KANSAS CORPORATION COMMISSION OIL & GAS CONSERVATION DIVISION Form ACO-4 Form must be typed March 2009 #### APPLICATION FOR COMMINGLING OF Commingling ID #_ PRODUCTION (K.A.R. 82-3-123) OR FLUIDS (K.A.R. 82-3-123a) | OPERAT | TOR: License # | API No. 15 | | | | | | |------------------------|---|---------------------------------|------------------------|--|--|--|--| | Name:_ | | Spot Description: | | | | | | | Address | 1: | | Sec Twp | _S. R East West | | | | | Address | 2: | | Feet from No | orth / South Line of Section | | | | | City: | State: Zip:+ | | Feet from Ea | ast / West Line of Section | | | | | Contact | Person: | County: | | | | | | | Phone: | () | Lease Name: | We | II #: | | | | | | | | | | | | | | 1. | Name and upper and lower limit of each production interval to | be commingled: | | | | | | | | Formation: | (Perfs): | | | | | | | | Formation: | (Perfs): | | | | | | | | Formation: | (Perfs): | | | | | | | | Formation: | (Perfs): | | | | | | | | Formation: | (Perfs): | | | | | | | | | | | | | | | | 2. | Estimated amount of fluid production to be commingled from e | | | | | | | | | Formation: | | | BWPD: | | | | | | Formation: | | | BWPD: | | | | | | Formation: | BOPD: | MCFPD: | BWPD: | | | | | | Formation: | BOPD: | MCFPD: | BWPD: | | | | | | Formation: | BOPD: | MCFPD: | BWPD: | | | | | □ 3. | Plat map showing the location of the subject well, all other well the subject well, and for each well the names and addresses of | of the lessee of record or op | erator. | ses within a 1/2 mile radius of | | | | | _ 4. | Signed certificate showing service of the application and affida | avit of publication as require | d in K.A.R. 82-3-135a. | | | | | | For Con | nmingling of PRODUCTION ONLY, include the following: | | | | | | | | <u> </u> | Wireline log of subject well. Previously Filed with ACO-1: | Yes No | | | | | | | 6. | Complete Form ACO-1 (Well Completion form) for the subject | well. | | | | | | | | | | | | | | | | For Con | nmingling of FLUIDS ONLY, include the following: | | | | | | | | 7. | Well construction diagram of subject well. | | | | | | | | 8. | Any available water chemistry data demonstrating the compati | ibility of the fluids to be com | mingled. | | | | | | current in mingling | VIT: I am the affiant and hereby certify that to the best of my nformation, knowledge and personal belief, this request for comis true and proper and I have no information or knowledge, which istent with the information supplied in this application. | S | ubmitted Electror | nically | | | | | | C Office Use Only | | | st in the application. Protests must be
the filed wihin 15 days of publication of | | | | Date: _ Approved By: 15-Day Periods Ends: _ # **Wellbore Schematic** WELL: Bailey, Marion L 14-1 **SSI:** 609220 **API:** 15-133-26392 LOCATION: NE SW Sec. 14 28S-18E COUNTY: Neosho STATE: Kansas | | STATE: Kansas | |--------------|---| | Casing | 8.625" @ 23'
4.5" 10.5# J-55, 4.05" ID w/ 0.0159 bbl/ft
capacity @ 1087' | | Perforations | Original Perfs: 2/28/06 - Riverton 981-985' (16) - Rowe 915-917' (8) - Fleming 709-711' (8) - Croweburg 672-675' (12) - Mulky 570-574' (17) - Summit 559-563' (17) | | Completions | Spud Date: 2/17/06 RV Completion: 2/28/06 - 400 gals HCl - 8,200# 20/40 - 446 bbls fluid - 16.5 BPM CF Completion: 2/28/06 - 300 gals HCl - 6,300# 20/40 - 355 bbls fluid - 16.6 BPM SM Completion: 2/28/06 - 400 gals HCl - 11,200# 20/40 - 531 bbls fluid - 16.5 BPM | # **KGS STATUS** - ◆ DA/PA - EOR - **⇔** GAS - △ INJ/SWD - OIL - **♦** OIL/GAS - OTHER Bailey, Marion L 14-1 14-28S-18E 1" = 1,000' | | A | В | С | D | Е | F | C | П | ı | ı | К | |--|---|--|--|--|--|--|---|---|---|---|-----------------| | 1 | Produced Fluids # | O | 1 | 2 | 3 | 4 | G
5 | Н | <u> </u> | J | 1 N | | | Parameters | Units | Input | Input | Input | Input | Input | | Click he | ro | Click | | 3 | Select the brines | Select fluid | 7 | | 7 | | 7 | Mixed brine: | to run S | | | | 4 | Sample ID | by checking | | | | | · · | Cell H28 is | to run St | | Click | | | Date | the box(es), | 3/19/2012 | 3/4/2012 | 3/14/2012 | 1/20/2012 | 1/20/2012 | STP calc. pH. | > | | | | 6 | Operator | Row 3 | PostRock | PostRock | PostRock | PostRock | PostRock | Cells H35-38 | | | Click | | | Well Name | | Ward Feed | Ward Feed | Clinesmith | Clinesmith | Clinesmith | are used in | Goal Seek | SSP | | | 8 | Location | | #34-1 | #4-1 | #5-4 | #1 | #2 | mixed brines | | | Click | | _ | Field | | CBM | CBM | Bartles | Bartles | Bartles | calculations. | | | | | 10 | Na ⁺ | (mg/l)* | 19,433.00 | 27,381.00 | 26,534.00 | 25689.00 | 24220.00 | 24654.20 | Initial(BH) | Final(WH) | SI/SR | | 11 | K ⁺ (if not known =0) | (mg/l) | | | | | | 0.00 | Saturation Index | values | (Final-Initial) | | 12 | Mg ²⁺ | (mg/l) | 1,096.00 | 872.00 | 1,200.00 | 953.00 | 858.00 | 995.91 | Ca | lcite | | | 13 | Ca ²⁺ | (mg/l) | 1,836.00 | 2,452.00 | 2,044.00 | 1920.00 | 1948.00 | 2040.23 | -0.73 | -0.60 | 0.13 | | | Sr ²⁺ | (mg/l) | | · | | | | 0.00 | Ba | rite | | | 15 | Ba ²⁺ | (mg/l) | | | | | | 0.00 | | | | | | Fe ²⁺ | (mg/l) | 40.00 | 21.00 | 18.00 | 82.00 | 90.00 | 50.21 | н | alite | | | | Zn ²⁺ | | 40.00 | 21.00 | 10.00 | 02.00 | 70.00 | 0.00 | -1.77 | -1.80 | -0.03 | | | | (mg/l) | | | | | | | | | -0.03 | | | Pb ²⁺ | (mg/l) | 2 (200 00 | 40.045.00 | 47.074.00 | 45.22.00 | 424 47 00 | 0.00 | | osum | 0.00 | | | Cl' | (mg/l) | 36,299.00 | 48,965.00 | 47,874.00 | 45632.00 | 43147.00 | 44388.44 | -3.19 | -3.18 | 0.00 | | - | SO ₄ ² · | (mg/l) | 1.00 | 1.00 | 8.00 | 1.00 | 1.00 | 2.40 | | nydrate | | | 21 | F | (mg/l) | | | | | | 0.00 | -3.96 | -3.90 | 0.06 | | | Br [*] | (mg/l) | | | | | | 0.00 | Anh | ydrite | | | 23 | SiO2 | (mg/l) SiO2 | | | | | | 0.00 | -3.47 | -3.36 | 0.12 | | 24 | HCO3 Alkalinity** | (mg/l as HCO3) | 190.00 | 234.00 | 259.00 | 268.00 | 254.00 | 241.03 | Cele | estite | | | 25 | CO3 Alkalinity | (mg/l as CO3) | | | | | | | | | | | 26 | Carboxylic acids** | (mg/l) | | | | | | 0.00 | Iron S | Sulfide | | | 27 | Ammonia | (mg/L) NH3 | | | | | | 0.00 | -0.16 | -0.22 | -0.06 | | 28 | Borate | (mg/L) H3BO3 | | | | | | 0.00 | Zinc | Sulfide | | | | TDS (Measured) | (mg/l) | | | | | | 72781 | | | | | | Calc. Density (STP) | (g/ml) | 1.038 | 1.051 | 1.050 | 1.048 | 1.045 | 1.047 | Calcium | ı fluoride | | | | CO ₂ Gas Analysis | (%) | 19.97 | 18.76 | 22.41 | 35.53 | 33.79 | 26.16 | Curezun | | | | | H ₂ S Gas Analysis*** | (%) | 0.0289 | 0.0292 | 0.0296 | 0.0306 | 0.0151 | 0.0269 | Iron Ca | arbonate | | | _ | Total H2Saq | (mgH2S/l) | 1.00 | 1.00 | 1.00 | 1.00 | 0.50 | 0.90 | -0.74 | -0.51 | 0.23 | | | pH, measured (STP) | pН | 5.67 | 5.76 | 5.72 | 5.54 | 5.55 | 5.63 | Inhibitor ne | eeded (mg/L) | | | | | 0-CO2%+Alk, | | | | | | | Calcite | NTMP | | | | Choose one option | | | | _ | | | | | | | | 35 | to calculate SI? | • | 0 | 0 | 0 | 0 | 0 | | 0.00 | 0.00 | | | | Gas/day(thousand cf/day) | (Mcf/D) | | 0 | | 4. | 4 | 0 | 0.00
Rorito | 0.00 | | | | Oil/Day
Water/Day | (B/D)
(B/D) | 100 | 100 | 100 | 100 | 100 | 500 | Barite
0.00 | 0.00 | | | | J | | | 100 | 100 | 100 | 100 | 200 | | о.00
оН | | | | For mixed brines, enter val | . , | | ures in Cells (H | (40-H43) | | | (Enter H40-H43) | n | | | | 40 | For mixed brines, enter val
Initial T | . , | | ures in Cells (H
71.0 | (40-H43)
70.0 | 41.0 | 49.0 | (Enter H40-H43)
60.0 | 5.69 | 5.60 | | | | | lues for tempera | tures and press
66.0
66.0 | ` | | 41.0 | 49.0 | 60.0
89.0 | 5.69 | | | | 41 | Initial T | lues for temperator (F) | tures and press
66.0 | 71.0 | 70.0 | | | 60.0
89.0 | 5.69 | 5.60 | | | 41
42
43 | Initial T Final T Initial P Final P | (F) (F) (psia) (psia) | tures and press
66.0
66.0 | 71.0
71.0 | 70.0
70.0 | 41.0 | 49.0 | 60.0
89.0 | 5.69
Viscosity (
1.196
Heat Capaci |
5.60
CentiPoise)
0.826
ity (cal/ml/ ⁰ C) | | | 41
42
43
44 | Initial T Final T Initial P Final P Use TP on Calcite sheet? | (F) (F) (psia) (psia) 1-Yes;0-No | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69
Viscosity (
1.196
Heat Capaci
0.955 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959 | | | 41
42
43
44
45 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. | ues for temperat (F) (F) (psia) (psia) (psia) 1-Yes;0-No API grav. | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no | 5.60
CentiPoise)
0.826
ty (cal/ml/ ⁰ C)
0.959
eeded (mg/L) | | | 41
42
43
44
45
46 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. | ues for tempera (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. | 66.0
66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
eded (mg/L)
HDTMP | | | 41
42
43
44
45
46
47 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day | ues for tempera (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 | 5.60 CentiPoise) 0.826 ty (cal/ml/°C) 0.959 eded (mg/L) HDTMP 0.00 | | | 41
42
43
44
45
46
47
48 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. | ues for tempera (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
eded (mg/L)
HDTMP | | | 41
42
43
44
45
46
47
48
49 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier | ues for tempera (F) (F) (psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * | (F) (F) (psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier | ues for tempera (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † | ues for tempera (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. McOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH* (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) | ues for tempera
(F)
(F)
(psia)
(psia)
1-Yes;0-No
API grav.
Sp.Grav.
(B/D)
(N)
(N)
STP: | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH' (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) PH Calculated | ues for tempera (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated | (F) (F) (psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (PH) (%) | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated | (F) (F) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated | (F) (F) (psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (PH) (%) | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated EXAnions= EXAnions= Calc TDS= | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity
Caclulated 2Cations= 2Anions= Calc TDS= Inhibitor Selection | ues for tempera (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input | tures and pressures 66.0 66.0 25.0 25.0 0 0 0 Unit | 71.0
71.0
25.0
25.0 | 70.0
70.0
25.0
25.0 | 41.0
25.0
25.0
Unit Converter | 49.0
25.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor nc Gypsum 0.00 Anhydrite 0.00 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
60
61
62 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated \$\textit{Z}\text{calculated}\$ Calc TDS= Inhibitor Selection Protection Time | (F) (F) (psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) | tures and press
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0
25.0 | 70.0
70.0
25.0
25.0
Inhibitor
NTMP | 41.0 25.0 25.0 Unit Converter | 49.0
25.0
25.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite 0.00 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated 2Cations= 2Anions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer | (F) (F) (psia) (psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (equiv./I) (mg/I) Input 120 | tures and pressures 66.0 66.0 25.0 25.0 0 0 0 Unit min | 71.0
71.0
25.0
25.0
4
1
1
2 | 70.0
70.0
25.0
25.0
25.0
Inhibitor
NTMP
BHPMP | 41.0 25.0 25.0 25.0 Unit Converter From Unit | 49.0
25.0
25.0
25.0
(From metric Value 80 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite 0.00 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. McOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated 2Cations= EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? | (F) (F) (psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input 120 | tures and pressures 66.0 66.0 25.0 25.0 0 0 0 0 Unit min | 71.0
71.0
25.0
25.0
4
1
1
2
3 | Inhibitor NTMP BHPMP PAA | 41.0 25.0 25.0 25.0 Unit Converter From Unit °C m³ | 49.0
25.0
25.0
25.0
(From metric
Value
80
100 | 60.0
89.0
25.0
120.0
30.00
0.60
0
0
To Unit | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
53
54
55
56
67
75
88
89
60
61
62
63
64
65 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H† (Strong acid) † OH' (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated 2Cations= EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: | (F) (F) (psia) (psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (equiv./I) (mg/I) Input 120 | tures and pressures 66.0 66.0 25.0 25.0 0 0 0 Unit min | 71.0
71.0
25.0
25.0
4
1
2
3 | Inhibitor NTMP BHPMP PAA DTPMP | Unit Converter From Unit °C m³ m³ | 49.0
25.0
25.0
25.0
(From metric
Value
80
100
100 | 60.0
89.0
25.0
120.0
30.00
0.60
0
0
To Unit
"F
ft"3
bbl(42 US gal) | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
67
78
88
60
61
62
63
64
65
66 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong acid) * OH* (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated Alkalinity Caclulated ECations= EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: If you select Mixed, | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) (N) STP: (%) (mgH2S/I) (pH) (mg/I) as HCO3 (equiv./I) (mg/I) Input 120 1 4 | tures and press 66.0 66.0 25.0 25.0 0 0 0 1-Yes;0-No # | 71.0
71.0
25.0
25.0
4
1
2
3
4
5 | Inhibitor NTMP BHPMP PAA DTPMP PPCA | Unit Converter From Unit °C m³ m³ MPa | 49.0
25.0
25.0
25.0
(From metric
Value
80
100
1,000 | 60.0
89.0
25.0
120.0
30.00
0.60
0
0
To Unit
"F
ft"3
bbl(42 US gal) | Value 176 3,531 629 145,074 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
67
60
61
62
63
64
65
66
66 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH' (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated Alkalinity Caclulated EXATIONS= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: If you select Mixed, 1st inhibitor # is: | (F) (F) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/l) as HCO3 (equiv./I) (mg/l) Input 120 1 4 | Unit min 1-Yes;0-No # | # # 1 2 3 4 4 5 6 | Inhibitor NTMP BHPMP PAA DTPMP PPCA SPA | Unit Converter From Unit °C m³ m³ MPa Bar | 49.0
25.0
25.0
25.0
 | 60.0
89.0
25.0
120.0
30.00
0.60
0
0
0
To Unit
"F
ft ³
bbl(42 US gal)
psia | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 145,074 7,194 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
67
63
64
65
66
67
68 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated SCations= EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: If you select Mixed, 1st inhibitor is: | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input 120 1 4 1 50 | Unit min 1-Yes;0-No # # % | # # 1 2 3 4 4 5 6 6 7 | Inhibitor NTMP BHPMP PAA DTPMP PPCA SPA HEDP | Unit Converter From Unit °C m³ m³ MPa Bar Torr | 49.0
25.0
25.0
25.0
25.0
 | 60.0
89.0
25.0
120.0
30.00
0.60
0
0
0
To Unit
"F
ft ³
bbl(42 US gal)
psia
psia | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 145,074 7,194 193 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
67
62
63
64
65
66
67
68
69 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated Alkalinity Caclulated PCO2 Calculated Alkalinity Caclulated EXAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor for you? If you select Mixed, 1st inhibitor # is: % of 1st inhibitor is: % of 1st inhibitor is: 2nd inhibitor is: | (F) (F) (psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) 1
120 1 4 1 50 2 | Unit min 1-Yes;0-No # # % # | ## 1 2 3 4 4 5 6 6 7 8 | Inhibitor NTMP BHPMP PAA DTPMP PPCA SPA HEDP HDTMP | Unit Converter From Unit °C m³ MPa Bar Torr Gal | 49.0
25.0
25.0
25.0
25.0
25.0
25.0
25.0
25 | 60.0 89.0 25.0 120.0 30.00 0.60 0 0 10 10 10 10 10 10 10 10 10 10 10 1 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 145,074 7,194 193 238 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
67
62
63
64
65
66
67
68
69 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated SCations= EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: If you select Mixed, 1st inhibitor is: | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input 120 1 4 1 50 | Unit min 1-Yes;0-No # # % | # # 1 2 3 4 4 5 6 6 7 | Inhibitor NTMP BHPMP PAA DTPMP PPCA SPA HEDP | Unit Converter From Unit °C m³ m³ MPa Bar Torr | 49.0
25.0
25.0
25.0
25.0
 | 60.0
89.0
25.0
120.0
30.00
0.60
0
0
0
To Unit
"F
ft ³
bbl(42 US gal)
psia
psia | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 145,074 7,194 193 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | ## **Saturation Index Calculations** Champion Technologies, Inc. (Based on the Tomson-Oddo Model) Brine 1: Ward Feed Yard 34-1 Brine 2: Ward Feed Yard 4-1 Brine 3: Clinesmith 5-4 Brine 4: Clinesmith 1 Brine 5: Clinesmith 2 | | | | Ratio | | | | |--------------------------|---------|---------|---------|---------|---------|-------------| | | 20% | 20% | 20% | 20% | 20 | | | Component (mg/L) | Brine 1 | Brine 2 | Brine 3 | Brine 4 | Brine 5 | Mixed Brine | | Calcium | 1836 | 2452 | 2044 | 1920 | 1948 | 1952 | | Magnesium | 1096 | 872 | 1200 | 953 | 858 | 865 | | Barium | 0 | 0 | 0 | 0 | 0 | 0 | | Strontium | 0 | 0 | 0 | 0 | 0 | 0 | | Bicarbonate | 190 | 234 | 259 | 268 | 254 | 253 | | Sulfate | 1 | 1 | 8 | 1 | 1 | 1 | | Chloride | 36299 | 48965 | 47874 | 45632 | 43147 | 43206 | | CO ₂ in Brine | 246 | 220 | 264 | 422 | 405 | 401 | | Ionic Strength | 1.12 | 1.48 | 1.46 | 1.38 | 1.31 | 1.31 | | Temperature (°F) | 89 | 89 | 89 | 89 | 89 | 89 | | Pressure (psia) | 50 | 50 | 120 | 120 | 120 | 119 | #### **Saturation Index** | Calcite | -1.71 | -1.41 | -1.48 | -1.68 | -1.69 | -1.69 | |-------------|-------|-------|-------|-------|-------|-------| | Gypsum | -3.71 | -3.64 | -2.82 | -3.73 | -3.72 | -3.69 | | Hemihydrate | -3.70 | -3.65 | -2.83 | -3.74 | -3.71 | -3.69 | | Anhydrite | -3.89 | -3.79 | -2.97 | -3.89 | -3.88 | -3.85 | | Barite | N/A | N/A | N/A | N/A | N/A | N/A | | Celestite | N/A | N/A | N/A | N/A | N/A | N/A | #### PTB | Calcite | N/A | N/A | N/A | N/A | N/A | N/A | |-------------|-----|-----|-----|-----|-----|-----| | Gypsum | N/A | N/A | N/A | N/A | N/A | N/A | | Hemihydrate | N/A | N/A | N/A | N/A | N/A | N/A | | Anhydrite | N/A | N/A | N/A | N/A | N/A | N/A | | Barite | N/A | N/A | N/A | N/A | N/A | N/A | | Celestite | N/A | N/A | N/A | N/A | N/A | N/A | # KANSAS CORPORATION COMMISSION ORIGINAL OIL & GAS CONSERVATION DIVISION September 1999 Form Must Be Typed ### **WELL COMPLETION FORM WELL HISTORY - DESCRIPTION OF WELL & LEASE** | Operator: License # 33344 | API No. 15 - 133-26392 - 00 - 00 | |--|---| | Name: Quest Cherokee, LLC RECEIVED | | | Address: 211 W. 14th Street KANSAS CORPORATION COMMISS | County: Neosho Non /50 County: W 16 Sec. 14 Twp. 28 S. R. 18 V East West | | City/State/Zip: Chanute, KS 66720 | 1980 feet from (S) N (circle one) Line of Section | | Purchaser: Bluestem Pipeline, LLC | 1830 feet from E / (W) (circle one) Line of Section | | Charatar Contact Barson, Gary Laswell CONSERVATION DIVISION | Footages Calculated from Nearest Outside Section Corner: | | Phone: (620) 431-9500 | (circle one) NE SE NW (SW) | | Contractor: Name: Blue Ribbon Drilling LLC | Lease Name: Bailey, Marion L. Well #: 14-1 | | 22004 | Field Name: Cherokee Basin CBM | | Wellsite Geologist: Ken Recoy | Producing Formation: Multiple | | Designate Type of Completion: | Elevation: Ground: 955 Kelly Bushing: n/a | | New Well Re-Entry Workover | Total Depth: 1090 Plug Back Total Depth: 1085.55 | | OilSIOWTemp. Abd. | Amount of Surface Pipe Set and Cemented at 23 Feet | | Oil SWD 1emp. Abd Gas ENHR SIGW | | | | | | Dry Other (Core, WSW, Expl., Cathodic, etc) | If yes, show depth setFeet | | If Workover/Re-entry: Old Well Info as follows: | If Alternate II completion, cement circulated from 1085.55 | | Operator: | feet depth to surface w/ 139 sx cmt. ACT I WHM 6-20-06 | | Well Name: | Drilling Fluid Management Plan | | Original Comp. Date: Original Total Depth: | (Data must be collected from the Reserve Pit) | | Deepening Re-perf Conv. to Enhr./SWD | Chloride contentppm Fluid volumebbls | | Plug Back Plug Back Total Depth | Dewatering method used | | Commingled Docket No | Location of fluid disposal if hauled offsite: | | Dual Completion Docket No | · | | Other (SWD or Enhr.?) Docket No | Operator Name: | | 2/17/06 2/20/06 2/24/06 | Lease Name: License No.: | | Spuid Date or Date Reached TD Completion Date or Recompletion Date | Quarter Sec. Twp. S. R. East West | | Recompletion Date Recompletion Date | County: Docket No.: | | | | | INSTRUCTIONS: An original and two copies of this form shall be filed with the | he Kansas Corporation Commission, 130 S. Market - Room 2078, Wichita, | | Kansas 67202, within 120 days of the spud date, recompletion, workover | or conversion of a well. Rule 82-3-130, 82-3-106 and 82-3-107 apply. | | Information of side two of this form will be held confidential for a period of 12 107 for confidentiality in excess of 12 months). One copy of all wireline logs a | | | TICKETS MUST BE ATTACHED. Submit CP-4 form with all plugged wells. | | | | | | All requirements of the statutes, rules and regulations promulgated to regulate herein are complete and correct to the best of my knowledge. | e the oil and gas industry have been fully complied with and the statements | | 47 | | | Signature: Russny | KCC Office Use ONLY | | Title: Head of Operations Date: 6/15/06 | Letter of Confidentiality Received | | or the | If Denied, Yes Date: | | Subscribed and sworn to before me this | , Wireline Log Received | | 20 06. | Geologist Report Received | | Notary Public: Yunufu K. Mmnann | UIC Distribution | | Date Commission Expires: Ouls 30, 2009 | JENNIFERR AMMANN | | | Notary Public - State of Kansas | | (My App | ot. Expires 7-30-09 | | Operator Name: C | uest Cherokee, L | TC | | Lease Nam | _{e:} Bailey, Mar | ion L. | Well #: 14- | 1 | |---|--|--|--|--|-------------------------------|-------------------------------|--|-------------------------------| | Sec. 14 Twp. | S. R18 | _ ✓ E | ast West | County: Ne | | | | | | temperature, fluid i | Show important tops
oen and closed, flow
recovery, and flow ra
ogs surveyed. Attacl | ing and s
tes if gas | nut-in pressures
to surface test, | , whether shut-in
along with final cl | pressure reache | d static level by | drostatio process | roo hottom kala | | Drill Stem Tests Tal | | | Yes ☑ No | ₹ | Log Forma | ation (Top), Dept | h and Datum | Sample | | Samples Sent to G | eological Survey | | Yes ✓ No | | ame
ee Attached | | Тор | Datum | | Cores Taken
Electric Log Run | | ✓ | Yes ✓ No
Yes No | | o Allacried | | | | | (Submit Copy) List All E. Logs Rur | n• | | | | | | | | | Comp. Density/Ne
Dual Induction Lo
Gamma Ray Neut | 9 | | | | New Used | | | | | Purpose of String | Size Hole | 1 | port all strings set-
Size Casing | conductor, surface, i | ntermediate, produ
Setting | | | | | Surface | Drilled 12-1/4" | | Set (in O.D.) | Lbs. / Ft. | Depth | Type of
Cement | # Sacks
Used | Type and Percent
Additives | | Production | 6-3/4" | 8-5/8 ¹
4-1/2 ¹ | | 20# | 1085.55 | "A" | 8 | | | | | | | 10.0# | 1000.00 | ^ | 139 | | | | | | ADDITIONAL | . CEMENTING / SC | QUEEZE RECOR | D | | | | Purpose: Perforate Protect Casing Plug Back TD Plug Off Zone | Depth
Top Bottom | Ту | pe of Cement | #Sacks Used | | | 1 Percent Additives | | | Shots Per Foot | PERFORAT
Specify | ION RECO | PRD - Bridge Plug
f Each Interval Per | s Set/Type | | | ent Squeeze Record | | | 4 | 981-985/915-91 | | | | | mount and Kind of I | viateriai Used)
sterw/2% KCL, Biocide 8200# | Depth 981-985/915-917 | | | | | | | 300gat 15% HCL w/ 32 b | bls 2% kcl water, 355bbls wa | ter w/ 2% KCL., Blocide 6300# | 20/40 send 709-711/672-675 | | | | | | | 400gal 15% HCL w/ 36 bi | ols 2% kcl water, 531bbls wat | er w/ 2% KCL., Biocide 11200# | 20/40 sand 570-574/559-563 | | TUBING RECORD 2- | Size
3/8" | Set A | | Packer At | Liner Run | | | 370-374/339-363 | | | d Production, SWD or E | | Producing Meth | od
☐ Flowir | ng √ Pumpi | Yes✓ N | | (Explain) | | Estimated
Production
Per 24 Hours | oii
n/a | Bbls. | Gas 6.4mcf | Mcf Wat | ter B | | Gas-Oil Ratio | Gravity | | Disposition of Gas | METHOD OF C | OMPLETI | 1 | | Production Inter | val | | | | Vented Sold (If vented, Su | Used on Lease
bmit ACO-18.) | | Open Hole Other (Specify | | Dually Comp. | Commingled _ | | | #### AFFIDAVIT STATE OF KANSAS SS. County of Sedgwick Mark Fletchall, of lawful age, being first duly sworn, deposeth and saith: That he is Record Clerk of The Wichita Eagle, a daily newspaper published in the City of Wichita, County of Sedgwick, State of Kansas, and having a general paid circulation on a daily basis in said County, which said newspaper has been continuously and uninterruptedly published in said County for more than one year prior to the first publication of the notice hereinafter mentioned, and which said newspaper has been entered as second class mail matter at the United States Post Office in Wichita, Kansas, and which said newspaper is not a trade, religious or fraternal publication and that a notice of a true copy is hereto attached was published in the regular and entire Morning issue of said The Wichita Eagle for _1_ issues, that the first made as aforesaid on the 18th of June A.D. 2012, with publication of said n1tice was subsequent publications being made on the following dates: And affiant further says that he has personal knowledge of the statements above set forth and that they are true. Subscribed and sworn to before me this <u> 18th day</u> of June, 2012 PENNY L. CASE Notary Public, State of Kansa My Appt. Expires Notary Public Sedgwick County, Kansas Printer's Fee : \$132.40 #### LEGAL PUBLICATIONS PUBLISHED IN THE WICHITA EAGLE JUNE 18, 2012 (3191257) BEFORE THE STATE CORPORATION COMMISSION OF THE STATE OF KANSAS NOTICE OF FILING APPLICATION RE: In the Matter of Postrock Midconfinent Production, LLC Application for Commingling of Production in the Balley, Marion L 14-1 located in Neosho County, Kansas. TO: All Oil & Gas Producers, Unleased Mineral interest Owners, Landowners, and all persons whomever concerned. You, and each of you, are hereby notified And all persons whomever concerned. You, and each of you, are hereby notified that Postrock Midcontinent Production, LLC has filed an application to commingle the Riverton, Rowe, Fleming, Croweburg, Mulky, Summit, Bartlesville and Stray Sand producing formations at the Bailey, Marion L 14-1, located in the SE NW NE SW, S14-T28S-R18E, Approximately 2035 FSL & 1761 FWL, Neosho County, Kansas. Any persons who object to or profest this application shall be required to file their objections or profest with the Conservation Division of the State Corporation Commission of the State Corporation Commission of the State of Kansas within fifteen (15) days from the date of this publication. These profests shall be filed pursuant to Commission regulations and must state specific reasons why granting the application may cause waste, violate correlative rights or pollute the natural the application may cause waste, violate correlative rights or pollute the natural resources of the State of Kansas. All persons interested or concerned shall take notice of the foregoing and shall govern themselves accordingly. All person and/or companies wishing to protest this application are required to file a written protest with the Conservation Division of the Kansas Oil and Gas Commission. Kansas Oli and Gas Commission. Upon the receipt of any protest, the Commission will convene a hearing and protestants will be expected to enter an appearance either through proper legal counsel or as individuals, appearing on their own behalf. Postrock Midcontinent Production, LLC 210 Park Avenue, Suite 2750. 210 Park Avenue, Suite 2750 Oklahoma City, Oklahoma 73102 (405) 660-7704 # BEFORE THE STATE CORPORATION COMMISSION OF THE STATE OF KANSAS NOTICE OF FILING APPLICATION RE: In the Matter of Postrock Midcontinent Production, LLC Application for Commingling of Production in the Balley, Marion L 14-1 located in Neosho County, Kansas. TO: All Oil & Gas Producers, Unleased Mineral Interest Owners, Landowners, and all persons whomever concerned. You, and each of you, are hereby notified that Postrock Midcontinent Production, LLC has filed an application to commingle the Riverton, Rowe, Fleming, Croweburg, Mulky, Summit, Bartlesville and Stray Sand producing formations at the Bailey, Marlon L 14-1, located in the SE NW NE SW, S14-T28S-R18E, Approximately 2035 FSL & 1761 FWL, Neosho County, Kansas. Any persons who object to or protest this application shall be required to file their objections or protest with the Conservation Division of the State Ocrporation Commission of the State of Kansas within fifteen (15) days from the date of this publication. These protests shall be filed pursuant to Commission regulations and must state specific reasons why granting the application may cause waste, violate correlative rights or pollute the natural resources of the State of Kansas. All persons interested or concerned shall take notice of the foregoing and shall govern themselves accordingly. All person and/or companies wishing to protest this application are required to file a written protest with the Conservation Division of the Kansas Oil and Gas Commission. Upon the receipt of any protest, the Commission will convene a hearing and protestants will be expected to enter an appearance either through proper legal counsel or as individuals, appearing on their own behalf. Postrock Midcontinent Production, LLC 210 Park Avenue, Suite 2750 Oklahoma City, Oklahoma 73102 (405) 660-7704 A COPY OF THE AFFIDAVIT OF PUBLICATION MUST ACCOM-PANY ALL APPLICATIONS # Affidavit of Publication 🧆 STATE OF KANSAS, NEOSHO COUNTY, ss: Rhonda Howerter, being first duly sworn, deposes and says: That she is Classified Manager of THE CHANUTE TRIBUNE, a daily newspaper printed in the State of Kansas, and published in and of general circulation in Neosho County, Kansas, with a general paid circulation on a daily basis in Neosho County, Kansas, and that said newspaper is not a trade, religious or fraternal publication. Said newspaper is a daily published at least weekly 50 times a year: has been so published continuously and uninterruptedly in said county and state for a period of more than five years prior to the first publication of said notice; and has been admitted at the post office of Chanute, in said county as second class matter. Additional Copies\$_ Total Publication Fees \$ 73.14 | , and the second | | |--
--| | Affidavit of Notice Served | | | Re: Application for: APPLICATION FOR COMMINGLIN | G OF PRODUCTION OR FLUIDS - ACO-4 | | Well Name: BAILEY, MARION L 14-1 | Legal Location: SENWNESW S14-T28S-R18E | | The undersigned hereby certificates that he / she is a duly authorized agent | for the applicant, and that on the day 29 of JUNE | | , a true and correct copy of the application referenced a | above was delivered or mailed to the following parties: | | Note: A copy of this affidavit must be served as a part of the application. | | | Name | Address (Attach additional sheets if necessary) | | L & M, INC | 1606 PAUL ST, APT A, PARKERSBURG, WV 26101 | | WM R MCRAE | 12433 N 71ST ST, SCOTTSDALE, AZ 85254 | | HERB WOLFE | 1419 SOUTH EDITH, CHANUTE, KS 66720 | | ANTHONY J BOLLIG IRREVOCABLE TRUST, NANCY BOLLIC, BARBARA BOLLIG & PHILLIP JARED CO-TRUSTEES | 4805 140TH ROAD, CHANUTE, KS 66720 | | BETTY J MCNAUGHT | 16780 GRAY RD, CHANUTE, KS 66720 | | BRADFORD R MINER & SHELMARIE MINER | 7320 160TH RD, CHANUTE, KS 66720 | | RONALD E SPIRE & JOYCE SPIRE | 7340 160TH RD, CHANUTE, KS 66720 | | JAMES & WILMA WESTHOFF | 13450 GRAY RD, CHANUTE, KS 66720 | | I further attest that notice of the filing of this application was published in the $ rac{Q}{Q}$ | CHANUTE TRIBUNE, the official county publication county. A copy of the affidavit of this publication is attached. | | Signed this 29th day of JUNE , 20 | 012 | | | pplicant of Duly Authorized Agent Beal | | All the same and the same and a s | day of JUNE , 2012 June 10 Ju | | | | ## BAILEY, MARION L 14-1 - APPLICATION FOR COMMINGLING OF PRODUCTION OR FLUIDS | Name: ATTACHED Legal Rescription of Leasehold: Applicant Adjusticated Agent Applicant globy Authorized Agent DENNEY VEHNELSON DENNEY VEHNELSON Applicant of Legal Rescription of Leasehold: Substantial Authorized Agent Applicant globy Authorized Agent DENNEY VEHNELSON Applicant of Legal Rescription of Leasehold: Rescri | a and atting and also are to be | sed Mineral Owners and Lando | owners acreage | | | |--|---------------------------------|--|------------------------------------|--------------------------
--| | Toerdly that the elatements made herein are line and correct to the bost of my knowledge and volue. Applicant grown Authorized Agent Subscribed and evron before me this 20 day of JUNE 2012 DERNEY V. VERNEMAN WY COLING "THE EXPIRES July 1, 2022 My Commission Expires: 7// 2 | additional sneets if i | | | | | | Certify that the statements made herein are true and correct to the bost of my timowhedure and ballot. Applicant problet Aughdreed Agent Subscribed and sworn before me this 29 day of JUNE 2012 OFFICIAL INT COMIS. "A EXPERS Notify Public July 1, 2012 My Commission Expires: 7/-/2 My Commission Expires: 7/-/2 | ΔΤΤΔΟΗΕΝ | Name: | | Legal Description of Lea | sehold: | | Applicant of Duty Augusted Agent Subscribed and sworn before me this 29th day of JUNE 2012 DENISE V. VENNEMAN MY COMMISSION EXPIRES July 1, 2012 My Commission Expires: My Commission Expires: | ATTACHED | | | | | | Applicant of Duty Authorized Agent Subscribed and sworn before me this 29th day of JUNE 2012 DENIES V. VENNEMAN MY COMMINITY REPIRES July 1, 2012 My Commission Expires: My Commission Expires: | | | | | | | Applicant of Duty Authorized Agent Subscribed and sworn before me this 29th day of JUNE 2012 DENIES V. VENNEMAN IMY COMMINITY EXPIRES July 1, 2012 My Commission Expires: My Commission Expires: | | | | | | | Subscribed and sworn before me this 29th day of JUNE 2012 DENIES V. VENNEMAN MY COMMINIST MEXPIRES July 1, 2012 My Commission Expires: 7//2 | | | | | | | Subscribed and sworn before me this 29th day of JUNE 2012 DENIES V. VENNEMAN MY COMMINIST MEXPIRES July 1, 2012 My Commission Expires: 7//2 | • | | | | | | Applicant goul, Autgorized Agent Subscribed and sworn before me this 29th day of JUNE DENISE V. VENNEMAN MY COMMINITY MEXPIRES July 1, 2012 My Commission Expires: My Commission Expires: My Commission Expires: | | | | | | | Applicant group Autignized Agent Subscribed and sworn before me this 29th day of JUNE DENISE V. VENNEMAN MY COMMINITY OF APPRES July 1, 2012 My Commission Expires: My Commission Expires: 7 / - / 2 | | | | 10 1 100 0 | | | Applicant group Autignized Agent Subscribed and sworn before me this 29th day of JUNE DENISE V. VENNEMAN MY COMMINITY OF APPRES July 1, 2012 My Commission Expires: My Commission Expires: 7 / - / 2 | | | | | | | Applicant group Autgrated Agent Subscribed and sworn before me this 29th day of JUNE DENICE V. VENNEMAN MY COMMISSION EXPIRES July 1, 2012 My Commission Expires: My Commission Expires: | | | | | 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 | | Applicant group Autgrated Agent Subscribed and sworn before me this 29th day of JUNE DENICE V. VENNEMAN MY COMMISSION EXPIRES July 1, 2012 My Commission Expires: My Commission Expires: | | | · | | | | Applicant group Autgrated Agent Subscribed and sworn before me this 29th day of JUNE DENICE V. VENNEMAN MY COMMISSION EXPIRES July 1, 2012 My Commission Expires: My Commission Expires: | | | | | | | Applicant group Autgrated Agent Subscribed and sworn before me this 29th day of JUNE DENICE V. VENNEMAN MY COMMISSION EXPIRES July 1, 2012 My Commission Expires: My Commission Expires: | | | | | | | Applicant good, Authorized Agent Subscribed and sworn before me this 29th day of JUNE 2012 DENIEF V. VENNEMAN MY COMMin "NEXPIRES July 1, 2012 My Commission Expires: 71-12 | | | | • | | | Applicant growth Autignized Agent Subscribed and sworn before me this 29th day of JUNE 2012 DENIES V. VENNEMAN MY COMMISSION EXPIRES July 1, 2012 My Commission Expires: My Commission Expires: | | | | | | | Applicant of Duty Authorized Agent Subscribed and sworn before me this 29th day of JUNE 2012 DENISE V. VENNEMAN MY COMMISSION EXPIRES July 1, 2012 My Commission Expires: My Commission Expires: | | <u></u> . | | | | | Applicant of Duty Authorized Agent Subscribed and sworn before me this 29th day of JUNE DENIES V. VENNEMAN MY COMBINATION PAPIRES July 1, 2012 My Commission Expires: My Commission Expires: | certify that the state | ments made herein are true and c | orrect to the best of mv knowledge | and belief, | | | Subscribed and sworn before me this 29 day of JUNE 2012 DEMISE V. VENNEMAN INV COMMISSION EXPIRES July 1, 2012 My Commission Expires: My Commission Expires: | sarany and and state | mone made neven are trac and c | on out to the boot of my thomougo | · · | | | Subscribed and sworn before me this 29 day or JUNE 2012 DENISE V. VENNEMAN MY COMMISSION TO PUBLIC V. VENNEMAN MY COMMISSION Expires: My Commission Expires: My Commission Expires: | | | | Lu XA Blad | <u> </u> | | Subscribed and sworn before me this 29 day of JUNE 2012 DENISE V. VENNEMAN MY COMMIN. "ON EXPIRES July 1, 2012 My Commission Expires: 7/-/2 | | | Applicant or Duly Aut | orized Agent | | | DENISE V. VENNEMAN MY COMMISSION EXPIRES July 1, 2012 My Commission Expires: T-1-12 | | Subscrit | | | 2012 | | My Commission Expires: 7-/-/2 | SELEN PUR. | | | day or | 1 | | My Commission Expires: | | MY COMME TON EXPIRES | Heus | e Villenem | a h | | My Commission Expires: | A Contractor | July 1, 2012 | Notafy Public | 7/3 | | | | STATE CHARLES THE BOTH THE | And the second s | My Commission Expir | es:/_/ | | | | | | | | | | | | <u> </u> | | | HAT WARE TO A TO THE TOTAL OF T | # BAILY, MARION L 14-1 OFFSET OPERATORS, UNLEASED MINERAL OWNERS AND LANDOWNERS ACREAGE | SPOT | LEGAL LOCATION | CURR_OPERA | |-------------|----------------|---------------| | SE NE SE NE | S15-T28S-R18E | L & M, Inc. | | SE NE | S15-T28S-R18E | L & M, Inc. | | NW SE SE NE | S15-T28S-R18E | L & M, Inc. | | NE SE SE NE | S15-T28S-R18E | L & M, Inc. | | N2 NW SW NW | S14-T28S-R18E | McRae, Wm. R. | | N2 N2 SW NW | S14-T28S-R18E | McRae, Wm. R. | | NW | S14-T28S-R18E | Wolfe, Herb | | Notes | TO states Anthony as owner but we rec'd a death certificate for him in 2011 - Co-Trustees own now | deed shows testamentary trust | address updated 6.20.12 | Death Cert, on file for Clifford | address updated 6.20.12 | address updated 6,20,12 | address updated 6,20,12 | address updated 6.20.12 | |-----------------|---|--|--------------------------------|--|---|---|--|--| | OTR ST R. Title | | Nancy Bollig, Barbara Bollig, & Philip
Jared Co-Trustees
4805 140th Road | . 66720
AeNaughtand-Betty J | CK
CK | Chanute, KS 66720
Bradford R Miner and Shelmarie | 60th Rd | Chanute, KS 66720
14 28S 18E TO dtd 1.09.06 Ronald E Spire and Joyce Spire
7340 160th Rd | | | S T R Title | 15 28S 18E TO dtd 12.6.06 | | | 14 28S 18E TO dtd 4,11.06 McNaught
16780 Gray | | 14 285 18E TO dtd 1.09.06 Miner
7320 1 | 14 28S 18E TO dtd 1.09.06 | Chanute, KS 65720 14 285 18E TO dtd 1,18.06 James & Wilma Westhoff 13450 Gray Rd Chanute, KS 66720 | | QTR. | SZNE | | | M & B desc. In W2 of NW4
(14.14 acres) | | M & B description in £25W | M & B description in E2SW | *M & B description in SE
(5.67 acres) | ^{*}Beginning at the NE Corner of the SE4, Section 14, thence West 1520 feet, then South 896 feet, thence East 225 feet, thence North 861 feet, thence East 1295 feet to East line of said SE4, thence North 35 feet to POB | ORMATION: | SUMMITT | (PERFS): | 559 - | - 563 | | | |
--|--------------------------|---|----------|---|--------------|---|------| | ORMATION: | BARTLESVILLE | (PERFS): | 790 - | 799 | | | | | ORMATION: | STRAY SAND | (PERFS): | 737 - | 741 | | | | | ORMATION: | | (PERFS): | - | | | | | | ORMATION: | | (PERFS): | - | | | | | | ORMATION: | | (PERFS): | - | | | | | | ORMATION: | | (PERFS): | | | | | | | ORMATION: | | (PERFS): | - | | | | | | ORMATION: | | (PERFS): | - | | | | | | ORMATION: | | (PERFS): | - | | | | | | ORMATION: | | (PERFS): | - | | | | | | | | 4 | | | | | | | FORMATION:
ESTIMATED AN | OUNT OF FLUID PRODUCTION | (PERFS):
I TO BE COMMINGLED FROM | EACH INT | ERVAL | | | | | ESTIMATED AN
FORMATION: | SUMMITT | I TO BE COMMINGLED FROM
BOPD: | 0 | MCFPD: | 1.83 | BWPD: | 6.67 | | ESTIMATED AN
FORMATION:
FORMATION: | SUMMITT
BARTLESVILLE | I TO BE COMMINGLED FROM BOPD: BOPD: | 0 | MCFPD: | 1.83
1.83 | BWPD: | 6.67 | | ESTIMATED AN
FORMATION: | SUMMITT | I TO BE COMMINGLED FROM BOPD: BOPD: BOPD: | 0 | MCFPD: MCFPD: | | BWPD:
BWPD: | | | ESTIMATED AN
FORMATION:
FORMATION:
FORMATION: | SUMMITT
BARTLESVILLE | I TO BE COMMINGLED FROM BOPD: BOPD: BOPD: BOPD: BOPD: | 0 | MCFPD: MCFPD: MCFPD: | 1.83 | BWPD:
BWPD:
BWPD: | 6.67 | | ESTIMATED AN
FORMATION:
FORMATION:
FORMATION: | SUMMITT
BARTLESVILLE | BOPD: BOPD: BOPD: BOPD: BOPD: BOPD: BOPD: | 0 | MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: | 1.83 | BWPD:
BWPD: | 6.67 | | ESTIMATED AN
FORMATION:
FORMATION:
FORMATION: | SUMMITT
BARTLESVILLE | I TO BE COMMINGLED FROM BOPD: BOPD: BOPD: BOPD: BOPD: | 0 | MCFPD: MCFPD: MCFPD: | 1.83 | BWPD:
BWPD:
BWPD: | 6.67 | | ESTIMATED AN
FORMATION:
FORMATION:
FORMATION:
FORMATION: | SUMMITT
BARTLESVILLE | BOPD: | 0 | MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: | 1.83 | BWPD:
BWPD:
BWPD: | 6.67 | | ESTIMATED AN
FORMATION:
FORMATION:
FORMATION:
FORMATION:
FORMATION: | SUMMITT
BARTLESVILLE | BOPD: | 0 | MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: | 1.83 | BWPD:
BWPD:
BWPD:
BWPD: | 6.67 | | ESTIMATED AN
FORMATION:
FORMATION:
FORMATION:
FORMATION:
FORMATION:
FORMATION: | SUMMITT
BARTLESVILLE | BOPD: | 0 | MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: | 1.83 | BWPD: BWPD: BWPD: BWPD: BWPD: | 6.67 | | ESTIMATED AN
FORMATION:
FORMATION:
FORMATION:
FORMATION:
FORMATION:
FORMATION: | SUMMITT
BARTLESVILLE | BOPD: | 0 | MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: | 1.83 | BWPD: BWPD: BWPD: BWPD: BWPD: BWPD: | 6.67 | | ESTIMATED AN
FORMATION:
FORMATION:
FORMATION:
FORMATION:
FORMATION:
FORMATION:
FORMATION: | SUMMITT
BARTLESVILLE | BOPD: | 0 | MCFPD: | 1.83 | BWPD: BWPD: BWPD: BWPD: BWPD: BWPD: BWPD: | 6.67 | Conservation Division Finney State Office Building 130 S. Market, Rm. 2078 Wichita, KS 67202-3802 Phone: 316-337-6200 Fax: 316-337-6211 http://kcc.ks.gov/ Mark Sievers, Chairman Thomas E. Wright, Commissioner Sam Brownback, Governor July 16, 2012 Clark Edwards PostRock Midcontinent Production LLC Oklahoma Tower 210 Park Ave, Ste 2750 Oklahoma City, OK 73102 RE: Approved Commingling CO071215 Bailey Marion L 14-1, Sec.14-T28S-R18E, Neosho County API No. 15-133-26392-00-00 Dear Mr. Edwards: Your Application for Commingling (ACO-4) for the above described well, received by the KCC on July 2, 2012, has been reviewed and approved by the Kansas Corporation Commission (KCC) per K.A.R. 82-3-123. Notice was examined and found to be proper per K.A.R. 82-3-135a. No protest had been filed within the 15-day protest period. Based upon the depth of the Riverton formation perforations, total oil production shall not exceed 100 BOPD and total gas production shall not exceed 50% of the absolute open flow (AOF). #### File form ACO-1 upon re-completion of the well to commingle. Commingling ID number CO071215 has been assigned to this approved application. Use this number for well completion reports (ACO-1) and other correspondence that may concern this approved commingling. Sincerely, Rick Hestermann Production Department