KANSAS CORPORATION COMMISSION OIL & GAS CONSERVATION DIVISION Form ACO-4 Form must be typed March 2009 ### APPLICATION FOR COMMINGLING OF Commingling ID#_ PRODUCTION (K.A.R. 82-3-123) OR FLUIDS (K.A.R. 82-3-123a) | OPERAT | OR: License # | API No. 15 | | | | | |-------------------------------------|---|--|-------------------|---|--|--| | Name:_ | | Spot Description: _ | | | | | | Address | 1: | - | _ Sec Twp | _S. R East West | | | | Address | 2: | | Feet from N | orth / South Line of Section | | | | City: | State: Zip:+ | <u> </u> | Feet from E | ast / West Line of Section | | | | | Person: | | | | | | | | () | • | | | | | | | | | | | | | | 1. | Name and upper and lower limit of each production interval to | be commingled: | | | | | | | Formation: | (Perfs): | | | | | | | Formation: | (Perfs): | | | | | | | Formation: | (Perfs): | | | | | | | Formation: | (Perfs): | | | | | | | Formation: | (Perfs): | | | | | | | | | | | | | | <u> </u> | Estimated amount of fluid production to be commingled from e | | | | | | | | Formation: | BOPD: | MCFPD: | BWPD: | | | | | Formation: | BOPD: | MCFPD: | BWPD: | | | | | Formation: | BOPD: | MCFPD: | BWPD: | | | | | Formation: | BOPD: | MCFPD: | BWPD: | | | | | Formation: | BOPD: | MCFPD: | BWPD: | | | | □ 3.□ 4. | Plat map showing the location of the subject well, all other well the subject well, and for each well the names and addresses of Signed certificate showing service of the application and affidation | of the lessee of record or ope | erator. | ses within a 1/2 mile radius of | | | | For Con | nmingling of PRODUCTION ONLY, include the following: | | | | | | | <u> </u> | Wireline log of subject well. Previously Filed with ACO-1: | Yes No | | | | | | 6. | Complete Form ACO-1 (Well Completion form) for the subject | well. | | | | | | | , | | | | | | | For Con | nmingling of FLUIDS ONLY, include the following: | | | | | | | 7. | Well construction diagram of subject well. | | | | | | | 8. | Any available water chemistry data demonstrating the compat | ibility of the fluids to be comi | mingled. | | | | | current in mingling | /IT: I am the affiant and hereby certify that to the best of my formation, knowledge and personal belief, this request for comistrue and proper and I have no information or knowledge, which istent with the information supplied in this application. | Sı | ubmitted Electroi | nically | | | | KCC | Office Use Only | | | st in the application. Protests must be | | | | ☐ Denied ☐ Approved | | in writing and comply with K.A.R. 82-3-135b and must be filed wihin 15 days of publication of the notice of application. | | | | | Date: _ Denied Approved 15-Day Periods Ends: __ Approved By: # **Wellbore Schematic** WELL: King, Rex 24-1 SSI: 609370 API: 15-133-26470 LOCATION: NE SE Sec. 24 28S-18E COUNTY: Neosho STATE: Kansas | | STATE: Kansas | |--------------|---| | Casing | 8.625" @ 22'
4.5'' 10.5# J-55, 4.05'' ID w/ 0.0159 bbl/ft
capacity @ 1049' | | Perforations | Orignial Perfs: 2/6/06 - Riverton 935-939' (17) - U. Riverton 888-889' (5) - Rowe 879-881' (9) - Weir 770-772' (9) - Tebo 724-726' (9) - Fleming 694-696' (9) - Fleming 667-669' (9) - Croweburg 630-633' (13) - Bevier 604-606' (9) - Mulky 526-530' (17) | | Completions | Spud Date: 1/23/06 RUV Completion: 2/6/06 - 450 gals 15% HCl - 16.4 BPM - 10,700# 20/40 - 500 bbls BCFTW Completion: 2/6/06 - 550 gals 15% HCl - 16.5 BPM - 16,000# 20/40 - 662 bbls SM Completion: 2/6/06 - 400 gals 15% HCl - 16.5 BPM - 8,000# 20/40 - 592 bbls | # **KGS STATUS** - DA/PA - EOR - △ INJ/SWD - OIL - **♦** OIL/GAS - OTHER King, Rex 24-1 24-28S-18E 1" = 1,000' ### BEFORE THE STATE CORPO-RATION COMMISSION OF THE STATE OF KANSAS NOTICE OF FILING APPLICATION RE: In the Matter of Postrock Midcontinent Production, LLC Application for Commingling of Production in the King, Rex 24-1 located in Neosho County, Kansas. TO: All Oil & Gas Producers, Unleased Mineral Interest Owners, Landowners, and all persons whomever concerned. You, and each of you, are hereby notified that Postrock Midcontinent Production, LLC has filed an application to commingle the Riverton, Upper Riverton, Rowe, Weir, Tebo, Fleming, Croweburg, Bevler, Mulky and Stray Sand producing formations at the King, Rex 24-1, located in the NW SE NE SE, \$24-T28S-R18E, Approximately 1977 FSL & 602 FEL, Neosho County, Kansas. Any persons who object to or protest this application shall be required to file their objections or protest with the Conservation Division of the State Oroporation Commission of the State of Kansas within fifteen (15) days from the date of this publication. These protests shall be filed pursuant to Commission regulations and must state specific reasons why granting the application may cause waste, violate correlative rights or pollute the natural resources of the State of Kansas. All persons interested or concerned shall take notice of the foregoing and shall govern themselves accordingly. All person and/or companies wishing to protest this application are required to file a written protest with the Conservation Division of the Kansas Oil and Gas Commission. Upon the receipt of any protest, the Commission will convene a hearing and protestants will be expected to enter an appearance either through proper legal counsel or as individuals, appearing on their own behalf. Postrock Midcontinent Production, LLC 210 Park Avenue, Suite 2750 Oklahoma City, Oklahoma 73102 (405) 660-7704 A COPY OF THE AFFIDAVIT OF PUBLICATION MUST ACCOM-PANY ALL APPLICATIONS # Affidavit of Publication 🐝 STATE OF KANSAS, NEOSHO COUNTY, ss: Rhonda Howerter, being first duly sworn, deposes and says: That she is Classified Manager of THE CHANUTE TRIBUNE, a daily newspaper printed in the State of Kansas, and published in and of general circulation in Neosho County, Kansas, with a general paid circulation on a daily basis in Neosho County, Kansas, and that said newspaper is not a trade, religious or fraternal publication. Said newspaper is a daily published at least weekly 50 times a year: has been so published continuously and uninterruptedly in said county and state for a period of more than five years prior to the first publication of said notice; and has been admitted at the post office of Chanute, in said county as second class matter. | county as second class matter. | |---| | That the attached notice is a true copy thereof and was published in the regular and entire issue of said newspaper for | | , 2012, 2012 | | , 2012, 2012 | | Thonda Howerle | | Subscribed and sworn to and before me this | | My commission expires: January 9, 2015 | | Printer's Fee | | Affidavit, Notary's Fee \$ 3.00 | | Additional Copies\$ | Total Publication Fees \$ 74. 17 | | A | В | С | D | Е | F | C | П | ı | ı | К | |--|---|--|--|--|--|--|---|---|---|---|-----------------| | 1 | Produced Fluids # | O | 1 | 2 | 3 | 4 | G
5 | Н | <u> </u> | J | 1 N | | | Parameters | Units | Input | Input | Input | Input | Input | | Click he | ro | Click | | 3 | Select the brines | Select fluid | 7 | | 7 | | 7 | Mixed brine: | to run S | | | | 4 | Sample ID | by checking | | | | | · · | Cell H28 is | to run St | | Click | | | Date | the box(es), | 3/19/2012 | 3/4/2012 | 3/14/2012 | 1/20/2012 | 1/20/2012 | STP calc. pH. | > | | | | 6 | Operator | Row 3 | PostRock | PostRock | PostRock | PostRock | PostRock | Cells H35-38 | | | Click | | | Well Name | | Ward Feed | Ward Feed | Clinesmith | Clinesmith | Clinesmith | are used in | Goal Seek | SSP | | | 8 | Location | | #34-1 | #4-1 | #5-4 | #1 | #2 | mixed brines | | | Click | | _ | Field | | CBM | CBM | Bartles | Bartles | Bartles | calculations. | | | | | 10 | Na
⁺ | (mg/l)* | 19,433.00 | 27,381.00 | 26,534.00 | 25689.00 | 24220.00 | 24654.20 | Initial(BH) | Final(WH) | SI/SR | | 11 | K ⁺ (if not known =0) | (mg/l) | | | | | | 0.00 | Saturation Index | values | (Final-Initial) | | 12 | Mg ²⁺ | (mg/l) | 1,096.00 | 872.00 | 1,200.00 | 953.00 | 858.00 | 995.91 | Ca | lcite | | | 13 | Ca ²⁺ | (mg/l) | 1,836.00 | 2,452.00 | 2,044.00 | 1920.00 | 1948.00 | 2040.23 | -0.73 | -0.60 | 0.13 | | | Sr ²⁺ | (mg/l) | | · | | | | 0.00 | Ba | rite | | | 15 | Ba ²⁺ | (mg/l) | | | | | | 0.00 | | | | | | Fe ²⁺ | (mg/l) | 40.00 | 21.00 | 18.00 | 82.00 | 90.00 | 50.21 | н | alite | | | | Zn ²⁺ | | 40.00 | 21.00 | 10.00 | 02.00 | 70.00 | 0.00 | -1.77 | -1.80 | -0.03 | | | | (mg/l) | | | | | | | | | -0.03 | | | Pb ²⁺ | (mg/l) | 2 (200 00 | 40.045.00 | 47.074.00 | 45.22.00 | 424 47 00 | 0.00 | | osum | 0.00 | | | Cl' | (mg/l) | 36,299.00 | 48,965.00 | 47,874.00 | 45632.00 | 43147.00 | 44388.44 | -3.19 | -3.18 | 0.00 | | - | SO ₄ ² · | (mg/l) | 1.00 | 1.00 | 8.00 | 1.00 | 1.00 | 2.40 | | nydrate | | | 21 | F | (mg/l) | | | | | | 0.00 | -3.96 | -3.90 | 0.06 | | | Br [*] | (mg/l) | | | | | | 0.00 | Anh | ydrite | | | 23 | SiO2 | (mg/l) SiO2 | | | | | | 0.00 | -3.47 | -3.36 | 0.12 | | 24 | HCO3 Alkalinity** | (mg/l as HCO3) | 190.00 | 234.00 | 259.00 | 268.00 | 254.00 | 241.03 | Cele | estite | | | 25 | CO3 Alkalinity | (mg/l as CO3) | | | | | | | | | | | 26 | Carboxylic acids** | (mg/l) | | | | | | 0.00 | Iron S | Sulfide | | | 27 | Ammonia | (mg/L) NH3 | | | | | | 0.00 | -0.16 | -0.22 | -0.06 | | 28 | Borate | (mg/L) H3BO3 | | | | | | 0.00 | Zinc | Sulfide | | | | TDS (Measured) | (mg/l) | | | | | | 72781 | | | | | | Calc. Density (STP) | (g/ml) | 1.038 | 1.051 | 1.050 | 1.048 | 1.045 | 1.047 | Calcium | ı fluoride | | | | CO ₂ Gas Analysis | (%) | 19.97 | 18.76 | 22.41 | 35.53 | 33.79 | 26.16 | Curezun | | | | | H ₂ S Gas Analysis*** | (%) | 0.0289 | 0.0292 | 0.0296 | 0.0306 | 0.0151 | 0.0269 | Iron Ca | arbonate | | | _ | Total H2Saq | (mgH2S/l) | 1.00 | 1.00 | 1.00 | 1.00 | 0.50 | 0.90 | -0.74 | -0.51 | 0.23 | | | pH, measured (STP) | pН | 5.67 | 5.76 | 5.72 | 5.54 | 5.55 | 5.63 | Inhibitor ne | eeded (mg/L) | | | | | 0-CO2%+Alk, | | | | | | | Calcite | NTMP | | | | Choose one option | | | | _ | | | | | | | | 35 | to calculate SI? | • | 0 | 0 | 0 | 0 | 0 | | 0.00 | 0.00 | | | | Gas/day(thousand cf/day) | (Mcf/D) | | 0 | | 1 | 4 | 0 | 0.00 | 0.00 | | | | Oil/Day
Water/Day | (B/D)
(B/D) | 100 | 100 | 100 | 100 | 100 | 500 | Barite
0.00 | 0.00 | | | | J | | | 100 | 100 | 100 | 100 | 200 | | о.00
оН | | | | For mixed brines, enter val | . , | | ures in Cells (H | (40-H43) | | | (Enter H40-H43) | n | | | | 40 | For mixed brines, enter val
Initial T | . , | | ures in Cells (H
71.0 | (40-H43)
70.0 | 41.0 | 49.0 | (Enter H40-H43)
60.0 | 5.69 | 5.60 | | | | | lues for tempera | tures and press
66.0
66.0 | ` | | 41.0 | 49.0 | 60.0
89.0 | 5.69 | | | | 41 | Initial T | lues for temperator (F) | tures and press
66.0 | 71.0 | 70.0 | | | 60.0
89.0 | 5.69 | 5.60 | | | 41
42
43 | Initial T Final T Initial P Final P | (F) (F) (psia) (psia) | tures and press
66.0
66.0 | 71.0
71.0 | 70.0
70.0 | 41.0 | 49.0 | 60.0
89.0 | 5.69
Viscosity (
1.196
Heat Capaci | 5.60
CentiPoise)
0.826
ity (cal/ml/ ⁰ C) | | | 41
42
43
44 | Initial T Final T Initial P Final P Use TP on Calcite sheet? | (F) (F) (psia) (psia) 1-Yes;0-No | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69
Viscosity (
1.196
Heat Capaci
0.955 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959 | | | 41
42
43
44
45 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. | ues for temperat (F) (F) (psia) (psia) (psia) 1-Yes;0-No API grav. | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no | 5.60
CentiPoise)
0.826
ty (cal/ml/ ⁰ C)
0.959
eeded (mg/L) | | | 41
42
43
44
45
46 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. | ues for tempera (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. | 66.0
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
eded (mg/L)
HDTMP | | | 41
42
43
44
45
46
47 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day | ues for tempera (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 | 5.60 CentiPoise) 0.826 ty (cal/ml/°C) 0.959 eded (mg/L) HDTMP 0.00 | | | 41
42
43
44
45
46
47
48 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. | ues for tempera (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
eded (mg/L)
HDTMP | | | 41
42
43
44
45
46
47
48
49 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier | ues for tempera (F) (F) (psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * | ues for tempera (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier | ues for tempera (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † | ues for tempera (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. McOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH* (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) | ues for tempera
(F)
(F)
(psia)
(psia)
1-Yes;0-No
API grav.
Sp.Grav.
(B/D)
(N)
(N)
STP: | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH' (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) PH Calculated | ues for tempera (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated |
(F) (F) (psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (PH) (%) | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated | (F) (F) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated | (F) (F) (psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (PH) (%) | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated EXAnions= EXAnions= Calc TDS= | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated 2Cations= 2Anions= Calc TDS= Inhibitor Selection | ues for tempera (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input | tures and pressures 66.0 66.0 25.0 25.0 0 0 0 Unit | 71.0
71.0
25.0
25.0 | 70.0
70.0
25.0
25.0 | 41.0
25.0
25.0
Unit Converter | 49.0
25.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor nc Gypsum 0.00 Anhydrite 0.00 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
60
61
62 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated \$\textit{\textit{Z}}\text{Calculated}\$ Alkalinity Caclulated \$\text{\text{\text{Z}}}\text{Calculated}\$ Calc TDS= Inhibitor Selection Protection Time | (F) (F) (psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) | tures and press
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0
25.0 | 70.0
70.0
25.0
25.0
Inhibitor
NTMP | 41.0 25.0 25.0 Unit Converter | 49.0
25.0
25.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite 0.00 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated 2Cations= 2Anions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer | (F) (F) (psia) (psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (equiv./I) (mg/I) Input 120 | tures and pressures 66.0 66.0 25.0 25.0 0 0 0 Unit min | 71.0
71.0
25.0
25.0
4
1
1
2 | 70.0
70.0
25.0
25.0
25.0
Inhibitor
NTMP
BHPMP | 41.0 25.0 25.0 25.0 Unit Converter From Unit | 49.0
25.0
25.0
25.0
(From metric Value 80 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite 0.00 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. McOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated 2Cations= EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? | (F) (F) (psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input 120 | tures and pressures 66.0 66.0 25.0 25.0 0 0 0 0 Unit min | 71.0
71.0
25.0
25.0
4
1
1
2
3 | Inhibitor NTMP BHPMP PAA | 41.0 25.0 25.0 25.0 Unit Converter From Unit °C m³ | 49.0
25.0
25.0
25.0
(From metric
Value
80
100 | 60.0
89.0
25.0
120.0
30.00
0.60
0
0
To Unit | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
53
54
55
56
67
75
88
89
60
61
62
63
64
65 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H† (Strong acid) † OH' (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated 2Cations= EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: | (F) (F) (psia) (psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (equiv./I) (mg/I) Input 120 | tures and pressures 66.0 66.0 25.0 25.0 0 0 0 Unit min | 71.0
71.0
25.0
25.0
4
1
2
3 | Inhibitor NTMP BHPMP PAA DTPMP | Unit Converter From Unit °C m³ m³ | 49.0
25.0
25.0
25.0
(From metric
Value
80
100
100 | 60.0
89.0
25.0
120.0
30.00
0.60
0
0
To Unit
"F
ft"3
bbl(42 US gal) | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
67
78
88
60
61
62
63
64
65
66 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong acid) * OH* (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated SCations= EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: If you select Mixed, | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) (N) STP: (%) (mgH2S/I) (pH) (mg/I) as HCO3 (equiv./I) (mg/I) Input 120 1 4 | tures and press 66.0 66.0 25.0 25.0 0 0 0 1-Yes;0-No # | 71.0
71.0
25.0
25.0
4
1
2
3
4
5 | Inhibitor NTMP BHPMP PAA DTPMP PPCA | Unit Converter From Unit °C m³ m³ MPa | 49.0
25.0
25.0
25.0
(From metric
Value
80
100
1,000 | 60.0
89.0
25.0
120.0
30.00
0.60
0
0
10
10
10
10
10
10
10
10
10
10
10
1 | Value 176 3,531 629 145,074 | 5.60
CentiPoise)
0.826
ty
(cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
67
60
61
62
63
64
65
66
66 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH' (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated Alkalinity Caclulated EXATIONS= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: If you select Mixed, 1st inhibitor # is: | (F) (F) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/l) as HCO3 (equiv./I) (mg/l) Input 120 1 4 | Unit min 1-Yes;0-No # | # # 1 2 3 4 4 5 6 | Inhibitor NTMP BHPMP PAA DTPMP PPCA SPA | Unit Converter From Unit °C m³ m³ MPa Bar | 49.0
25.0
25.0
25.0
 | 60.0
89.0
25.0
120.0
30.00
0.60
0
0
0
To Unit
"F
ft ³
bbl(42 US gal)
psia | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 145,074 7,194 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
67
63
64
65
66
67
68 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated SCations= EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: If you select Mixed, 1st inhibitor is: | (F) (F) (psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input 120 1 4 1 50 | Unit min 1-Yes;0-No # # % | # # 1 2 3 4 4 5 6 6 7 | Inhibitor NTMP BHPMP PAA DTPMP PPCA SPA HEDP | Unit Converter From Unit °C m³ m³ MPa Bar Torr | 49.0
25.0
25.0
25.0
25.0
 | 60.0
89.0
25.0
120.0
30.00
0.60
0
0
0
To Unit
"F
ft ³
bbl(42 US gal)
psia
psia | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 145,074 7,194 193 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
67
62
63
64
65
66
67
68
69 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated Alkalinity Caclulated PCO2 Calculated Alkalinity Caclulated EXAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor for you? If you select Mixed, 1st inhibitor # is: % of 1st inhibitor is: % of 1st inhibitor is: 2nd inhibitor is: | (F) (F) (psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) 1 120 1 4 1 50 2 | Unit min 1-Yes;0-No # # % # | ## 1 2 3 4 4 5 6 6 7 8 | Inhibitor NTMP BHPMP PAA DTPMP PPCA SPA HEDP HDTMP | Unit Converter From Unit °C m³ MPa Bar Torr Gal | 49.0
25.0
25.0
25.0
25.0
25.0
25.0
25.0
25 | 60.0 89.0 25.0 120.0 30.00 0.60 0 0 10 10 10 10 10 10 10 10 10 10 10 1 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 145,074 7,194 193 238 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
67
62
63
64
65
66
67
68
69 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated SCations= EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: If you select Mixed, 1st inhibitor is: | (F) (F) (psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input 120 1 4 1 50 | Unit min 1-Yes;0-No # # % | # # 1 2 3 4 4 5 6 6 7 | Inhibitor NTMP BHPMP PAA DTPMP PPCA SPA HEDP | Unit Converter From Unit °C m³ m³ MPa Bar Torr | 49.0
25.0
25.0
25.0
25.0
 | 60.0
89.0
25.0
120.0
30.00
0.60
0
0
0
To Unit
"F
ft ³
bbl(42 US gal)
psia
psia | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 145,074 7,194 193 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | # **Saturation Index Calculations** Champion Technologies, Inc. (Based on the Tomson-Oddo Model) Brine 1: Ward Feed Yard 34-1 Brine 2: Ward Feed Yard 4-1 Brine 3: Clinesmith 5-4 Brine 4: Clinesmith 1 Brine 5: Clinesmith 2 | | 20% 20% 20% 20% 20 | | | | | | |--------------------------|--------------------|---------|---------|---------|---------|-------------| | Component (mg/L) | Brine 1 | Brine 2 | Brine 3 | Brine 4 | Brine 5 | Mixed Brine | | Calcium | 1836 | 2452 | 2044 | 1920 | 1948 | 1952 | | Magnesium | 1096 | 872 | 1200 | 953 | 858 | 865 | | Barium | 0 | 0 | 0 | 0 | 0 | 0 | | Strontium | 0 | 0 | 0 | 0 | 0 | 0 | | Bicarbonate | 190 | 234 | 259 | 268 | 254 | 253 | | Sulfate | 1 | 1 | 8 | 1 | 1 | 1 | | Chloride | 36299 | 48965 | 47874 | 45632 | 43147 | 43206 | | CO ₂ in Brine | 246 | 220 | 264 | 422 | 405 | 401 | | Ionic Strength | 1.12 | 1.48 | 1.46 | 1.38 | 1.31 | 1.31 | | Temperature (°F) | 89 | 89 | 89 | 89 | 89 | 89 | | Pressure (psia) | 50 | 50 | 120 | 120 | 120 | 119 | ## **Saturation Index** | Calcite | -1.71 | -1.41 | -1.48 | -1.68 | -1.69 | -1.69 | |-------------|-------|-------|-------|-------|-------|-------| | Gypsum | -3.71 | -3.64 | -2.82 | -3.73 | -3.72 | -3.69 | | Hemihydrate | -3.70 | -3.65 | -2.83 | -3.74 | -3.71 | -3.69 | | Anhydrite | -3.89 | -3.79 | -2.97 | -3.89 | -3.88 | -3.85 | | Barite | N/A | N/A | N/A | N/A | N/A | N/A | | Celestite | N/A | N/A | N/A | N/A | N/A | N/A | ## PTB | Calcite | N/A | N/A | N/A | N/A | N/A | N/A | |-------------|-----|-----|-----|-----|-----|-----| | Gypsum | N/A | N/A | N/A | N/A | N/A | N/A | | Hemihydrate | N/A | N/A | N/A | N/A | N/A | N/A | | Anhydrite | N/A | N/A | N/A | N/A | N/A | N/A | | Barite | N/A | N/A | N/A | N/A | N/A | N/A | | Celestite | N/A | N/A | N/A | N/A | N/A | N/A | # KANSAS CORPORATION COMMISSION ORIGINAL Form ACC-1 OIL & GAS CONSERVATION DIVISION ORIGINAL September 1999 Form Must Be Typed # **WELL COMPLETION FORM** ## **WELL HISTORY - DESCRIPTION OF WELL & LEASE** | Operator: License # 33344 | API No. 15 - 133-26470-00~00 | |---|---| | Name: Quest Cherokee, LLC | County: Neosho | | Address: 211 W. 14th Street | | | City/State/Zip: Chanute, KS 66720 | 1980 feet from (\$)/ N (circle one) Line of Section | | Purchaser: Bluestem Pipeline, LLC | 660 feet from E/ W (circle one) Line of Section | | Operator Contact Person: Gary Laswell | Footages Calculated from Nearest Outside Section Corner: | | Phone: (620) 431-9500 | (circle one) NE (SE) NW SW | | Contractor: Name: Well Refined Drilling Company, Inc. | King Rev 24-1 | | License: 33072 | Cherokee Basin CRM | | Wellsite Geologist: | multiple | | Designate Type of Completion: | Elevation: Ground: 940 Kelly Bushing: n/a | | ✓ New Well Re-Entry Workover | Total Depth: 1055 Plug Back Total Depth: 1047.88 | | Oil SWD SIOW Temp. Abd. | Amount of Surface Pipe Set and Cemented at 22' 4" Feet | | ✓ Gas ENHR SIGW | Multiple Stage Cementing Collar Used? ☐ Yes ✓ No | | | If yes, show depth setFeet | | Dry Other (Core, WSW, Expl., Cathodic, etc) | If Alternate II completion, cement circulated from 1047.88 | | If Workover/Re-entry: Old Well Info as follows: | surface 128 | | Operator: | sx cmt. | | Well Name: | Drilling Fluid Management Plan | | Original Comp. Date: Original Total Depth: Comp. to Entry (SWD) | (Sala Mast 20 Solidotta Holli Hollowitt Hy | | Deepening Re-perf Conv. to Enhr./SWD | Chloride content ppm Fluid volume bbls | | Plug Back Total Depth | Dewatering method used | | Commingled Docket No. | Location of fluid disposal if hauled offsite: | | Dual Completion Docket No | Operator Name: | | Other (SWD or Enhr.?) Docket No | Lease Name: License No.: | | 1/23/06 1/26/06 1/30/06 | Quarter Sec Twp S. R East West | | Spud Date or Date Reached TD Completion Date or Recompletion Date | County: Docket No.: | | | Docket No., | | Kansas 67202, within 120 days of the spud date, recompletion, wo
Information of side two of this form will be held confidential for a period | d with the Kansas Corporation Commission, 130 S. Market - Room 2078, Wichita, orkover or conversion of a well. Rule 82-3-130, 82-3-106 and 82-3-107 apply. d of 12 months if requested in writing and submitted with the form (see rule 82-3-109 logs and geologist well report shall
be attached with this form. ALL CEMENTING wells. Submit CP-111 form with all temporarily abandoned wells. | | All requirements of the statutes, rules and regulations promulgated to reherein are complete and correct to the best of my knowledge. | regulate the oil and gas industry have been fully complied with and the statements | | 1 / | | | Signature: / 1 / lavurs | KCC Office Use ONLY | | Title: Head of Operations Date: 5/22/06 | Letter of Confidentiality Received | | Subscribed and sworn to before me this 23 nd day of May | If Denied, Yes Date: | | 20 06. | Wireline Log Received | | | Geologist Report Received RECEIVED UIC Distribution | | Notary Public: Gunnifer K. Almmann | | | Date Commission Expires: Quly 30, 2009 | JENNIFERRAMMANN MAY 2 3 2006 | | | My Appt. Expires 7-30-09 CONSERVATION DIVISION WICHITA, KS | | Operator Name: Qu | iest Cherokee, LL | С | | Lease Nam | e: King, Rex | | Well #: _24- | 1 | | | |--|--|-------------------------------------|----------------------------|------------------------------------|------------------------------|---|-----------------------------|---------------|-----------------|--| | | 28 S. R. 18 | | West | County: Ne | eosho | | | | 4 | | | tested, time tool ope
temperature, fluid re | Show important tops a
en and closed, flowing
acovery, and flow rate
gs surveyed. Attach | g and shut-in p
s if gas to surf | oressures,
face test, a | whether shut-in along with final c | pressure reache | d static level, hydr | rostatic pressur | es, botto | m hole | | | Drill Stem Tests Take | | ☐ Yes | ✓ No | 5 | Log Forma | ation (Top), Depth | and Datum | | Sample | | | Samples Sent to Ge | eological Survey | Yes | ✓ No | 1 22 | ame
ee Attached | | Тор | | Datum | | | Cores Taken | | | | | | | | | | | | List All E. Logs Run | : | | | | | | | | | | | Comp. Density
Dual Induction
Gamma Ray (| | | | | | | | | | | | | | Penort all | | RECORD | New Used intermediate, prod | ustion ata | | | | | | Purpose of String | Size Hole | Size Ca | asing | Weight | Setting | Type of | # Sacks | | and Percent | | | Surface | 12-1/4" | Set (In 0 | O.D.) | Lbs. / Ft. | 22' 4" | "A" | Used 4 | , A | Additives | | | Production | 6-3/4" | 4-1/2" | | 10.5# | 1047.88 | "A" | 128 | | | | | | | 27 20077 | | | | | | | | | | | | ΑI | DDITIONAL | CEMENTING / S | SQUEEZE RECO | RD | | | | | | Purpose: Perforate | Depth
Top Bottom | Depth Type of Cement | | | d Type and Percent Additives | | | | | | | Protect Casing Plug Back TD Plug Off Zone | 1 | Shots Per Foot | | ON RECORD -
Footage of Each | | | | racture, Shot, Cemer
'Amount and Kind of N | | rd | Depth | | | 4 | 935-939/888-889 | 9/879-881/77 | 70-772/72 | 24-726/694-69 | 96 450gal 15% HCL w/ 4 | 450gal 15% HCL w/ 44 bbls 2% kcl water, 500bbls water w/ 2% KCL, Blockle 10700# 20/40 sand 935-939/88 | | | | | | 4 | 667-669/630-63 | 3/604-606/5 | 26-530/5 | 14-518 | | | | | 879-881 | | | | | | | | 550gal 15% HCL w/ 4 | 3 bblis 2% kal water, 662bbls water | er w/ 2% KCL, Biocide 16000 | 0# 20/40 sand | 770-772/724-724 | | | | | | | | | | 694-696/667 | -669 | 630-633/604-606 | | | | | | | | 400gal 15% HCL w/ 4 | 6 bbls 2% kd water, 592bbls wat | ter w/ 2% KCL, Blocide 8000 | 0# 20/40 sand | 526-530/514-518 | | | TUBING RECORD 2- | Size
-3/8" | Set At
1017.96 | ı | Packer At
n/a | Liner Run | Yes N | 0 | | | | | Date of First, Resume 3/29/06 | rd Production, SWD or E | inhr. Pro | oducing Met | | wing 📝 Pum | ping Gas L | ift Othe | ər (Explain | ı) | | | Estimated Production
Per 24 Hours | oii
n/a | Bbls. | Gas
2.8mcf | | Vater
.7bbls | Bbls. | Gas-Oil Ratio | | Gravity | | | Disposition of Gas | METHOD OF C | | | - 30 | Production In | erval | | | | | | Vented ✓ Sold (If vented, Sold | Used on Lease | = | Open Hole | ✓ Perf. | Dually Comp. | Commin ican | RECE
AS CORPORAT | IVED | MMISSION | | | | | | Other (Speci | (TV) | | | MAY 2 | 3 2006 | j | | CONSERVATION DIVISION WIGHTIA, KS | Afficiant of Notice Covered | | |--|--| | Affidavit of Notice Served | OF PRODUCTION OR FILING. ACC 4 | | Re: Application for: APPLICATION FOR COMMINGLING | | | Well Name: KING, REX 24-1 | Legal Location: NWSENESE S24-T28S-R18E | | The undersigned hereby certificates that he / she is a duly authorized agent for | the applicant, and that on the day 25TH of JUNE . | | , a true and correct copy of the application referenced above | ve was delivered or mailed to the following parties: | | Note: A copy of this affidavit must be served as a part of the application. | | | Name | Address (Attach additional sheets if necessary) | | POSTROCK MIDCONTINENT PRODUCTION, LLC | 210 PARK AVENUE, SUITE 2750, OKLAHOMA CITY, OK 73102-5641 | | DESIGN TECH OF KS | 15803 WINDHAM DRIVE, LITTLE ROCK, AR 72206 | | M & C OIL, INC | P O BOX 427, INDIANOLA, NE 68034 | | JOSEPH W STICH & REBECKA SCHOENECKER-STICH | 8740 150TH ROAD, CHANUTE, KS 66720 | I further attest that notice of the filing of this application was published in the \overline{CH} | ANUTE TRIBUNE , the official county publication | | of NEOSHO cou | unty. A copy of the affidavit of this publication is attached. | | Signed this 25TH day of JUNE 2012 | <u>.</u> | | | Bunity RA Beal) | | Appli | CANOR DILLO SULLANT STATE OF THE STATE OF DULY Authorized Agents | | Subscribed and sworn to before | OFFIL WINE | | DENISE V. VENNEMAN | 11/1 | | MY COMMISSION EXPIRES July 1, 2012 Notar | y Public / / lenkeman | | The state of s | ommission Expires: | | , | THIRISSION Expires | | | | | | | # KING, REX 24-1 - APPLICATION FOR COMMINGLING OF PRODUCTION OR FLUIDS | | | ŀ |
--|--|--| | Offset Operators, Unleased Mineral Owners and Landowners at
(Attach additional sheets if necessary)
Name:
JOSEPH W STICH & REBECKA SCHOENECKER-S | Legal Description of Leasehold: | | | SEE ATTACHED | I hereby certify that the statements made herein are true and correct to | the best of my knowledge and belief. | | | | | | | | Application Duly Authorized Agent | | | Subscribed and s | sworn before me this 25TH day of JUNE ,201 | 2 | | DENISE V. VENNEMAN MY COMMISSION EXPIRES | 4 // | | | July 1, 2012 | Notary Public U Men Mema | 2 | | The second secon | My Commission Expires: | | | | wy Commission Expires. | ····· | TABLE TO THE | | | | 77774 | | | | THE PROPERTY OF O | | | | THE PROPERTY OF O | | | | THE PARTY OF P | | | | THE PROPERTY OF O | | | | TOTAL COLUMN | | | | THE PROPERTY OF O | | | | THE PARTY OF P | | | | THE PROPERTY OF O | | | | THE PROPERTY OF O | | | | THE PROPERTY OF O | | | | | KING, REX 24-1 OFFSET OPERATORS, UNLEASED MINERAL OWNERS AND LANDOWNERS ACREAGE | SPOT | LEGAL LOCATION | CURR_OPERA | |-------------|----------------|-------------------------| | NE NW SW NW | S19-T28S-R19E | Design Tech of KS, Inc. | | NE NW NW SW | S19-T28S-R19E | Design Tech of KS, Inc. | | NE NE NE SE | S24-T28S-R18E | Design Tech of KS, Inc. | | NE SW SW NW | S19-T28S-R19E | Design Tech of KS, Inc. | | SE SW SW NW | S19-T28S-R19E | Design Tech of KS, Inc. | | S2 NE NE | S24-T28S-R18E | Design Tech of KS, Inc. | | SW NE NE | S24-T28S-R18E | Design Tech of KS, Inc. | | SW NW SE NW | S19-T28S-R19E | Design Tech of KS, Inc. | | SE SW NW NW | S19-T28S-R19E | Design Tech of KS, Inc. | | W2 SE NW | S19-T28S-R19E | Design Tech of KS, Inc. | | NE NE | S24-T28S-R18E | Design Tech of KS, Inc. | | | S24-T28S-R18E | Design Tech of KS, Inc. | | W2 SE NW | S19-T28S-R19E | Design Tech of KS, Inc. | | | S24-T28S-R18E | Design Tech of KS, Inc. | | SE SW NE NE | S24-T28S-R18E | Design Tech of KS, Inc. | | NE SW NE NE | S24-T28S-R18E | Design Tech of KS, Inc. | | | S24-T28S-R18E | Design Tech of KS, Inc. | | SE NE NE | S24-T28S-R18E | Design Tech of KS, Inc. | | NW SE NE SE | S24-T28S-R18E | Design Tech of KS, Inc. | | SW SW NE NE | S24-T28S-R18E | Design Tech of KS, Inc. | | NE SE SW | S24-T28S-R18E | M & C Oil, Inc. | ## **AFFIDAVIT** STATE OF KANSAS SS. County of Sedgwick Mark Fletchall, of lawful age, being first duly sworn, deposeth and saith: That he is Record Clerk of The Wichita Eagle, a daily newspaper published in the City of Wichita, County of Sedgwick, State of Kansas, and having a general paid circulation on a daily basis in said County, which said newspaper has been continuously and uninterruptedly published in said County for more than one year prior to the first publication of the notice hereinafter mentioned, and which said newspaper has been entered as second class mail matter at the United States Post Office in Wichita, Kansas, and which said newspaper is not a trade, religious or fraternal publication and that a notice of a true copy is hereto attached was published in the regular and entire Morning issue of said The Wichita Eagle for _1_ issues, that the first publication of said n1tice was made as aforesaid on the 18th of June A.D. 2012, with subsequent publications being made on the following dates: And affiant further says that he has personal knowledge of the statements above set forth and that they are true, Subscribed and sworn to before me this <u>18th day of June, 2012</u> PENNY L. CASE Notary Public - State of Kansa My Appt. Expires* Notary Public Sedgwick County, Kansas Printer's Fee: \$132.40 PUBLISHED IN THE WICHITA EAGLE JUNE 18, 2012 (3191263) BEFORE THE STATE CORPORATION COMMISSION OF THE STATE OF KANSAS OF KANSAS NOTICE OF FILING APPLICATION In the Matter of Postrock Midcontinent Production, LLC Application for Commingling of Production in the King, Rex 24-1 located in Neosho County, Comminating of Production in the King, Rex 24-1 located in Neosha County, Kansas. To: All Oil & Gas Producers, Unleased Mineral Interest Owners, Landowners, and all persons whomever concerned You, and each of you, are hereby notified that Postrock Midcontinent Production, LLC has filled an application to commingle the Riverton, Upper Riverfon, Rowe, Welr, Tebo, Fleming, Croweburg, Bevier, Mulky and Stray Sand producing formations at the King, Rex 24-1, located in the NW SE NE SE, 524-T285-R18E, Approximately 1977 FSL & 602 FEL, Neosha County, Kansas. Any persons who object to or protest this application shall be required to file their objections or protest with the Conservation Division of the State Corporation Commission of the State of Kansas within lifteen (15) days from the date of this publication. These protests shall be filled pursuant to Commission regulations and must state specific reasons why granting the application may cause waste, violate correlative rights or pollute the natural resources of the State of Kansas. All persons interested or concerned shall of Kansas. or pollute the natural resources of the State of Kansas. All persons interested or concerned shall lake notice of the foregoing and shall govern themselves accordingly. All person and/or companies wishing to protest this application are required to file a written protest with the Conservation Division of the Kansas Oil and Gas Commission. Upon the receipt of any protest, the Commission will convene a hearing and protestants will be expected to enter an appearance either through proper legal counsel or as individuals, appearing on their own behalt. Postrock Midcontinent Production, LLC 210 Park Avenue, Suite 2750 Oklahoma City, Oklahoma 73102 (405) 660-7704 | 1 NAME & UPPE | R & LOWER LIMIT OF EACH PI |
RODUCTION INTERVAL TO BE CO | DIVIIVIING | LED | | | | |--|---|---|----------------------------|--|-------------------------------|---|--------------------------| | FORMATION: | FLEMING | (PERFS): | 694 - | - 696 | | | | | FORMATION: | FLEMING |
(PERFS): | 667 - | 669 | | | | | FORMATION: | CROWEBURG |
(PERFS): | 630 - | 633 | | | | | FORMATION: | BEVIER | (PERFS): | 604 - | 606 | | | | | FORMATION: | MULKY | (PERFS): | 526 - | 530 | | | | | FORMATION: | STRAY SAND | (PERFS): | 705 - | 710 | | | | | FORMATION: | STRAY SAND | (PERFS): | 714 - | 718 | | | | | FORMATION: | | (PERFS): | - | | | | | | FORMATION: | | (PERFS): | - | | | | | | FORMATION: | | (PERFS): | - | | | | | | FORMATION: | | (PERFS): | - | | | | | | FORMATION: | _ |
(PERFS): | | | | | | | FURIVIATION. | | (i Ei(i 5). | | | | | | | | MOUNT OF FLUID PRODUCTIC | N TO BE COMMINGLED FROM E | EACH INT | ERVAL | | | | | | | | EACH INT | ERVAL MCFPD: | 5.2 | BWPD: | 0.8 | | 2 ESTIMATED AI | | N TO BE COMMINGLED FROM E | | | 5.2
5.2 | BWPD: | 0.8 | | 2 ESTIMATED AI
FORMATION: | FLEMING | N TO BE COMMINGLED FROM E | 0 | MCFPD: | | - | | | 2 ESTIMATED AI
FORMATION:
FORMATION: | FLEMING
FLEMING | N TO BE COMMINGLED FROM E
BOPD:
BOPD: | 0 | MCFPD: | 5.2 | BWPD: | 0.8 | | 2 ESTIMATED AI
FORMATION:
FORMATION:
FORMATION: | FLEMING
FLEMING
CROWEBURG | BOPD: BOPD: | 0
0
0 | MCFPD: MCFPD: MCFPD: | 5.2
5.2 | BWPD: | 0.8 | | 2 ESTIMATED AI
FORMATION:
FORMATION:
FORMATION: | FLEMING FLEMING CROWEBURG BEVIER | BOPD: BOPD: BOPD: BOPD: BOPD: | 0
0
0
0 | MCFPD: MCFPD: MCFPD: MCFPD: | 5.2
5.2
5.2 | BWPD:
BWPD: | 0.8
0.8
0.8 | | 2 ESTIMATED AI
FORMATION:
FORMATION:
FORMATION:
FORMATION: | FLEMING FLEMING CROWEBURG BEVIER MULKY | BOPD: BOPD: BOPD: BOPD: BOPD: BOPD: BOPD: | 0
0
0
0 | MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: | 5.2
5.2
5.2
5.2 | BWPD:
BWPD:
BWPD: | 0.8
0.8
0.8 | | 2 ESTIMATED AI
FORMATION:
FORMATION:
FORMATION:
FORMATION:
FORMATION: | FLEMING FLEMING CROWEBURG BEVIER MULKY STRAY SAND | BOPD: | 0
0
0
0
0
0 | MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: | 5.2
5.2
5.2
5.2
0 | BWPD:
BWPD:
BWPD:
BWPD: | 0.8
0.8
0.8
0.8 | | 2 ESTIMATED AI
FORMATION:
FORMATION:
FORMATION:
FORMATION:
FORMATION:
FORMATION: | FLEMING FLEMING CROWEBURG BEVIER MULKY STRAY SAND | BOPD: | 0
0
0
0
0
0 | MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: | 5.2
5.2
5.2
5.2
0 | BWPD: BWPD: BWPD: BWPD: BWPD: | 0.8
0.8
0.8
0.8 | | 2 ESTIMATED AN FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: | FLEMING FLEMING CROWEBURG BEVIER MULKY STRAY SAND | BOPD: | 0
0
0
0
0
0 | MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: | 5.2
5.2
5.2
5.2
0 | BWPD: BWPD: BWPD: BWPD: BWPD: BWPD: | 0.8
0.8
0.8
0.8 | | 2 ESTIMATED AN FORMATION: | FLEMING FLEMING CROWEBURG BEVIER MULKY STRAY SAND | BOPD: | 0
0
0
0
0
0 | MCFPD: | 5.2
5.2
5.2
5.2
0 | BWPD: BWPD: BWPD: BWPD: BWPD: BWPD: BWPD: | 0.8
0.8
0.8
0.8 | Conservation Division Finney State Office Building 130 S. Market, Rm. 2078 Wichita, KS 67202-3802 Phone: 316-337-6200 Fax: 316-337-6211 http://kcc.ks.gov/ Mark Sievers, Chairman Thomas E. Wright, Commissioner Sam Brownback, Governor July 10, 2012 Clark Edwards PostRock Midcontinent Production LLC Oklahoma Tower 210 Park Ave, Ste 2750 Oklahoma City, OK 73102 RE: Approved Commingling CO071204 King Rex 24-1, Sec.24-T28S-R18E, Neosho County API No. 15-133-26470-00-00 Dear Mr. Edwards: Your Application for Commingling (ACO-4) for the above described well, received by the KCC on July 2, 2012, has been reviewed and approved by the Kansas Corporation Commission (KCC) per K.A.R. 82-3-123. Notice was examined and found to be proper per K.A.R. 82-3-135a. No protest had been filed within the 15-day protest period. Based upon the depth of the Riverton formation perforations, total oil production shall not exceed 100 BOPD and total gas production shall not exceed 50% of the absolute open flow (AOF). ### File form ACO-1 upon completion of the well to commingle. Commingling ID number CO071204 has been assigned to this approved application. Use this number for well completion reports (ACO-1) and other correspondence that may concern this approved commingling. Sincerely, Rick Hestermann Production Department