KANSAS CORPORATION COMMISSION OIL & GAS CONSERVATION DIVISION Form ACO-4 Form must be typed March 2009 #### APPLICATION FOR COMMINGLING OF Commingling ID#_ PRODUCTION (K.A.R. 82-3-123) OR FLUIDS (K.A.R. 82-3-123a) | OPERAT | OR: License # | API No. 15 | | | |-------------------------------------|---|--|----------------------------|---| | Name:_ | | Spot Description: | | | | Address | 1: | | Sec Twp | S. R East West | | Address | 2: | | Feet from No | rth / South Line of Section | | City: | State: Zip:+ | <u> </u> | Feet from Eas | st / West Line of Section | | | Person: | | | | | Phone: | ()_ | Lease Name: | Well | #: | | | | | | | | <u> </u> | Name and upper and lower limit of each production interval to | be commingled: | | | | | Formation: | (Perfs): _ | | | | | Formation: | (Perfs): _ | | | | | Formation: | (Perfs): _ | | | | | Formation: | (Perfs): _ | | | | | Formation: | (Perfs): _ | | | | _ | | | | | | 2. | Estimated amount of fluid production to be commingled from e | | | | | | Formation: | | | BWPD: | | | Formation: | BOPD: | MCFPD: | BWPD: | | | Formation: | BOPD: | MCFPD: | BWPD: | | | Formation: | BOPD: | MCFPD: | BWPD: | | | Formation: | BOPD: | MCFPD: | BWPD: | | □ 3.□ 4. | Plat map showing the location of the subject well, all other well the subject well, and for each well the names and addresses of Signed certificate showing service of the application and affida | of the lessee of record or ope | rator. | es within a 1/2 mile radius of | | 5 0 | | | | | | | nmingling of PRODUCTION ONLY, include the following: | Van Na | | | | <u>5</u> . | Wireline log of subject well. Previously Filed with ACO-1: | _ | | | | <u> </u> | Complete Form ACO-1 (Well Completion form) for the subject | well. | | | | For Con | nmingling of FLUIDS ONLY, include the following: | | | | | 7. | Well construction diagram of subject well. | | | | | 8. | Any available water chemistry data demonstrating the compati | ibility of the fluids to be comm | ningled. | | | | | | | | | current ir
mingling | /IT: I am the affiant and hereby certify that to the best of my formation, knowledge and personal belief, this request for comistrue and proper and I have no information or knowledge, which istent with the information supplied in this application. | Su | bmitted Electron | ically | | KCC | Office Use Only | | | in the application. Protests must be | | l — | nied Approved | in writing and comply with K. the notice of application. | A.R. 82-3-135b and must be | e filed wihin 15 days of publication of | Date: _ Denied Approved 15-Day Periods Ends: __ Approved By: ### **KGS STATUS** - ◆ DA/PA - EOR - **⇔** GAS - △ INJ/SWD - OIL - **♦** OIL/GAS - OTHER Van Cleave Rev Trust 7-2 7-30S-19E 1" = 1,000' | | Α | В | С | D | Е | F | G | Н | 1 | | K | |--|--|---|---|--|--|--|--|--|---|---|-----------------| | 1 | Produced Fluids # | Б | 1 | 2 | 3 | 4 | 5 | 11 | • | <u> </u> | | | | Parameters | Units | Input | Input | Input | Input | Input | | Click he | re | Click | | 3 | Select the brines | Select fluid | | Ī | V | | Ī | Mixed brine: | to run SS | - | | | 4 | Sample ID | by checking | | | | | | Cell H28 is | to ruii oc | | Click | | 5 | Date | the box(es), | 3/19/2012 | 3/4/2012 | 3/14/2012 | 1/20/2012 | 1/20/2012 | STP calc. pH. | — | | | | 6 | Operator | Row 3 | PostRock | PostRock | PostRock | PostRock | PostRock | Cells H35-38 | | | Click | | 7 | Well Name | | Ward Feed | Ward Feed | Clinesmith | Clinesmith | Clinesmith | are used in | Goal Seek | SSP | | | 8 | Location | | #34-1 | #4-1 | #5-4 | #1 | #2 | mixed brines | | | Click | | 9 | Field | | CBM | CBM | Bartles | Bartles | Bartles | calculations. | | | | | 10 | Na ⁺ | (mg/l)* | 19,433.00 | 27,381.00 | 26,534.00 | 25689.00 | 24220.00 | 24654.20 | Initial(BH) | Final(WH) | SI/SR | | 11 | K ⁺ (if not known =0) | (mg/l) | | | | | | 0.00 | Saturation Index | values | (Final-Initial) | | | Mg ²⁺ | (mg/l) | 1,096.00 | 872.00 | 1,200.00 | 953.00 | 858.00 | 995.91 | | lcite | | | | Ca ²⁺ | (mg/l) | 1,836.00 | 2,452.00 | 2,044.00 | 1920.00 | 1948.00 | 2040.23 | -0.73 | -0.60 | 0.13 | | | Sr ²⁺ | | 1,050.00 | 2,432.00 | 2,044.00 | 1720.00 | 1740.00 | | | | 0.13 | | | Ba ²⁺ | (mg/l) | | | | | | 0.00 | Da | rite | | | ., | | (mg/l) | | | | | | 0.00 | | | | | | Fe ²⁺ | (mg/l) | 40.00 | 21.00 | 18.00 | 82.00 | 90.00 | 50.21 | | lite | | | | Zn ²⁺ | (mg/l) | | | | | | 0.00 | -1.77 | -1.80 | -0.03 | | 18 | Pb ²⁺ | (mg/l) | | | | | | 0.00 | Gyp | sum | | | 19 | Cl | (mg/l) | 36,299.00 | 48,965.00 | 47,874.00 | 45632.00 | 43147.00 | 44388.44 | -3.19 | -3.18 | 0.00 | | 20 | SO ₄ ² · | (mg/l) | 1.00 | 1.00 | 8.00 | 1.00 | 1.00 | 2.40 | Hemil | ydrate | | | | F. | (mg/l) | | | | | | 0.00 | -3.96 | -3.90 | 0.06 | | | Br ⁻ | (mg/l) | | | | | | 0.00 | | ydrite | 3.00 | | | SiO2 | (mg/l) SiO2 | | | | | | 0.00 | -3.47 | -3.36 | 0.12 | | _ | | | 100.00 | 224.00 | 250.00 | 200 00 | 254.00 | | | | 0.12 | | | HCO3 Alkalinity** | (mg/l as HCO3) | 190.00 | 234.00 | 259.00 | 268.00 | 254.00 | 241.03 | Cele | estite | | | | CO3 Alkalinity | (mg/l as CO3) | | | | | | _ | | | | | | Carboxylic acids** | (mg/l) | | | | | | 0.00 | | Sulfide | | | 27 | Ammonia | (mg/L) NH3 | | | | | | 0.00 | -0.16 | -0.22 | -0.06 | | 28 | Borate | (mg/L) H3BO3 | | | | | | 0.00 | Zinc | Sulfide | | | 29 | TDS (Measured) | (mg/l) | | | | | | 72781 | | | | | 30 | Calc. Density (STP) | (g/ml) | 1.038 | 1.051 | 1.050 | 1.048 | 1.045 | 1.047 | Calcium | fluoride | | | 31 | CO ₂ Gas Analysis | (%) | 19.97 | 18.76 | 22.41 | 35.53 | 33.79 | 26.16 | | | | | | H ₂ S Gas Analysis*** | (%) | 0.0289 | 0.0292 | 0.0296 | 0.0306 | 0.0151 | 0.0269 | | rbonate | | | 33 | Total H2Saq | (mgH2S/l) | 1.00 | 1.00 | 1.00 | 1.00 | 0.50 | 0.90 | -0.74 | -0.51 | 0.23 | | 34 | pH, measured (STP) | pН | 5.67 | 5.76 | 5.72 | 5.54 | 5.55 | 5.63 | Inhibitor ne | eded (mg/L) | | | | Chassa and antion | 0-CO2%+Alk, | | | | | | | Calcite | NTMP | | | 35 | Choose one option to calculate SI? | | 0 | 0 | 0 | 0 | | | | | | | | Gas/day(thousand cf/day) | (Mcf/D) | | | | | U | 0 | 0.00 | 0.00 | | | | Oil/Day | (B/D) | 0 | 0 | 1 | 1 | 1 | 4 | Barite | BHPMP | - | | | Water/Day | (B/D) | 100 | 100 | 100 | 100 | 100 | 500 | 0.00 | 0.00 | | | 39 | For mixed brines, enter val | | | | | | | | | | | | - | | lues for tempera | tures and pressi | <u>ires in Cells</u> (H | (40-H43) | | | (Enter H40-H43) | p | Н | | | 41 | Initial T | (F) |
66.0 | 71.0 | 70.0 | 41.0 | 49.0 | 60.0 | 5.69 | 5.60 | | | | Final T | | 66.0
66.0 | 71.0
71.0 | 70.0
70.0 | 41.0 | 49.0 | 60.0
89.0 | 5.69
Viscosity (| 5.60
CentiPoise) | | | | | (F) | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0 | 5.69
Viscosity (
1.196 | 5.60
CentiPoise)
0.826 | | | 42
43 | Final T
Initial P
Final P | (F)
(F)
(psia)
(psia) | 66.0
66.0 | 71.0
71.0 | 70.0
70.0 | 41.0 | 49.0 | 60.0
89.0 | 5.69
Viscosity (
1.196
Heat Capaci | 5.60
CentiPoise)
0.826
ty (cal/ml/ ⁰ C) | | | 42
43
44 | Final T Initial P Final P Use TP on Calcite sheet? | (F)
(F)
(psia)
(psia)
1-Yes;0-No | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69
Viscosity (
1.196
Heat Capaci
0.955 | 5.60
CentiPoise)
0.826
ty (cal/ml/ ⁰ C)
0.959 | | | 42
43
44
45 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. | (F) (psia) (psia) 1-Yes;0-No API grav. | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no | 5.60
CentiPoise)
0.826
ty (cal/ml/ ⁰ C)
0.959
eeded (mg/L) | | | 42
43
44
45
46 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. | (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne | 5.60
CentiPoise)
0.826
ty (cal/ml/ ⁰ C)
0.959
seded (mg/L)
HDTMP | | | 42
43
44
45
46
47 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. McOH/Day | (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00 | | | 42
43
44
45
46
47
48 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day | (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne | 5.60
CentiPoise)
0.826
ty (cal/ml/ ⁰ C)
0.959
seded (mg/L)
HDTMP | | | 42
43
44
45
46
47
48
49 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † | (F)
(F)
(psia)
(psia)
1-Yes;0-No
API grav.
Sp.Grav.
(B/D)
(B/D) | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH' (Strong base) † | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH* (Strong base) † Quality Control Checks at | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH (Strong base) † Quality Control Checks at H ₂ S Gas | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/l) (pH) | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH* (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) (N) STP: (%) (mgH2S/I) (pH) (%) | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated Alkalinity Caclulated | (F) (F) (psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated \$\textstyle{\textstyle{\textstyle{2}}}\$ | (F) (F) (psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated Alkalinity Caclulated | (F) (F) (psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 | Final T Initial P Final P Use
TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated Scations= \$\times\$ | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/l) as HCO3 (equiv./l) (equiv./l) | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated ECations= ECations= CAlci TDS= | (F) (F) (psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) | 66.0
66.0
25.0
25.0 | 71.0
71.0
25.0
25.0 | 70.0
70.0
25.0
25.0
Inhibitor
NTMP | 41.0 25.0 25.0 Unit Converter | 49.0
25.0
25.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH* (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated \$\text{\$\cupe{C}\$}\te | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input | 66.0
66.0
25.0
25.0
0
0 | 71.0
71.0
25.0
25.0 | 70.0
70.0
25.0
25.0 | 41.0 25.0 25.0 Unit Converter From Unit | 49.0
25.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH' (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated ECations= EAnions= Calc TDS= Inhibitor Selection Protection Time | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input | 66.0
66.0
25.0
25.0
0
0 | 71.0
71.0
25.0
25.0 | 70.0
70.0
25.0
25.0
Inhibitor
NTMP | 41.0 25.0 25.0 Unit Converter | 49.0
25.0
25.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
60
61
62
63 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong acid) * OH* (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated \$\textstyle{\textstyle{2}}\text{Calculated}\$ Alkalinity Caclulated \$\text{\text{Editons=}} \text{\text{EAnions=}}\$ Lalinibitor Selection Protection Time Have ScaleSoftPitzer | (F) (F) (psia) (psia) (psia) 1-Yes:0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (equiv./I) Input 120 | 66.0
66.0
25.0
25.0
0
0 | 71.0
71.0
25.0
25.0
4
1
1
2 | 70.0
70.0
25.0
25.0
25.0
Inhibitor
NTMP
BHPMP | 41.0 25.0 25.0 Unit Converter From Unit | 49.0
25.0
25.0
25.0
(From metric
Value
80 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated 2Cations= \$\times\$ \text{Lanions}\$ Lanions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? | (F) (F) (psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (equiv./I) (mg/I) Input 120 | 66.0
66.0
25.0
25.0
0
0
0 | # 1 2 3 | Inhibitor NTMP BHPMP PAA | 41.0 25.0 25.0 Unit Converter From Unit °C m³ | 49.0
25.0
25.0
25.0
(From metric
Value
80
100 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid)* OH* (Strong base)* Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated Alkalinity Caclulated EXATIONS= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: | (F) (F) (psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (equiv./I) (mg/I) Input 120 | 66.0
66.0
25.0
25.0
0
0
0 | 71.0
71.0
25.0
25.0
1
1
1
2
3
4 | Inhibitor NTMP BHPMP PAA DTPMP | Unit Converter From Unit °C m³ m³ | 49.0
25.0
25.0
25.0
(From metric
Value
80
100
100 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
60
61
62
63
64
65
66 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated Alkalinity Caclulated Alkalinity Caclulated Alkalinity Caclulated PCO2 Calculated FOCO FOCO Calculated FOCO Calculated FOCO Calculated Alkalinity Caclulated FOCO Calculated Calculate | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (mg/I) Input 120 1 4 | 0 0 0 Unit min
1-Yes;0-No # | ## 1 2 3 4 5 5 | Inhibitor NTMP BHPMP PAA DTPMP PPCA | Unit Converter From Unit °C m³ m³ MPa | 49.0
25.0
25.0
25.0
(From metric
Value
80
100
1,000 | 60.0
89.0
25.0
120.0
30.00
0.60
0
0
To Unit
°F
ft³
bbl(42 US gal)
psia | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 145,074 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated SCations= ZAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: If you select Mixed, 1st inhibitor # is: | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (mg/I) Input 120 1 4 | 0 0 0 Unit min 1-Yes;0-No # | ## 1 2 3 4 5 6 | Inhibitor NTMP BHPMP PAA DTPMP PPCA SPA | Unit Converter From Unit C m MPa Bar | 49.0
25.0
25.0
25.0
(From metric
Value
80
100
1,000
496 | 60.0
89.0
25.0
120.0
30.00
0.60
0
0
To Unit
"F
ft ³
bbl(42 US gal)
psia | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 145,074 7,194 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
44
45
46
47
48
49
50
51
52
53
54
55
56
60
61
62
63
64
65
66
67
68
69 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated ECations= EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: If you select Mixed, 1st inhibitor # is: % of 1st inhibitor is: | (F) (F) (psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/l) as HCO3 (equiv./l) (equiv./l) (mg/l) Input 120 1 4 1 50 | 0 0 0 0 Unit min 1-Yes;0-No # # % | ## 1 2 3 4 4 5 6 6 7 | Inhibitor NTMP BHPMP PAA DTPMP PPCA SPA HEDP | Unit Converter From Unit °C m³ m³ MPa Bar Torr | 49.0
25.0
25.0
25.0
25.0
Value
80
100
1,000
496
10,000 | 60.0 89.0 25.0 120.0 30.00 0.60 0 0 To Unit °F ft³ bbl(42 US gal) psia psia psia | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 145,074 7,194 193 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | #### **Saturation Index Calculations** Champion Technologies, Inc. (Based on the Tomson-Oddo Model) Brine 1: Ward Feed Yard 34-1 Brine 2: Ward Feed Yard 4-1 Brine 3: Clinesmith 5-4 Brine 4: Clinesmith 1 Brine 5: Clinesmith 2 | | | | Ratio | | | | |--------------------------|---------|---------|---------|---------|---------|-------------| | | 20% | 20% | 20% | 20% | 20 | | | Component (mg/L) | Brine 1 | Brine 2 | Brine 3 | Brine 4 | Brine 5 | Mixed Brine | | Calcium | 1836 | 2452 | 2044 | 1920 | 1948 | 1952 | | Magnesium | 1096 | 872 | 1200 | 953 | 858 | 865 | | Barium | 0 | 0 | 0 | 0 | 0 | 0 | | Strontium | 0 | 0 | 0 | 0 | 0 | 0 | | Bicarbonate | 190 | 234 | 259 | 268 | 254 | 253 | | Sulfate | 1 | 1 | 8 | 1 | 1 | 1 | | Chloride | 36299 | 48965 | 47874 | 45632 | 43147 | 43206 | | CO ₂ in Brine | 246 | 220 | 264 | 422 | 405 | 401 | | Ionic Strength | 1.12 | 1.48 | 1.46 | 1.38 | 1.31 | 1.31 | | Temperature (°F) | 89 | 89 | 89 | 89 | 89 | 89 | | Pressure (psia) | 50 | 50 | 120 | 120 | 120 | 119 | #### **Saturation Index** | Calcite | -1.71 | -1.41 | -1.48 | -1.68 | -1.69 | -1.69 | |-------------|-------|-------|-------|-------|-------|-------| | Gypsum | -3.71 | -3.64 | -2.82 | -3.73 | -3.72 | -3.69 | | Hemihydrate | -3.70 | -3.65 | -2.83 | -3.74 | -3.71 | -3.69 | | Anhydrite | -3.89 | -3.79 | -2.97 | -3.89 | -3.88 | -3.85 | | Barite | N/A | N/A | N/A | N/A | N/A | N/A | | Celestite | N/A | N/A | N/A | N/A | N/A | N/A | #### PTB | Calcite | N/A | N/A | N/A | N/A | N/A | N/A | |-------------|-----|-----|-----|-----|-----|-----| | Gypsum | N/A | N/A | N/A | N/A | N/A | N/A | | Hemihydrate | N/A | N/A | N/A | N/A | N/A | N/A | | Anhydrite | N/A | N/A | N/A | N/A | N/A | N/A | | Barite | N/A | N/A | N/A | N/A | N/A | N/A | | Celestite | N/A | N/A | N/A | N/A | N/A | N/A | #### **AFFIDAVIT** STATE OF KANSAS SS. County of Sedgwick Mark Fletchall, of lawful age, being first duly sworn, deposeth and saith: That he is Record Clerk of The Wichita Eagle, a daily newspaper published in the City of Wichita, County of Sedgwick, State of Kansas, and having a general paid circulation on a daily basis in said County, which said newspaper has been continuously and uninterruptedly published in said County for more than one year prior to the first publication of the notice hereinafter mentioned, and which said newspaper has been entered as second class mail matter at the United States Post Office in Wichita, Kansas, and which said newspaper is not a trade, religious or fraternal publication and that a notice of a true copy is hereto attached was published in the regular and entire Morning issue of said The Wichita Eagle for _1_ issues, that the first publication of said n1tice was made as aforesaid on the 18th of June A.D. 2012, with subsequent publications being made on the following dates: And affiant further says that he has personal knowledge of the statements above set forth and that they are true. Subscribed and sworn to before me this 18th day of June, 2012 PENNY L. CASE 国面 Notery Public --State of Kans My Appt. Expires Notary Public Sedgwick County, Kansas Printer's Fee: \$134.80 PUBLISHED IN THE WICHITA EAGLE JUNE 18, 2012 (3191269) BEFORE THE STATE CORPORATION COMMISSION OF THE STATE OF KANSAS STATE OF KANSAS NOTICE OF FILING APPLICATION RE: In the Marter of Postrock Midcontinent Production, LLC Application for Comminaling of Production in the Van Cleave Rev Trust 7-2 located in Neosho County, Kansas. TO: All Oll & Gas Producers, Unleased Mineralinterest Owners, Landowners, and all persons whomever concerned, you, and each of you, are hereby notified that Postrock Midcontinent Production, LLC has filed an application to commingle the Riverton, Rowe, Fleming, Croweburg, Bevier, Mulky, Summit and Cattleman productins formations at the Van Cleave Rev Trust 7-2, located in the NE NE, 57-T305-R19E, Approximately 678 FNL & 709 FEL, Neosho County, Kansas. Any persons who object to or profest 678 FNL & 709 FEL, Neoshe County, Kansas. Any persons who object to or protest this application shall be required to file their objections or protest with the Conservation Division of the State Corporation Commission of the State of Kansas within fifteen (15) days from the date of this publication. These protests shall be filed pursuant to Commission regulations and must state specific reasons why granting the application may cause waste, violate correlative rights or pollute the natural resources of the State of Kansas. All persons interested or concerned shall take notice of the foregoing and shall govern themselves accordingly. All person and/or companies wishing to protest this application are required to file a written protest with the Conservation Division of the Kansas Oll and Gas Commission. Upon the receipt of any protest, the Commission will convene a hearing and protestants will be expected to enter an appearance either through proper legal counsel or as individuals, appearing on their own behalf. Their own penal. Postrock Midcontinent Production, LLC 210 Park Avenue, Suite 2750 Oktahoma City, Oklahoma 73102 (405) 660-7704 # BEFORE THE STATE CORPORATION COMMISSION OF THE STATE OF KANSAS NOTICE OF FILING APPLICATION RE: In the Matter of Postrock Midcontinent Production, LLC Application for Commingling of Production in the Van Cleave Rev Trust 7-2 located in Neosho County, Kansas. TO: All Oil & Gas Producers, Unleased Mineral Interest Owners, Landowners, and all persons whomever concerned. You, and each of you, are hereby notified that Postrock Midcontinent Production, LLC has filed an application to commingle the Riverton, Rowe, Fleming, Croweburg, Bevler, Mulky, Summit and Cattleman producing formations at the Van Cleave Rev Trust 7-2, located in the NE NE, S7-T30S-R19E, Approximately 678 FNL & 709 FEL, Neosho County, Kansas. Any persons who object to or protest this application shall be required to file their objections or protest with the Conservation Division of the State Orporation Commission of the State of Kansas within fifteen (15) days from the date of this publication. These protests shall be filled pursuant to Commission regulations and must state specific reasons why granting the application may cause waste, violate correlative rights or pollute the natural resources of the State of Kansas. All persons interested or concerned shall take notice of the foregoing and shall govern themselves accordingly. All person and/or companies wishing to protest this application are required to file a written protest with the Conservation Division of the Kansas Oil and Gas Commission. Upon the receipt of any protest, the Commission will convene a hearing and protestants will be expected to enter an appearance either through proper legal counsel or as individuals, appearing on their own behalf. Postrock Midcontinent Production, LLC 210 Park Avenue, Suite 2750 Oklahoma City, Oklahoma 73102 (405)
660-7704 A COPY OF THE AFFIDAVIT OF PUBLICATION MUST ACCOM-PANY ALL APPLICATIONS # Affidavit of Publication A STATE OF KANSAS, NEOSHO COUNTY, ss: *Rhonda Howerter*, being first duly sworn, deposes and says: That *she* is *Classified Manager* of *THE CHANUTE TRIBUNE*, a daily newspaper printed in the State of Kansas, and published in and of general circulation in Neosho County, Kansas, with a general paid circulation on a daily basis in Neosho County, Kansas, and that said newspaper is not a trade, religious or fraternal publication. Said newspaper is a daily published at least weekly 50 times a year: has been so published continuously and uninterruptedly in said county and state for a period of more than five years prior to the first publication of said notice; and has been admitted at the post office of Chanute, in said county as second class matter. That the attached notice is a true copy thereof and was published in the regular and entire issue of said newspaper for 1 conscione time, the first publication thereof being made as aforesaid on the 160 day of June 2012, with subsequent publications being made on the following dates: _____, 2012 _____ Subscribed and sworn to and before me this 19 day of June otary Public My commission expires: January 9, 2015 Affidavit, Notary's Fee\$ 3.00 Additional Copies\$ Total Publication Fees \$ 73 SHANNA L. GUIOT Notary Public - State of Kansas My Appt. Expires 1-9-15 #### KANSAS CORPORATION COMMISSION OIL & GAS CONSERVATION DIVISION ORIGINAL Form ACO-1 September 1999 Form Must Be Typed # WELL COMPLETION FORM WELL HISTORY - DESCRIPTION OF WELL & LEASE | Operator: License # | API No. 15 - 133-26332-0000 | |--|--| | Name: Quest Cherokee, LLC | County: Neosho | | Address: 211 W. 14th Street | EZ_W2_ne_ne_Sec. 7 Twp. 30 S. R. 19 V East West | | City/State/Zip: Chanute, KS 66720 | 660 feet from S / N (circle one) Line of Section | | Purchaser: Bluestem Pipeline, LLC | 700 feet from (E) W (circle one) Line of Section | | Operator Contact Person: Gary Laswell | Footages Calculated from Nearest Outside Section Corner: | | Phone: (620) 431-9500 | (circle one) (NE) SE NW SW | | Contractor: Name: LS Well Service, LLC | Lease Name: Van Cleave Rev. Trust Well #: 7-2 | | License: 33374 | Field Name: Cherokee Basin CBM | | Wellsite Geologist: Julie Shaffer | Producing Formation: Multiple zones | | Designate Type of Completion: | Elevation: Ground: 972 Kelly Bushing: n/a | | New Well Re-Entry Workover | Total Depth: 1046 Plug Back Total Depth: 1006 | | Oil SWD SIOWTemp. Abd. | Amount of Surface Pipe Set and Cemented at 21.5 | | Gas ENHR SIGW | Multiple Stage Cementing Collar Used? | | Dry Other (Core, WSW, Expl., Cathodic, etc) | If yes, show depth setFeet | | If Workover/Re-entry: Old Well Info as follows: | If Alternate II completion, cement circulated from 1006 | | Operator: | feet depth to surface w/ 127 sx cmt. | | Well Name: | ALTI WHM 8-25-06 | | Original Comp. Date:Original Total Depth: | Drilling Fluid Management Plan (Data must be collected from the Reserve Pit) | | Deepening Re-perf Conv. to Enhr./SWD | Chloride contentppm Fluid volumebbls | | Plug Back Plug Back Total Depth | • • | | Commingled Docket No | Dewatering method used | | Dual Completion Docket No | Location of fluid disposal if hauled offsite: | | Other (SWD or Enhr.?) Docket No | Operator Name: | | , | Lease Name: License No.: | | 11/10/05 11/11/05 11/17/05 Spud Date or Date Reached TD Completion Date or | Quarter Sec TwpS. R East West | | Recompletion Date Recompletion Date | County: Docket No.: | | | | | INSTRUCTIONS: An original and two copies of this form shall be filed with Kansas 67202, within 120 days of the spud date, recompletion, workover Information of side two of this form will be held confidential for a period of 12 107 for confidentiality in excess of 12 months). One copy of all wireline logs a TICKETS MUST BE ATTACHED. Submit CP-4 form with all plugged wells. | r or conversion of a well. Rule 82-3-130, 82-3-106 and 82-3-107 apply. 2 months if requested in writing and submitted with the form (see rule 82-3-and geologist well report shall be attached with this form. ALL CEMENTING Submit CP-111 form with all temporarily abandoned wells. | | All requirements of the statutes, rules and regulations promulgated to regulat herein are complete and correct to the best of my knowledge. | te the oil and gas industry have been fully complied with and the statements | | Signature: Jay Vasard | KCC Office Use ONLY | | Title: Head of Operations Date: 4/8/06 | N Letter of Confidentiality Received | | Subscribed and sworn to before me this 8th day of April | If Denied, Yes Date: | | 20 06. | Wireline Log Received | | Notary Public: Somethy & James | If Denied, Yes Date: Dat | | (1) 1/ 30 mg (| JENNIFER AMMANN | | | JENNIFER AMMANN Notary Public - State of Kansas T. Styling Conservation of C | | Operator Name: Que | est Cherokee, LL | .C | | Lease | Name: | Van Cleave | Rev. Trust | Well #: _7-2 | | |--|---|---------------------------|---------------------------------------|------------|---------------------|-----------------------------|--|---|--------------------------------| | Sec. 7 Twp. 3 | | | t West | | y: Neos | | *************************************** | - 100 A | | | NSTRUCTIONS: Stated, time tool oper
emperature, fluid rec
electric Wireline Logs | n and closed, flowin
covery, and flow rate | g and shut
s if gas to | t-in pressures,
surface test, a | whether so | hut-in pr | essure reached | d static level, hyd | rostatic pressures, l | oottom hole | | orill Stem Tests Take | | Y | es 🗸 No | | ✓I | .og Forma | tion (Top), Depth | and Datum | Sample | | amples Sent to Geo | ological Survey | □ Y | es 🗸 No | | Nan
See | ne
attached | | Тор | Datum | | ores Taken
lectric Log Run
(Submit Copy) | | Y
✓ Y | | | | | | | | | st All E. Logs Run: | | | | | | | | | | | Comp. Density
Dual Induction
Gamma Ray/N | Log | | | 2 | | | | | | | | | | | RECORD | | ew Used | | | | | Durana of Otrina | Size Hole | 1 | rt all strings set-o | T | urface, int
ight | ermediate, produ
Setting | ction, etc. | # Sacks | Type and Percent | | Purpose of String | Drilled | Se | t (In O.D.) | Lbs. | | Depth | Cement | Used | Additives | | Surface | 11" | 8-5/8" | | 20# | | 21.5 | "A" | 5 | | | Production | 6-3/4" | 4-1/2" | | 10.5# | | 1006 | "A" | 127 | | | | | | ADDITIONAL | CEMENTI | NG / SQ | UEEZE RECOR | D | | | | Purpose: Perforate Protect Casing Plug Back TD Plug Off Zone | Depth
Top Bottom | Туре | of Cement | #Sacks | s Used | | Type and | Percent Additives | | | Shots Per Foot | | | RD - Bridge Plug
Each Interval Per | | | | acture, Shot, Ceme
Amount and Kind of N | nt Squeeze Record
Material Used) | Depth | | | 488.5-492.5/501 | .5-505.5 | /586.5-588.5 | 5/607.5-6 | 310.5 | 400gai 15%HCLw/ 42 b | bis 2%kcl water, 547bbis wate | er w/ 2% KCL, Biocide, 76sxs 20/40 | | | | 646.5-647.5/876 | 5.5-878.5 | /933.5-936.5 | 5 | | 400gal 15%HCL w/ 41i | obls 2%kcl water, blocide, 542 | 2bbls 2%kd, biocide, 133sks 20/40 |) sand 501.5-505.5/488.5-492.5 | | | | | | | | 400gal 15%HCL w/ 25 | bbls 2%kd water, blocide, 63 | 7bbls 2%kd, biocide, 95sxs 20/40 |) sand
646-648/608-611 | | | | | | | | | | | 587-589 | | TUBING RECORD 2-3 | Size
3/8" | Set At 928 | r | Packer A | At | Liner Run | Yes V N | 0 | | | Date of First, Resumero | | | Producing Met | | Flowin | g 🕢 Pump | | | rplain) | | Estimated Production
Per 24 Hours | Oil | Bbls. | Gas
27.8mcf | Mcf | Wate | | Bbls. | Gas-Oil Ratio | Gravity | | Disposition of Gas | METHOD OF C | OMPLETIC | | | | Production Inte | erval | F.V. (C
Kansas Corpor | CIVED COMMISS | | Vented ✓ Sold
(If vented, Sul | Used on Lease | | Open Hole Other (Speci | √ Perf. | . 🔲 [| Dually Comp. | Commingled | KANSAS CORPO
APR | 1 3 2006 | CONSERVATION DIVISION WICHITA, KS | p | ormania de la Maria del Maria de la Maria de la Maria del Maria de la del Maria de la Maria del Maria de la Maria del Maria de la Maria del Ma | |---|--| | Affidavit of Notice Served | | | Re: Application for: APPLICATION FOR COMMINGLIN | G OF PRODUCTION OR FLUIDS - ACO-4 | | Well Name: VAN CLEAVE REV TRUST 7-2 | Legal Location: NENE S7-T30S-R19E | | The undersigned hereby certificates that he / she is a duly authorized agent | | | 2012 , a true and correct copy of the application referenced a | | | Note: A convertible off-device which are not of the outlier in | | | Note: A copy of this affidavit must be served as a part of the application. Name | Address (Atlach additional sheets if necessary) | | NEOSHO NATURAL LLC | 4230 DOUGLAS RD, THAYER, KS 66776 | | NEOGHO NATONAL LEG | 4230 DOOGLAS ND, MATEN, NS 00770 | | THE CITY OF PARSONS, KANSAS, A MUNICIPAL CORPORATION | 112 S 17TH ST, PARSONS, KS 67357 | | JAMES MERRILL | 1301 N 20TH RD, PARSONS, KS 67357 | | BRYAN W & DEBRA J COOVER | 6165 JACKSON RD, GALESBURG, KS 66740 | further attest that notice of the filing of this application was published in the ${\color{red} \underline{C}}$ | CHANUTE TRIBUNE , the official county publication | | NEOCHO | county. A copy of the affidavit of this publication is attached. | | Signed this 3 day of JULY , 20 | 012 | | Julian III III III III III III III III III I | 711011 | | OTARY ONLY | policial or Duly Authorized Agent | | # 09004117 Subscribed and sworn to b | day of JULY , 2012 | | EXP. 05/13/13 | Varity Dispers | | NO PUBLIC HOLL | otary Public | | # 09004117 Subscribed and sworn to b PUBLIC OF OKLANIII | y Commission Expires: 5/13/13 | | | | | | | #### VAN CLEAVE REV TRUST 7-2 - APPLICATION FOR COMMINGLING OF PRODUCTION OR FLUIDS | set Operators, Unleased Mineral Owne | ers and Landowners acreage | | | |--|---|---------------------------|--------| | ach additional sheets if necessary) | | | | | Name: | | Legal Description of Leas | ehold: | | EE ATTACHED | , , | | are true and correct to the best of my know | | | | # 09004117
EXP. 05/13/13 # 09004117 OF OKLUMENTAL OKLUMENTAL OF OKLUMENTAL OF OKLUMENTAL OF OKLUMENTAL OF OKLUMENTAL OKLUM | Subscribed and sworn before me this Notary Public My Commission | isty D Dan | ,2012 | | Thomas and the second | #### VAN CLEAVE REV 7-2 SPOT LEGAL LOCATION CURR_OPERA SE SE S6-T30S-R19E **Neosho Natural LLC** #### **VAN CLEAVE REV 7-2** #### NW4 of 8-30S-19E per TO dtd 3-4-07 #### E2NW4 The City Of Parsons, Kansas, a municipal corporation 112 S 17TH ST Parsons, KS 67357 #### 1.78 acre tract in SW4NW4 James Merrill 1301 N 20th Parsons, KS 67357 ### SE4 & Tract in SW/4 of 6-30S-19E Bryan W and Debra J Coover 61.65 Jackson Road Galesburg, KS 66740 ### **POSTROCK** ## **Current Completion** **WELL** Van Cleave Rev Trust 7-2 **FIELD** : Cherokee Basin **STATE** : Kansas **COUNTY** : Neosho SPUD DATE: 11/10/2005 COMP. Date: 12/2/2005 API: 15-133-26332-00-00 **LOCATION: 7-30S-19E (NE, NE) ELEVATION: GL - 972'** PREPARED BY: POSTROCK APPROVED BY: _ **DATE:** July, 2012 DATE:_ # **POSTROCK** #### **LEGEND** ### PostRock[®] | FORMATION: RIVERTON (PERFS): 934 - 937 | FORMATION: | ROWE | (PERFS): | 877 - | 879 | | | |
--|--|------------------|---|-------|--|------|---|---| | FORMATION: CATTLEMAN (PERFS): 706 - 717 FORMATION: (PERFS): | | | ` <i>'</i> — | | | | | | | FORMATION: (PERFS): | | | ` <u> </u> | | | | | | | FORMATION: (PERFS): | | - | ` | | | | | | | FORMATION: (PERFS): | FORMATION: | | · · · — | | . | | | | | FORMATION: (PERFS): - FORMATION: ROWE BOPD: 0 MCFPD: 1.43 BWPD: 4 FORMATION: RIVERTON BOPD: 0 MCFPD: 1.43 BWPD: 4 FORMATION: CATTLEMAN BOPD: 3 MCFPD: 0 BWPD: 20 FORMATION: BOPD: MCFPD: BWPD: BWPD: | FORMATION: | | (PERFS): | | | | | | | FORMATION: (PERFS): - FORMATION: (PERFS): - FORMATION: (PERFS): - FORMATION: (PERFS): - 2 ESTIMATED AMOUNT OF FLUID PRODUCTION TO BE COMMINGLED FROM EACH INTERVAL FORMATION: NUMBER OF THE PROPERTY PROPETY OF THE PROPETY OF THE PRO | FORMATION: | | (PERFS): | | | | | | | FORMATION: (PERFS): - FORMATION: (PERFS): - FORMATION: (PERFS): - 2 ESTIMATED AMOUNT OF FLUID PRODUCTION TO BE COMMINGLED FROM EACH INTERVAL FORMATION: NUMBER OF THE PROPERTY T | FORMATION: | | (PERFS): | | | | | | | FORMATION: (PERFS): - FORMATION: (PERFS): - 2 ESTIMATED AMOUNT OF FLUID PRODUCTION TO BE COMMINGLED FROM EACH INTERVAL FORMATION: ROWE BOPD: 0 MCFPD: 1.43 BWPD: 4 FORMATION: RIVERTON BOPD: 0 MCFPD: 1.43 BWPD: 4 FORMATION: CATTLEMAN BOPD: 3 MCFPD: 0 BWPD: 20 FORMATION: BOPD: MCFPD: BWPD: BWPD: BWPD: BWPD: BWPD: BWPD: BWPD: FORMATION: BOPD: MCFPD: BWPD: BWPD: BWPD: FORMATION: BOPD: MCFPD: BWPD: | FORMATION: | | (PERFS): | | | | | | | FORMATION: (PERFS): - 2 ESTIMATED AMOUNT OF FLUID PRODUCTION TO BE COMMINGLED FROM EACH INTERVAL FORMATION: ROWE BOPD: 0 MCFPD: 1.43 BWPD: 4 FORMATION: RIVERTON BOPD: 0 MCFPD: 1.43 BWPD: 4 FORMATION: CATTLEMAN BOPD: 3 MCFPD: 0 BWPD: 20 FORMATION: BOPD: MCFPD: BWPD: BWPD: FORMATION: BOPD: MCFPD: BWPD: BWPD: FORMATION: BOPD: MCFPD: BWPD: BWPD: FORMATION: BOPD: MCFPD: BWPD: FORMATION: BOPD: MCFPD: BWPD: BWPD: FORMATION: BOPD: MCFPD: BWPD: BWPD: FORMATION: BOPD: MCFPD: BWPD: BWPD: BOPD: MCFPD: BWPD: BWPD:< | FORMATION: | | (PERFS): | | | | | | | 2 ESTIMATED AMOUNT OF FLUID PRODUCTION TO BE COMMINGLED FROM EACH INTERVAL FORMATION: ROWE BOPD: 0 MCFPD: 1.43 BWPD: 4 FORMATION: RIVERTON BOPD: 0 MCFPD: 1.43 BWPD: 4 FORMATION: CATTLEMAN BOPD: 3 MCFPD: 0 BWPD: 20 FORMATION: BOPD: MCFPD: BWPD: BWPD: FORMATION: BOPD: MCFPD: BWPD: BWPD: BORMATION: BOPD: MCFPD: BWPD: BWPD: BORMATION: BOPD: MCFPD: BWPD: BWPD: BORMATION: BOPD: MCFPD: BWPD: | FORMATION: | | (PERFS): | | | | | | | FORMATION: ROWE BOPD: 0 MCFPD: 1.43 BWPD: 4 FORMATION: RIVERTON BOPD: 0 MCFPD: 1.43 BWPD: 4 FORMATION: CATTLEMAN BOPD: 3 MCFPD: 0 BWPD: 20 FORMATION: BOPD: MCFPD: BWPD: | FORMATION: | | (PERFS): | | | | | | | FORMATION: RIVERTON BOPD: 0 MCFPD: 1.43 BWPD: 4 FORMATION: CATTLEMAN BOPD: 3 MCFPD: 0 BWPD: 20 FORMATION: BOPD: MCFPD: BWPD: | | | | | | | | | | FORMATION: CATTLEMAN BOPD: 3 MCFPD: 0 BWPD: 20 FORMATION: BOPD: MCFPD: BWPD: | _ | | | _ | | | | | | FORMATION: BOPD: MCFPD: BWPD: | FORMATION: | ROWE | BOPD: | 0 | MCFPD: | | _ | | | FORMATION: BOPD: MCFPD: BWPD: | FORMATION:
FORMATION: | ROWE
RIVERTON | BOPD: | 0 | MCFPD: | 1.43 | BWPD: | 4 | | FORMATION: BOPD: MCFPD: BWPD: | FORMATION:
FORMATION:
FORMATION: | ROWE
RIVERTON | BOPD:
BOPD: | 0 | MCFPD:
MCFPD: | 1.43 | BWPD:BWPD: | 4 | | FORMATION:BOPD:MCFPD:BWPD:FORMATION:BOPD:MCFPD:BWPD:FORMATION:BOPD:MCFPD:BWPD:FORMATION:BOPD:MCFPD:BWPD: | FORMATION:
FORMATION:
FORMATION: | ROWE
RIVERTON | BOPD:
BOPD:
BOPD: | 0 | MCFPD: | 1.43 | BWPD: BWPD: | 4 | | FORMATION:BOPD:MCFPD:BWPD:FORMATION:BOPD:MCFPD:BWPD:FORMATION:BOPD:MCFPD:BWPD: | FORMATION:
FORMATION:
FORMATION:
FORMATION: | ROWE
RIVERTON | BOPD:
BOPD:
BOPD:
BOPD: | 0 | MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: | 1.43 | BWPD: BWPD: BWPD: | 4 | | FORMATION: BOPD: MCFPD: BWPD: FORMATION: BOPD: MCFPD: BWPD: | FORMATION:
FORMATION:
FORMATION:
FORMATION: | ROWE
RIVERTON | BOPD:
BOPD:
BOPD:
BOPD: | 0 | MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: | 1.43 | BWPD: BWPD: BWPD: | 4 | | FORMATION: BOPD: MCFPD: BWPD: | FORMATION:
FORMATION:
FORMATION:
FORMATION:
FORMATION: | ROWE
RIVERTON | BOPD: BOPD: BOPD: BOPD: BOPD: | 0 | MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: | 1.43 | BWPD: BWPD: BWPD: BWPD: | 4 | | | FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: | ROWE
RIVERTON | BOPD: BOPD: BOPD: BOPD: BOPD: BOPD: BOPD: | 0 | MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: | 1.43 | BWPD: BWPD: BWPD: BWPD: BWPD: | 4 | | TODA 4 TODA 4 TODA 5 TO | FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: | ROWE
RIVERTON | BOPD: BOPD: BOPD: BOPD: BOPD: BOPD: BOPD: BOPD: BOPD: | 0 | MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: | 1.43 | BWPD: BWPD: BWPD: BWPD: BWPD: BWPD: | 4 | | FORMATION: BOPD: MCFPD: BWPD: | FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: | ROWE
RIVERTON | BOPD: | 0 | MCFPD: | 1.43 | BWPD: BWPD: BWPD: BWPD: BWPD: BWPD: BWPD: BWPD: | 4 | | FORMATION: BOPD: MCFPD: BWPD: | FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: | ROWE
RIVERTON | BOPD: | 0 | MCFPD: | 1.43 | BWPD: BWPD: BWPD: BWPD: BWPD: BWPD: BWPD: BWPD: | 4 | Conservation Division Finney State Office Building 130 S. Market, Rm. 2078 Wichita, KS 67202-3802 Phone: 316-337-6200 Fax: 316-337-6211 http://kcc.ks.gov/ Mark Sievers, Chairman Thomas E. Wright, Commissioner Sam Brownback, Governor July 18, 2012 Clark Edwards PostRock Midcontinent Production LLC Oklahoma Tower 210 Park Ave, Ste 2750 Oklahoma City, OK 73102 RE: Approved Commingling CO071230 Van Cleave Rev Trust 7-2 Sec.7-T30S-R19E, Neosho County API No. 15-133-26332-00-00 Dear Mr. Edwards: Your Application for Commingling (ACO-4) for the above described well, received by the KCC on July 16, 2012, has been reviewed and approved by the Kansas Corporation Commission (KCC) per K.A.R. 82-3-123. Notice was examined and found to be proper per K.A.R. 82-3-135a. No protest had been filed within the 15-day protest period. Based upon the depth of the Riverton formation perforations, total oil production shall not exceed 100 BOPD and total gas production shall not exceed 50% of the absolute open flow (AOF). #### File form ACO-1 upon re-completion of the well to commingle. Commingling ID number CO071230 has been assigned to this approved application. Use this number for well completion reports (ACO-1) and other correspondence that may concern this approved commingling. Sincerely, Rick Hestermann Production Department