
	Formation:	BOPD:	MCF	-PD:	BWPD:
	Formation:	BOPD:	MCF	-PD:	BWPD:
	Formation:	BOPD:	MCF	PD:	BWPD:
	Formation:				BWPD:
3.4.	Plat map showing the location of the subject well, all other well the subject well, and for each well the names and addresses of Signed certificate showing service of the application and affida	of the lessee of recor	d or operator.	-	vithin a 1/2 mile radius of
For Con	nmingling of PRODUCTION ONLY, include the following:				
5.	Wireline log of subject well. Previously Filed with ACO-1:	Yes 🗌 No			
6.	Complete Form ACO-1 (Well Completion form) for the subject	well.			
For Con	nmingling of FLUIDS ONLY, include the following:				
7.	Well construction diagram of subject well.				
8.	Any available water chemistry data demonstrating the compat	ibility of the fluids to l	be comminaled.		
	,	· · , · · · · · · · · · · · · · · · · · · ·	J		
current in mingling	VIT: I am the affiant and hereby certify that to the best of my nformation, knowledge and personal belief, this request for comis true and proper and I have no information or knowledge, which istent with the information supplied in this application.		Submitte	d Electronica	illy
KCC	C Office Use Only		oly with K.A.R. 82-3-1		ne application. Protests must be d wihin 15 days of publication o
	v Periods Ends:				

Date: _

Approved By:

KANSAS CORPORATION COMMISSION OIL & GAS CONSERVATION DIVISION

1082910

Form ACO-1 June 2009 Form Must Be Typed Form must be Signed All blanks must be Filled

WELL COMPLETION FORM

WELL HISTORY - DESCRIPTION OF WELL & LEASE

OPERATOR: License #	API No. 15
Name:	Spot Description:
Address 1:	
Address 2:	Feet from North / South Line of Section
City: State: Zip:+	Feet from Cast / West Line of Section
Contact Person:	Footages Calculated from Nearest Outside Section Corner:
Phone: ()	
CONTRACTOR: License #	County:
Name:	Lease Name: Well #:
Wellsite Geologist:	Field Name:
-	
Purchaser:	Producing Formation:
Designate Type of Completion:	Elevation: Ground: Kelly Bushing:
New Well Re-Entry Workover	Total Depth: Plug Back Total Depth:
Oil WSW SWD SIOW	Amount of Surface Pipe Set and Cemented at: Feet
Gas D&A ENHR SIGW	Multiple Stage Cementing Collar Used?
OG GSW Temp. Abd.	If yes, show depth set: Feet
CM (Coal Bed Methane)	If Alternate II completion, cement circulated from:
Cathodic Other (Core, Expl., etc.):	feet depth to:w/sx cmt
If Workover/Re-entry: Old Well Info as follows:	
Operator:	
Well Name:	Drilling Fluid Management Plan (Data must be collected from the Reserve Pit)
Original Comp. Date: Original Total Depth:	
Deepening Re-perf. Conv. to ENHR Conv. to SWD	Chloride content: ppm Fluid volume: bbls
	Dewatering method used:
Plug Back: Plug Back Total Depth	Location of fluid disposal if hauled offsite:
Commingled Permit #:	On and the Name
Dual Completion Permit #:	Operator Name:
□ SWD Permit #:	Lease Name: License #:
ENHR Permit #:	QuarterSecTwpS. R East West
GSW Permit #:	County: Permit #:
Spud Date or Recompletion Date Date Reached TD Completion Date or Recompletion Date	

AFFIDAVIT

I am the affiant and I hereby certify that all requirements of the statutes, rules and regulations promulgated to regulate the oil and gas industry have been fully complied with and the statements herein are complete and correct to the best of my knowledge.

Submitted Electronically

KCC Office Use ONLY
Letter of Confidentiality Received
Date:
Confidential Release Date:
Wireline Log Received
Geologist Report Received
UIC Distribution
ALT I II III Approved by: Date:

	Side Two	
Operator Name:	Lease Name:	Well #:
Sec TwpS. R East West	County:	

INSTRUCTIONS: Show important tops and base of formations penetrated. Detail all cores. Report all final copies of drill stems tests giving interval tested, time tool open and closed, flowing and shut-in pressures, whether shut-in pressure reached static level, hydrostatic pressures, bottom hole temperature, fluid recovery, and flow rates if gas to surface test, along with final chart(s). Attach extra sheet if more space is needed. Attach complete copy of all Electric Wire-line Logs surveyed. Attach final geological well site report.

Drill Stem Tests Taken (Attach Additional Sho	Yes	No	∏ I Nar	-	on (Top), Depth an		Sample Datum	
Samples Sent to Geolog	gical Survey	Yes	No	Indi	lie		Тор	Datum
Cores Taken Electric Log Run Electric Log Submitted B (If no, Submit Copy)	☐ Yes ☐ Yes ☐ Yes	☐ No ☐ No ☐ No						
List All E. Logs Run:								
			CASING	RECORD	lew Used			
		Report a	Il strings set-o	conductor, surface, in	termediate, product	tion, etc.		
Purpose of String	Size Hole Drilled	Size C Set (In		Weight Lbs. / Ft.	Setting Depth	Type of Cement	# Sacks Used	Type and Percent Additives

ADDITIONAL CEMENTING / SQUEEZE RECORD

Purpose: Perforate	Depth Top Bottom	Type of Cement	# Sacks Used	Type and Percent Additives
Protect Casing Plug Back TD				
Plug Off Zone				

			N RECORD - Bridge Plugs Set/Type otage of Each Interval Perforated				Depth			
TUBING RECORD:	Si	ze:	Set At:		Packer	r At:	Liner R	un:	No	
Date of First, Resumed F	Product	ion, SWD or ENHF	λ .	Producing N		ping	Gas Lift	Other (Explain)		
Estimated Production Per 24 Hours		Oil Bb	ls.	Gas	Mcf	Wate	er	Bbls.	Gas-Oil Ratio	Gravity
DISPOSITIO	N OF (GAS:			METHOD	OF COMPLE	TION:		PRODUCTION INTER	RVAL:
Vented Sold Used on Lease			Open Hole Perf. Duall (Submit			Comp. 4CO-5)	Commingled (Submit ACO-4)			
(If vented, Sub	mit ACC)-18.)		Other (Specify))					

1 NAME & UPPER & LOWER LIMIT OF EACH PRODUCTION INTERVAL TO BE COMMINGLED

FORMATION:	SUMMITT	(PERFS):	901 -	905
FORMATION:	BARTLESVILLE	(PERFS):	1172 -	1174
FORMATION:		(PERFS):	-	
FORMATION:		(PERFS):	-	
FORMATION:		(PERFS):	-	
FORMATION:		(PERFS):	-	
FORMATION:		(PERFS):	-	
FORMATION:		(PERFS):	-	
FORMATION:		(PERFS):	-	
FORMATION:		(PERFS):	-	
FORMATION:		(PERFS):	-	
FORMATION:		(PERFS):		

2 ESTIMATED AMOUNT OF FLUID PRODUCTION TO BE COMMINGLED FROM EACH INTERVAL

FORMATION:	SUMMITT	BOPD:	0	MCFPD:	0	BWPD:	21
FORMATION:	BARTLESVILLE	BOPD:	3	MCFPD:	0	BWPD:	20
FORMATION:		BOPD:		MCFPD:		BWPD:	
FORMATION:		BOPD:		MCFPD:		BWPD:	
FORMATION:		BOPD:		MCFPD:		BWPD:	
FORMATION:		BOPD:		MCFPD:		BWPD:	
FORMATION:		BOPD:		MCFPD:		BWPD:	
FORMATION:		BOPD:		MCFPD:		BWPD:	
FORMATION:		BOPD:		MCFPD:		BWPD:	
FORMATION:		BOPD:		MCFPD:		BWPD:	
FORMATION:		BOPD:		MCFPD:		BWPD:	
FORMATION:		BOPD:		MCFPD:		BWPD:	

F PRODUCTION OR FLUIDS - ACO-4
Legal Location: SESW S23-T30S-R15E
e applicant, and that on the day <u>15TH</u> of JUNE .
was delivered or mailed to the following parties:
Address (Attach additional sheets if necessary)
210 PARK AVENUE, SUITE 2750, OKLAHOMA CITY, OK 73102-5641
600 Dart Rd, PO Box 177, Mason, MI 48854
108 Pikes Peak Lane, Florissant, Co 80816
13856 300 Rd, Neodesha, KS 66757
2912 Marion Rd, Neodesha, KS 66757
PO 724, Whitewright, TX 75491
4000 W. Washington, Sherman, TX 75092
13615 300 Rd, Neodesha, KS 66757
11455 300 Rd, Neodesha, KS 66757
6240 CR 4100, Neodesha, KS 66757

I further attest that notice of the filing of this application was published in the WILSON COUNTY CITIZEN	, the official county publication
of county. A copy of the affidavit of this publication is attached.	
Signed this 15th day of JUNE	2
Subscribed and sworn to before me this _15th day of _JUNE	, 2012
DENISE V. VENNEMAN OFFICIAL SEAL July 1, 2012 DENISE V. VENNEMAN MY COMMISSION EXPIRES July 1, 2012 Notary Public	
My Commission Expires: $7 - 1 - 12$	

SSP2010

IP Description of Luiss Luiss Ipper Imper Imper </th <th></th> <th>A</th> <th>В</th> <th>С</th> <th>D</th> <th>E</th> <th>F</th> <th>G</th> <th>Н</th> <th>1</th> <th>J</th> <th>К</th>		A	В	С	D	E	F	G	Н	1	J	К
S Sec the herine Nucle the micro Nucle the micro Nucle the micro Nucle the sec th	1		ں						п	1		
3 Solution bind 100 <t< td=""><td></td><td></td><td>Units</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Click he</td><td>re</td><td>Click</td></t<>			Units							Click he	re	Click
Dec. Produce	3			v	 Image: A second s	~		>				Oliala
□ □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< <td></td> <td>Click</td>												Click
									-			Click
	-		11010 0							Goal Sook	SCD	CIICK
$ \begin{array}{ c c c c c c } 10 & [c] &$										Gual Seek	33F	Click
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				CBM	CBM	Bartles	Bartles	Bartles	calculations.			CIICK
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10	Na ⁺	(mg/l)*	19,433.00	27,381.00	26,534.00	25689.00	24220.00	24654.20	Initial(BH)	Final(WH)	SI/SR
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		(************************************	(mg/l)						0.00	Saturation Index	values	(Final-Initial)
			(mg/l)	1,096.00	872.00	1,200.00	953.00	858.00	995.91	Ca	lcite	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			(mg/l)	1,836.00	2,452.00	2,044.00	1920.00	1948.00	2040.23	-0.73	-0.60	0.13
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			(mg/l)						0.00	Ba	rite	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			(mg/l)						0.00			
			(mg/l)	40.00	21.00	18.00	82.00	90.00	50.21	H	alite	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			(mg/l)						0.00	-1.77	-1.80	-0.03
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-		(mg/l)						0.00	Gyj	psum	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			(mg/l)									0.00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		SO4 ²⁻	(mg/l)	1.00	1.00	8.00	1.00	1.00	2.40		hydrate	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		F	(mg/l)									0.06
164 ICO3 Alkalinity* (mg/l) 190.00 224.00 254.00 254.00 244.00 Cleasting 25 CO3 Alkalinity* (mg/l) -												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						-						0.12
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				190.00	234.00	259.00	268.00	254.00	241.03	Cel	estite	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	_								0.00			
128 Borate (mgf.) H303 0.00 Zinc Sulfide 25 TDS (Measared) (mgf.) 0.00 72781 0.00 26 TDS (Measared) (mgf.) 1.038 1.045 1.048 1.045 1.047 Calcium fluoride 28 JC Calc. Density (STP) (gml.) 1.038 1.051 1.048 1.048 1.045 1.047 Calcium fluoride Total National Stresson 26.6 0.0269 0.0306 0.0151 0.0269 0.0306 0.0151 0.0269 0.0306 0.0151 0.0269 0.0306 0.0151 0.0269 0.0306 0.0151 0.0269 0.0306 0.0151 0.0269 0.0306 0.0151 0.0269 0.0306 0.0151 0.0269 0.030 0.0269 0.030 0.0269 0.030 0.07 0.013 0.0269 0.030 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00			-									0.07
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			-									-0.06
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	_									Zinc	Suinde	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		· · · · · · · · · · · · · · · · · · ·		1 038	1.051	1 050	1.048	1 0/15		Calaium	1 fluorido	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										Calcium	linuoriae	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	32	H ₂ S Gas Analysis***		0.0289	0.0292	0.0296	0.0306	0.0151	0.0269	Iron C	arbonate	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	33	Total H2Saq	(mgH2S/l)	1.00	1.00	1.00	1.00	0.50	0.90	-0.74	-0.51	0.23
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	34	pH, measured (STP)		5.67	5.76	5.72	5.54	5.55	5.63			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Choose one option								Calcite	NTMP	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	35			0	0	0	0	0				
38 Water/Day (B/D) 100 100 100 100 100 500 0.00 0.00 39 For mixed brines, enter values for temperatures and pressures in Cells (H40-H43) (Enter H40-H43) pH 40 Initial T (F) 66.0 71.0 70.0 41.0 49.0 60.0 5.69 5.60 41 Final T (F) 66.0 71.0 70.0 41.0 49.0 89.0 Viscosity (CentiPoise) 42 Initial P (psia) 25.0 25.0 25.0 25.0 11.96 0.825 0.825 44 Use TP on Calcite sheet? 1-Yes;0-No 0.00 <t< td=""><td>36</td><td>Gas/day(thousand cf/day)</td><td>(Mcf/D)</td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>0.00</td><td>0.00</td><td>_</td></t<>	36	Gas/day(thousand cf/day)	(Mcf/D)						0	0.00	0.00	_
39 For mixed brines, enter values for temperatures and pressures in Cells (H40-H43) (Enter H40-H43) pH 40 Initial T (F) 66.0 71.0 70.0 41.0 49.0 60.0 5.69 5.60 42 Initial T (F) 66.0 71.0 70.0 41.0 49.0 89.0 Viscodity (CentriPoise) 42 Initial P (psia) 25.0 25.0 25.0 25.0 25.0 11.96 0.826 43 Final P (psia) 25.0 25.0 25.0 25.0 11.96 0.826 44 User P on Calcite sheet? (Yes.o-No 0 0 0.00 0.055 0.959 45 API Oil Grav. Sp.Grav. 0 0 0 0 0 0.00	_		· · · · ·			1	1	1	4		BHPMP	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			· · · · ·				100	100				_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							41.0	49.0				_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	41	Final T	(F)	66.0	71.0	70.0	41.0	49.0	89.0	Viscosity ((CentiPoise)	
44 Use TP on Calcite sheet? I-Yes;0-No 0 0 0.955 0.959 45 API Oil Grav. API Qii Grav. API Qii Grav. API Qii Grav. Sp.Grav. 0.00 Inhibitor needed (mg/L) 46 Gas Sp.Grav. Sp.Grav. 0 0.00 0 0.00	42	Initial P	(psia)	25.0	25.0	25.0	25.0	25.0	25.0			
45 API Oil Grav. API grav. API Oil Grav. Sp.Grav. Sp.Grav. Sp.Grav. Sp.Grav. Sp.Grav. Sp.Grav. Bp.Grav. B.Grav. B.Grav. B.Grav.				25.0	25.0	25.0	25.0	25.0	120.0			_
46 Gas Sp.Grav. Sp.Grav. Sp.Grav. MDTM 47 McOH/Day (B/D) 0 0 0 0.00 0.00 0.00 48 MEG/Day (B/D) 0 0 0 Anhydrite HDTM 49 Conc. Multiplier 0 0 0 0 Anhydrite HDTM 50 H' (Strong acid) * (N) 0 0 0 Anhydrite HDTM 52 Quality Control Checks at STP: 0 0 0.00 0.00 0.00 0.00 54 Total H2Saq (STP) (mgH2S/l) 0 0 0 0 0 0 0 0 0 0 0 0.00 <td< td=""><td></td><td></td><td>,</td><td></td><td></td><td></td><td></td><td></td><td>30.00</td><td></td><td></td><td></td></td<>			,						30.00			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											HDTMP	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	47	MeOH/Day		0					0		0.00	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			(B/D)	0					0		HDTMP	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										0.00	0.00	
52 Quality Control Checks at STP: 53 H ₂ S Gas (%) 54 Total H2Saq (STP) (mgH2S/l) 55 pH Calculated (pH) 56 PCO2 Calculated (%) 57 Alkalinity Caclulated (mg/l) as HCO3 58 ECations= (equiv.l) 60 Calc TDS= (mg/l) 61 Inhibitor Selection Input Unit # Inhibitor 63 Have ScaleSoftPitzer C 80 °F 176 64 pick inhibitor for you? 1 1-Yes;0-No 3 PAA m ³ 100 ft ³ 3,531 65 If No, inhibitor # is: 4 # 4 DTPMP m ³ 100 pisk 629 66 If you select Mixed, 5 PPCA MPa 1,000 psia 145,074 68 % of 1 st inhibitor # is: 2 # 8 HDTMP Gal 10,000 psia 193 69 2 nd inhibitor # is: 2 # 8 HDTMP												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									I			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	54	Total H2Saq (STP)	(mgH2S/l)									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			· · ·									
58 59 50 calc TDS=(equiv.f.) (equiv.f.) (equiv.f.) (equiv.f.)(equiv.f.) (equiv.f.) (equiv.f.)Intermodel of the second seco												
60Calc TDS=(mg/l)(mg/l	58	ΣCations=	(equiv./l)									
62Protection Time120min1NTMPFrom UnitValueTo UnitValue63Have ScaleSoftPitzer2BHPMP°C80°F17664pick inhibitor for you?11-Yes;0-No3PAA m^3 100ft³3,53165If No, inhibitor # is:4#4DTPMP m^3 100bbl(42 US gal)62966If you select Mixed,5PPCAMPa1,000psia145,07467 1^{st} inhibitor # is:1#66SPABar496psia7,19468% of 1^{st} inhibitor # is:50%7HEDPTorr10,000psia19369 2^{nd} inhibitor # is:2#8HDTMPGal10,000bbl(42 US gal)238			-	Unit	#	Inhibitor	Unit Converte	r (From metric	to English)			
64 pick inhibitor for you? 1 1-Yes;0-No 3 PAA m³ 100 ft³ 3,531 65 If No, inhibitor # is: 4 # 4 DTPMP m³ 100 bbl(42 US gal) 629 66 If you select Mixed, 5 PPCA MPa 1,000 psia 145,074 67 1 st inhibitor # is: 1 # 6 SPA Bar 496 psia 7,194 68 % of 1 st inhibitor is: 50 % 7 HEDP Torr 10,000 psia 193 69 2 nd inhibitor # is: 2 # 8 HDTMP Gal 10,000 bbl(42 US gal) 238									. .	Value		
65 If No, inhibitor # is: 4 # 4 DTPMP m³ 100 bbl(42 US gal) 629 66 If you select Mixed, 5 PPCA MPa 1,000 psia 145,074 67 1 st inhibitor # is: 1 # 6 SPA Bar 496 psia 7,194 68 % of 1 st inhibitor is: 50 % 7 HEDP Torr 10,000 psia 193 69 2 nd inhibitor # is: 2 # 8 HDTMP Gal 10,000 bbl(42 US gal) 238	63	Have ScaleSoftPitzer			2	BHPMP		80		176		
66 If you select Mixed, 5 PPCA MPa 1,000 psia 145,074 67 1 st inhibitor # is: 1 # 6 SPA Bar 496 psia 7,194 68 % of 1 st inhibitor is: 50 % 7 HEDP Torr 10,000 psia 193 69 2 nd inhibitor # is: 2 # 8 HDTMP Gal 10,000 bbl(42 US gal) 238			1		3							
67 1 st inhibitor # is: 1 # 6 SPA Bar 496 psia 7,194 68 % of 1 st inhibitor is: 50 % 7 HEDP Torr 10,000 psia 193 69 2 nd inhibitor # is: 2 # 8 HDTMP Gal 10,000 bbl(42 US gal) 238			4	#								
68 % of 1 st inhibitor is: 50 % 7 HEDP Torr 10,000 psia 193 69 2 nd inhibitor # is: 2 # 8 HDTMP Gal 10,000 bbl(42 US gal) 238			1	#					-	-		
69 2 nd inhibitor # is: 2 # 8 HDTMP Gal 10,000 bbl(42 US gal) 238									-	-		
									-			
10 Dispita act. coefs? U 1-Yes;0-NO 9 Average Liters 10,000 bbl(42 US gal) 63		Display act. coefs?	0	# 1-Yes;0-No	9	Average	Liters	10,000	bbl(42 US gal)	63		
71 10 Mixed									<u> </u>			

BCC

Saturation Index Calculations

Champion Technologies, Inc. (Based on the Tomson-Oddo Model)

Brine 1: Ward Feed Yard 34-1 Brine 2: Ward Feed Yard 4-1 Brine 3: Clinesmith 5-4 Brine 4: Clinesmith 1 Brine 5: Clinesmith 2

			Ratio			
	20%	20%	20%	20%	20	
Component (mg/L)	Brine 1	Brine 2	Brine 3	Brine 4	Brine 5	Mixed Brine
Calcium	1836	2452	2044	1920	1948	1952
Magnesium	1096	872	1200	953	858	865
Barium	0	0	0	0	0	0
Strontium	0	0	0	0	0	0
Bicarbonate	190	234	259	268	254	253
Sulfate	1	1	8	1	1	1
Chloride	36299	48965	47874	45632	43147	43206
CO ₂ in Brine	246	220	264	422	405	401
Ionic Strength	1.12	1.48	1.46	1.38	1.31	1.31
Temperature (°F)	89	89	89	89	89	89
Pressure (psia)	50	50	120	120	120	119

Saturation Index

Calcite	-1.71	-1.41	-1.48	-1.68	-1.69	-1.69
Gypsum	-3.71	-3.64	-2.82	-3.73	-3.72	-3.69
Hemihydrate	-3.70	-3.65	-2.83	-3.74	-3.71	-3.69
Anhydrite	-3.89	-3.79	-2.97	-3.89	-3.88	-3.85
Barite	N/A	N/A	N/A	N/A	N/A	N/A
Celestite	N/A	N/A	N/A	N/A	N/A	N/A

PTB

Calcite	N/A	N/A	N/A	N/A	N/A	N/A
Gypsum	N/A	N/A	N/A	N/A	N/A	N/A
Hemihydrate	N/A	N/A	N/A	N/A	N/A	N/A
Anhydrite	N/A	N/A	N/A	N/A	N/A	N/A
Barite	N/A	N/A	N/A	N/A	N/A	N/A
Celestite	N/A	N/A	N/A	N/A	N/A	N/A

Hainline, Terry G 23-1 23-30S-15E 1" = 1,000'

HAINLINE, TERRY G 23-1 - APPLICATION FOR COMMINGLING OF PRODUCTION OR FLUIDS

Offset Operators, Unleased Mineral Owners and Landowners a	creage
(Atlach additional sheets if necessary)	
Name:	Legal Description of Leasehold:
Dart Cherokee Basin Operating Co., LLC	NWNWNW S26-T30S-R15E
Dart Cherokee Basin Operating Co., LLC	S2SENW S23-T30S-R15E
Dart Cherokee Basin Operating Co., LLC	SWSENW S23-T30S-R15E
Dart Cherokee Basin Operating Co., LLC	NWNWSE S23-T30S-R15E
Dart Cherokee Basin Operating Co., LLC	NENWSE S23-T30S-R15E

Dart Cherokee Basin Operating Co., LLC Dart Cherokee Basin Operating Co., LLC Dart Cherokee Basin Operating Co., LLC SEE ATTACHED

.

NWNWNW S26-T30S-R15E	
S2SENW S23-T30S-R15E	
SWSENW S23-T30S-R15E	
NWNWSE S23-T30S-R15E	
NENWSE S23-T30S-R15E	
NWSESE S23-T30S-R15E	
NESWNWNE S26-T30S-R15E	
NWSENW S26-T30S-R15E	

2012

I hereby certify that the statements made herein are true and correct to the best of my knowledge and belief.

Beal) Applicant or Duly Authorized Agent ſ.

DENISE V. VENNEMAN MY COMMISSION EXPIRES July 1, 2012 Subscribed and sworn before me this 15TH day of JUNE

enneman mose Notary Public 7-1-12

My Commission Expires:

HAINLINE, TERRY G 23-1 - APPLICATION FOR COMMINGLING OF PRODUCTION OR FLUIDS Offset Operators, Unleased Mineral Owners and Landowners acreage

S/2 N/2 NW/4 SE/4 of Section 23-30S-15E

Douglas & Deidka Arnold JT 108 Pikes Peak Lane Florissant, CO 80816

S/2 SE/4 of Section 23-30S-15E

JD Clegg Trust 13856 300 Rd Neodesha, KS 66757

(A portion of) NW/4 of Section 26-30S-15E

Robert James (tract in NW NW) 2912 Marion Rd Neodesha, KS 66757

NW/4 less tract

John Floyd (1/2 interest) PO 724 Whitewright, TX 7491

Betty June Bruce Almond, Trustee of the Almond Family Irrev. Trust B (1/2 interest) 4000 W. Washington Sherman, TX 75092

(A portion of) NE/4 of Section 26-30S-15E Charles & Kaye Herder 13615 300 Rd Neodesha, KS 66757

(A portion of) NE/4 of Section 27-30S-15E Charles James (tract in NE NE) 11455 300 RD Neodesha, KS 66757

William P. Wertz (N2 NE less tract) 6240 CR 4100 Neodesha, KS 66757

STATE OF KANSAS Wilson County - SS

JOSEPH S. and RITA M. RELPH, of lawful age, being duly sworn upon oath that they are the Owners and Publishers of the WILSON COUNTY CITIZEN:

THAT said newspaper has been published at least weekly fifty (50) times a year and has been so published for at least five years prior to the first publication of the attached notice:

THAT said newspaper is a general circulation on a daily, or weekly, or monthly, or yearly basis in;

WILSON COUNTY, KANSAS and is NOT a trade, religious or fraternal publication and has been PRINTED and PUBLISHED in Wilson County, Kansas.

THE ATTACHED was published on the following dates in a regular issue of said newspaper:

in a regular issue of said newspaper:	
In a regular issue of said newspaper: 1st publication was made on the 2lu 	day of
2nd publication was made on the	
	-, 20
3rd publication was made on the	
4th publication was made on the	
	. 20
5th publication was made on the	
6th publication was made on the	
TOTAL PUBLICATION FEE: 38	.20 50
(Signed) Assess Kelph	
Subscribed and sworn to before me, this	nday of 012
- Jita M. Leepher) otary Public)
My commission expires <u>My. 14</u>	2014

(Published in the Wilson County Citizen on Thursday, June 21, 2012.)

BEFORE THE STATE CORPORATION COMMISSION OF THE STATE OF KANSAS

NOTICE OF FILING APPLICATION

RE: In the Matter of Postrock Midcontinent Production, LLC Application for Commingling of Production in the Hainline, Terry G 23-1 located in Wilson County, Kansas.

TO: All Oil & Gas Producers, Unleased Mineral Interest Owners, Landowners, and all persons whomever concerned.

You, and each of you, are hereby notified that Postrock Midcontinent Production, LLC has filed an application to commingle the Bartlesville, Weir, Fleming, Croweburg, Bevier, Mulky and Summit producing formations at the Hainline, Terry G 23-1, located in the SE SW, S23-T305-R15E, Approximately 510 FNL & 1980 FWL, Wilson County, Kansas.

Any persons who object to or protest this application shall be required to file their objections or protest with the Conservation Division of the State Corporation Commission of the State of Kansas within fifteen (16) days from the date of this publication. These protests shall be filed pursuant to Commission regulations and must state specific reasons why granting the application may cause waste, violate correlative rights or pollute the natural resources of the State of Kansas.

All persons interested or concerned shall take notice of the foregoing and shall govern themselves accordingly. All person and/or companies wishing to protest this application are required to file a written protest with the Conservation Division of the Kansas Oil and Gas Commission.

Upon the receipt of any protest, the Commission will convene a hearing and protestants will be expected to enter an appearance either through proper legal counsel or as individuals, appearing on their own behalf.

Postrock Midcontinent Production, LLC 210 Park Avenue, Suite 2760 Oklahoma City, Oklahoma 73102 (405) 660-7704 36 1 cpy

. 8

AFFIDAVIT

1 SS.

1

STATE OF KANSAS

County of Sedgwick

Mark Fletchall, of lawful age, being first duly sworn, deposeth and saith: That he is Record Clerk of The Wichita Eagle, a daily newspaper published in the City of Wichita, County of Sedgwick, State of Kansas, and having a general paid circulation on a daily basis in said County, which said newspaper has been continuously and uninterruptedly published in said County for more than one year prior to the first publication of the notice hereinafter mentioned, and which said newspaper has been entered as second class mail matter at the United States Post Office in Wichita, Kansas, and which said newspaper is not a trade, religious or fraternal publication and that a notice of a true copy is hereto attached was published in the regular and entire Morning issue of said The Wichita Eagle for 1 issues, that the first publication of said notice was

made as aforesaid on the 21st of

June A.D. 2012, with

subsequent publications being made on the following dates:

And affiant further says that he has personal knowledge of the statements above set forth and that they are true.

Fletchall

Subscribed and sworn to before me this

21st day of June, 2012

6 6	PENNY L CASE
-S-	
1 marking and	Notary Public - State of Kansar
(My Ap	pt. Expires 5/28/2017

Notary Public Sedgwick County, Kansas

LEGAL PUBLICATION

PUBLISHED IN THE WICHITA EAGLE JUNE 21, 2012 (319)786) BEFORE THE STATE CORPORATION COMMISSION OF THE STATE CORPORATION COMMISSION OF THE STATE OF KANSAS NOTICE OF FILING APPLICATION RE: In the Matter of Postrock Midcontinent Production, LEC Application for Comminging of Production in the Haihiling, Terry G 23-1 located in Wilson County, Kansas. TO: All Oil & Gas Producers, Unleased Mineral Interest Owners. Landowners.

County, Kansas. TO: All Oil & Gas Producers, Unleased Mineral Interest Owners, Landowners, and all persons whomever concerned. You, and each of you, are hereby noilfied that Postrock Midcontinent Production, LLC has filled an application to commingle the Bartlesville, Weir, Fleming, Croweburg, Bevier, Mulky and Summit producing formations at the Hainline, Terry G 23-1, located in the SE SW, 523-T305-R15E, Approximately 510 FNL & 1980 FWL, Wilson County, Kansas. Any persons who object to or protest this application shall be required to file heir objections or protest with the Conservation Division of the State Corporation Commission of the State of Kansas within fifteen (15) days from the date of this publication. These protests shall be file oursitate specific reasons why granting the application may cause waste, violate correlative rights or polute the natural resources of the State of Kansas.

All persons interested or concerned shall after policies of the formation of the solution of Kansas. All persons interested or concerned shall govern themselves accordingly. All person and/or companies wishing to protest this application are required to file a written protest with the Conservation Division of the Kansas Oll and Gas Commission. Upon the receipt of any protest, the Commission will convene a hearing and protestants will be expected to enter an appearance either through proper legal counsel or as individuals, appearing on their own behalf. Postrock Midcontinent Production, LLC 210 Park Avenue, Suite 2750

210 Park Avenue, Suite 2750 Oklahoma City, Oklahoma 73102 (405) 668-7704

Printer's Fee : \$132.40

Phone: 316-337-6200 Fax: 316-337-6211 http://kcc.ks.gov/

Mark Sievers, Chairman Thomas E. Wright, Commissioner Sam Brownback, Governor

July 13, 2012

Clark Edwards PostRock Midcontinent Production LLC Oklahoma Tower 210 Park Ave, Ste 2750 Oklahoma City, OK 73102

RE: Approved Commingling CO071229 Hainline, Terry G. 23-1, Sec.23-T30S-R15E, Wilson County API No. 15-205-25935-00-01

Dear Mr. Edwards:

Your Application for Commingling (ACO-4) for the above described well, received by the KCC on July 13, 2012, has been reviewed and approved by the Kansas Corporation Commission (KCC) per K.A.R. 82-3-123. Notice was examined and found to be proper per K.A.R. 82-3-135a. No protest had been filed within the 15-day protest period.

Based upon the depth of the Bartlesville formation perforations, total oil production shall not exceed 100 BOPD and total gas production shall not exceed 50% of the absolute open flow (AOF).

Commingling ID number CO071229 has been assigned to this approved application. Use this number for well completion reports (ACO-1) and other correspondence that may concern this approved commingling.

Sincerely,

Rick Hestermann Production Department