

KANSAS CORPORATION COMMISSION **OIL & GAS CONSERVATION DIVISION**

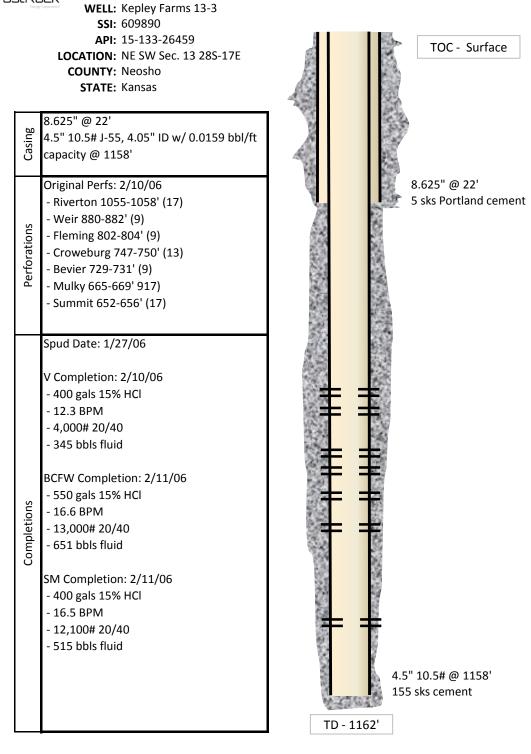
Form ACO-4 Form must be typed

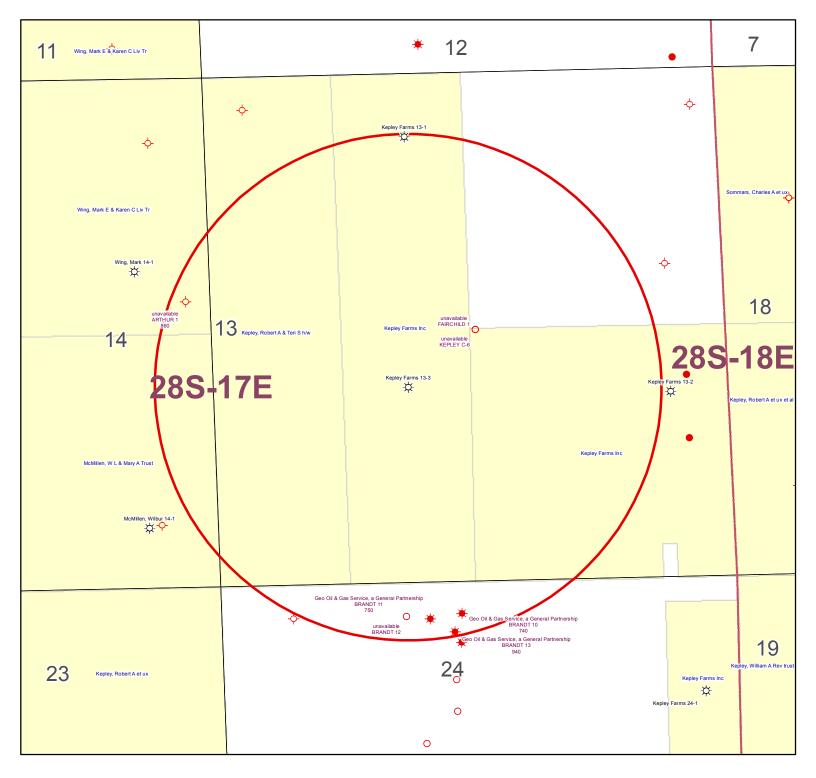
March 2009

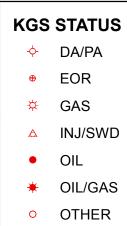
APPLICATION FOR COMMINGLING OF

Commingling ID #_

PRODUCTION (K.A.R. 82-3-123) OR FLUIDS (K.A.R. 82-3-123a)


OPERAT	FOR: License #	API No. 1	5				
Name:		Spot Description:					
Address	1:		5	Sec Twp	_S. R East West		
Address	2:			Feet from N	orth / South Line of Section		
City:	State: Zip:+			Feet from Ea	ast / West Line of Section		
Contact	Person:	County: _					
Phone:	()	Lease Na	me:	We	»II #:		
□ 1.	Name and upper and lower limit of each production interval to	0					
	Formation:		(Perfs):				
	Formation:		(Perfs):				
	Formation:		(Perfs):				
	Formation:		(Perfs):				
	Formation:		(Perfs):				
2.	Estimated amount of fluid production to be commingled from e	ach interval:					
<u> </u>	Formation:			MCEPD	BWPD:		
	Formation:				BWPD:		
					BWPD:		
	Formation:			-			
	Formation:				BWPD:		
	Formation:	BOPD: _		MCFPD:	BWPD:		
3.	Plat map showing the location of the subject well, all other well the subject well, and for each well the names and addresses of			0	ses within a 1/2 mile radius of		
4.	Signed certificate showing service of the application and affida	avit of publication a	as required in	n K.A.R. 82-3-135a.			
For Con	nmingling of PRODUCTION ONLY, include the following:						
5.	Wireline log of subject well. Previously Filed with ACO-1:	Yes 🗌 No					
6.	Complete Form ACO-1 (Well Completion form) for the subject						
For Con	nmingling of FLUIDS ONLY, include the following:						
7.	Well construction diagram of subject well.						
8.	Any available water chemistry data demonstrating the compat	ibility of the fluids	o be commir	ngled.			
current ir mingling	VIT: I am the affiant and hereby certify that to the best of my nformation, knowledge and personal belief, this request for comis true and proper and I have no information or knowledge, which sistent with the information supplied in this application.		Sub	mitted Electror	nically		
ксс	COffice Use Only				st in the application. Protests must be		
	enied Approved	in writing and co the notice of app		R. 82-3-135b and must k	be filed wihin 15 days of publication of		
15-Dav	v Periods Ends:						


Date: _


Approved By:

Wellbore Schematic

Kepley Farms 13-3 13-28S-17E 1" = 1,000' BEFORE THE STATE CORPORATION COMMISSION OF THE STATE OF KANSAS <u>NOTICE OF FILING</u> <u>APPLICATION</u>

RE: In the Matter of Postrock Midcontinent Production, LLC Application for Commingling of Production in the Kepley Farms 13-3 located in Neosho County, Kansas.

TO: All Oil & Gas Producers, Unleased Mineral Interest Owners, Landowners, and all persons whomever concerned.

You, and each of you, are hereby notified that Postrock Midcontinent Production, LLC has filed an application to commingle the Riverton, Weir, Fleming, Croweburg, Bevier, Mulky, Summit and Cattleman producing formations at the Kepley Farms 13-3 located in the SW NE NE SW, S13-T28S-R17E, Approximately 2036 FSL & 2028 FWL, Neosho County, Kansas.

Any persons who object to or protest this application shall be required to file their objections or protest with the Conservation Division of the State Corporation Commission of the State of Kansas within fifteen (15) days from the date of this publication. These protests shall be filed pursuant to Commission regulations and must state specific reasons why granting the application may cause waste, violate correlative rights or pollute the natural resources of the State of Kansas.

All persons interested or concerned shall take notice of the foregoing and shall govern themselves accordingly. All person and/or companies wishing to protest this application are required to file a written protest with the Conservation Division of the Kansas Oil and Gas Commission.

Upon the receipt of any protest, the Commission will convene a hearing and protestants will be expected to enter an appearance either through proper legal counsel or as individuals, appearing on their own behalf.

Postrock Midcontinent Production, LLC 210 Park Avenue, Suite 2750 Oklahoma City, Oklahoma 73102 (405) 660-7704

A COPY OF THE AFFIDAVIT OF PUBLICATION MUST ACCOM-PANY ALL APPLICATIONS

Affidavit of Publication A

STATE OF KANSAS, NEOSHO COUNTY, ss: *Rhonda Howerter*, being first duly sworn, deposes and says: That *she* is *Classified Manager* of *THE CHANUTE TRIBUNE*, a daily newspaper printed in the State of Kansas, and published in and of general circulation in Neosho County, Kansas, with a general paid circulation on a daily basis in Neosho County, Kansas, and that said newspaper is not a trade, religious or fraternal publication.

Said newspaper is a daily published at least weekly 50 times a year: has been so published continuously and uninterruptedly in said county and state for a period of more than five years prior to the first publication of said notice; and has been admitted at the post office of Chanute, in said county as second class matter.

That the attached notice is a true copy thereof and was published in the regular and entire issue of said newspaper for $_1$ concerning time, the first publication thereof being made as aforesaid on the $_19$ day of Ture

2012, with subsequent publications being made on the following dates:

, 2012, 2012 <u>Quantational Copies</u>	, 2012, 2012
Subscribed and sworn to and before me this 19 day of	<u> </u>
19 day of	Schonda Howerte
Printer's Fee	19 day of <u>June</u> , 2012
	Printer's Fee\$ 70.14 Affidavit, Notary's Fee\$ 3.00 Additional Copies

My Appt. Expires J-9-15

SSP2010

IP Description of Luiss Luiss Ipper Imper Imper </th <th></th> <th>A</th> <th>В</th> <th>С</th> <th>D</th> <th>E</th> <th>F</th> <th>G</th> <th>Н</th> <th>1</th> <th>J</th> <th>К</th>		A	В	С	D	E	F	G	Н	1	J	К
S Sec the herine Nucle the micro Nucle the micro Nucle the micro Nucle the sec th	1		ں						п	1		
3 Solution bind 100 <t< td=""><td></td><td></td><td>Units</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Click he</td><td>re</td><td>Click</td></t<>			Units							Click he	re	Click
Dec. Produce	3			v	 Image: A second s	~		>				Oliala
□ □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< <td></td> <td>Click</td>												Click
									-			Click
	-		11010 0							Goal Sook	SCD	CIICK
$ \begin{array}{ c c c c c c } 10 & [c] &$										Gual Seek	33F	Click
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				CBM	CBM	Bartles	Bartles	Bartles	calculations.			CIICK
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10	Na ⁺	(mg/l)*	19,433.00	27,381.00	26,534.00	25689.00	24220.00	24654.20	Initial(BH)	Final(WH)	SI/SR
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		(************************************	(mg/l)						0.00	Saturation Index	values	(Final-Initial)
			(mg/l)	1,096.00	872.00	1,200.00	953.00	858.00	995.91	Ca	lcite	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			(mg/l)	1,836.00	2,452.00	2,044.00	1920.00	1948.00	2040.23	-0.73	-0.60	0.13
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			(mg/l)						0.00	Ba	rite	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			(mg/l)						0.00			
			(mg/l)	40.00	21.00	18.00	82.00	90.00	50.21	H	alite	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			(mg/l)						0.00	-1.77	-1.80	-0.03
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-		(mg/l)						0.00	Gy	psum	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			(mg/l)									0.00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		SO4 ²⁻	(mg/l)	1.00	1.00	8.00	1.00	1.00	2.40		hydrate	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		F	(mg/l)									0.06
164 ICO3 Alkalinity* (mg/l) 190.00 224.00 254.00 254.00 244.00 Cleasting 25 CO3 Alkalinity* (mg/l) -												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						-						0.12
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				190.00	234.00	259.00	268.00	254.00	241.03	Cel	estite	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	_								0.00			
128 Borate (mgf.) H303 0.00 Zinc Sulfide 25 TDS (Measared) (mgf.) 0.00 72781 0.00 26 TDS (Measared) (mgf.) 1.038 1.045 1.048 1.045 1.047 Calcium fluoride 28 JC Calc. Density (STP) (gml.) 1.038 1.051 1.048 1.048 1.045 1.047 Calcium fluoride Total National Stresson 26.6 0.0269 0.0306 0.0151 0.0269 0.0306 0.0151 0.0269 0.0306 0.0151 0.0269 0.0306 0.0151 0.0269 0.0306 0.0151 0.0269 0.0306 0.0151 0.0269 0.0306 0.0151 0.0269 0.0306 0.0151 0.0269 0.030 0.0269 0.030 0.0269 0.030 0.07 0.013 0.0269 0.030 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00			-									0.07
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			-									-0.06
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	_									Zinc	Suinde	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		· · · · · · · · · · · · · · · · · · ·		1 038	1.051	1 050	1.048	1 0/15		Calaium	1 fluorido	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										Calcium	linuoriae	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	32	H ₂ S Gas Analysis***		0.0289	0.0292	0.0296	0.0306	0.0151	0.0269	Iron C	arbonate	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	33	Total H2Saq	(mgH2S/l)	1.00	1.00	1.00	1.00	0.50	0.90	-0.74	-0.51	0.23
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	34	pH, measured (STP)		5.67	5.76	5.72	5.54	5.55	5.63			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Choose one option								Calcite	NTMP	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	35			0	0	0	0	0				
38 Water/Day (B/D) 100 100 100 100 100 500 0.00 0.00 39 For mixed brines, enter values for temperatures and pressures in Cells (H40-H43) (Enter H40-H43) pH 40 Initial T (F) 66.0 71.0 70.0 41.0 49.0 60.0 5.69 5.60 41 Final T (F) 66.0 71.0 70.0 41.0 49.0 89.0 Viscosity (CentiPoise) 42 Initial P (psia) 25.0 25.0 25.0 25.0 11.96 0.825 0.825 44 Use TP on Calcite sheet? 1-Yes;0-No 0.00 <t< td=""><td>36</td><td>Gas/day(thousand cf/day)</td><td>(Mcf/D)</td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>0.00</td><td>0.00</td><td>_</td></t<>	36	Gas/day(thousand cf/day)	(Mcf/D)						0	0.00	0.00	_
39 For mixed brines, enter values for temperatures and pressures in Cells (H40-H43) (Enter H40-H43) pH 40 Initial T (F) 66.0 71.0 70.0 41.0 49.0 60.0 5.69 5.60 42 Initial T (F) 66.0 71.0 70.0 41.0 49.0 89.0 Viscodity (CentriPoise) 42 Initial P (psia) 25.0 25.0 25.0 25.0 25.0 11.96 0.826 43 Final P (psia) 25.0 25.0 25.0 25.0 11.96 0.826 44 User P on Calcite sheet? (Yes.o-No 0 0 0.00 0.055 0.959 45 API Oil Grav. Sp.Grav. 0 0 0 0 0 0.00	_		· · · · ·			1	1	1	4		BHPMP	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			· · · · ·				100	100				_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							41.0	49.0				_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	41	Final T	(F)	66.0	71.0	70.0	41.0	49.0	89.0	Viscosity ((CentiPoise)	
44 Use TP on Calcite sheet? I-Yes;0-No 0 0 0.955 0.959 45 API Oil Grav. API Qii Grav. API Qii Grav. API Qii Grav. Sp.Grav. 0.00 Inhibitor needed (mg/L) 46 Gas Sp.Grav. Sp.Grav. 0 0.00 0 0.00	42	Initial P	(psia)	25.0	25.0	25.0	25.0	25.0	25.0			
45 API Oil Grav. API grav. API Oil Grav. Sp.Grav. Sp.Grav. Sp.Grav. Sp.Grav. Sp.Grav. Sp.Grav. Bp.Grav. B.Grav. B.Grav. B.Grav.				25.0	25.0	25.0	25.0	25.0	120.0			_
46 Gas Sp.Grav. Sp.Grav. Sp.Grav. MDTM 47 McOH/Day (B/D) 0 0 0 0.00 0.00 0.00 48 MEG/Day (B/D) 0 0 0 Anhydrite HDTM 49 Conc. Multiplier 0 0 0 0 Anhydrite HDTM 50 H' (Strong acid) * (N) 0 0 0 Anhydrite HDTM 52 Quality Control Checks at STP: 0 0 0.00 0.00 0.00 0.00 54 Total H2Saq (STP) (mgH2S/l) 0 0 0 0 0 0 0 0 0 0 0 0.00 <td< td=""><td></td><td></td><td>,</td><td></td><td></td><td></td><td></td><td></td><td>30.00</td><td></td><td></td><td></td></td<>			,						30.00			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											HDTMP	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	47	MeOH/Day		0					0		0.00	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			(B/D)	0					0		HDTMP	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										0.00	0.00	
52 Quality Control Checks at STP: 53 H ₂ S Gas (%) 54 Total H2Saq (STP) (mgH2S/l) 55 pH Calculated (pH) 56 PCO2 Calculated (%) 57 Alkalinity Caclulated (mg/l) as HCO3 58 ECations= (equiv.l) 60 Calc TDS= (mg/l) 61 Inhibitor Selection Input Unit # Inhibitor 63 Have ScaleSoftPitzer C 80 °F 176 64 pick inhibitor for you? 1 1-Yes;0-No 3 PAA m³ 100 bill(2 US gal) 629 66 If No, inhibitor # is: 4 # 4 DTPMP m³ 100 bill(2 US gal) 629 67 1 st inhibitor # is: 1 # 6 SPA Bar 496 psia 7,194 68 % of 1 st inhibitor # is: 2 # 8 HDTMP Gal 10,000 psia 193 69 2 nd inhibitor # is: 2 #												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									I			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	54	Total H2Saq (STP)	(mgH2S/l)									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			· · ·									
58 59 50 calc TDS=(equiv.f.) (equiv.f.) (equiv.f.) (equiv.f.)(equiv.f.) (equiv.f.) (equiv.f.)Intermodel of the second seco												
60Calc TDS=(mg/l)(mg/l	58	ΣCations=	(equiv./l)									
62Protection Time120min1NTMPFrom UnitValueTo UnitValue63Have ScaleSoftPitzer2BHPMP°C80°F17664pick inhibitor for you?11-Yes;0-No3PAA m^3 100ft³3,53165If No, inhibitor # is:4#4DTPMP m^3 100bbl(42 US gal)62966If you select Mixed,5PPCAMPa1,000psia145,07467 1^{st} inhibitor # is:1#66SPABar496psia7,19468% of 1^{st} inhibitor # is:50%7HEDPTorr10,000psia19369 2^{nd} inhibitor # is:2#8HDTMPGal10,000bbl(42 US gal)238			-	Unit	#	Inhibitor	Unit Converte	r (From metric	to English)			
64 pick inhibitor for you? 1 1-Yes;0-No 3 PAA m³ 100 ft³ 3,531 65 If No, inhibitor # is: 4 # 4 DTPMP m³ 100 bbl(42 US gal) 629 66 If you select Mixed, 5 PPCA MPa 1,000 psia 145,074 67 1 st inhibitor # is: 1 # 6 SPA Bar 496 psia 7,194 68 % of 1 st inhibitor is: 50 % 7 HEDP Torr 10,000 psia 193 69 2 nd inhibitor # is: 2 # 8 HDTMP Gal 10,000 bbl(42 US gal) 238									. .	Value		
65 If No, inhibitor # is: 4 # 4 DTPMP m³ 100 bbl(42 US gal) 629 66 If you select Mixed, 5 PPCA MPa 1,000 psia 145,074 67 1 st inhibitor # is: 1 # 6 SPA Bar 496 psia 7,194 68 % of 1 st inhibitor is: 50 % 7 HEDP Torr 10,000 psia 193 69 2 nd inhibitor # is: 2 # 8 HDTMP Gal 10,000 bbl(42 US gal) 238	63	Have ScaleSoftPitzer			2	BHPMP		80		176		
66 If you select Mixed, 5 PPCA MPa 1,000 psia 145,074 67 1 st inhibitor # is: 1 # 6 SPA Bar 496 psia 7,194 68 % of 1 st inhibitor is: 50 % 7 HEDP Torr 10,000 psia 193 69 2 nd inhibitor # is: 2 # 8 HDTMP Gal 10,000 bbl(42 US gal) 238			1		3							
67 1 st inhibitor # is: 1 # 6 SPA Bar 496 psia 7,194 68 % of 1 st inhibitor is: 50 % 7 HEDP Torr 10,000 psia 193 69 2 nd inhibitor # is: 2 # 8 HDTMP Gal 10,000 bbl(42 US gal) 238			4	#								
68 % of 1 st inhibitor is: 50 % 7 HEDP Torr 10,000 psia 193 69 2 nd inhibitor # is: 2 # 8 HDTMP Gal 10,000 bbl(42 US gal) 238			1	#					-	-		
69 2 nd inhibitor # is: 2 # 8 HDTMP Gal 10,000 bbl(42 US gal) 238									-	-		
									-			
10 Dispita act. coefs? U 1-Yes;0-NO 9 Average Liters 10,000 bbl(42 US gal) 63		Display act. coefs?	0	# 1-Yes;0-No	9	Average	Liters	10,000	bbl(42 US gal)	63		
71 10 Mixed									<u> </u>			

BCC

Saturation Index Calculations

Champion Technologies, Inc. (Based on the Tomson-Oddo Model)

Brine 1: Ward Feed Yard 34-1 Brine 2: Ward Feed Yard 4-1 Brine 3: Clinesmith 5-4 Brine 4: Clinesmith 1 Brine 5: Clinesmith 2

		Ratio						
	20%	20%	20%	20%	20			
Component (mg/L)	Brine 1	Brine 2	Brine 3	Brine 4	Brine 5	Mixed Brine		
Calcium	1836	2452	2044	1920	1948	1952		
Magnesium	1096	872	1200	953	858	865		
Barium	0	0	0	0	0	0		
Strontium	0	0	0	0	0	0		
Bicarbonate	190	234	259	268	254	253		
Sulfate	1	1	8	1	1	1		
Chloride	36299	48965	47874	45632	43147	43206		
CO ₂ in Brine	246	220	264	422	405	401		
Ionic Strength	1.12	1.48	1.46	1.38	1.31	1.31		
Temperature (°F)	89	89	89	89	89	89		
Pressure (psia)	50	50	120	120	120	119		

Saturation Index

Calcite	-1.71	-1.41	-1.48	-1.68	-1.69	-1.69
Gypsum	-3.71	-3.64	-2.82	-3.73	-3.72	-3.69
Hemihydrate	-3.70	-3.65	-2.83	-3.74	-3.71	-3.69
Anhydrite	-3.89	-3.79	-2.97	-3.89	-3.88	-3.85
Barite	N/A	N/A	N/A	N/A	N/A	N/A
Celestite	N/A	N/A	N/A	N/A	N/A	N/A

PTB

Calcite	N/A	N/A	N/A	N/A	N/A	N/A
Gypsum	N/A	N/A	N/A	N/A	N/A	N/A
Hemihydrate	N/A	N/A	N/A	N/A	N/A	N/A
Anhydrite	N/A	N/A	N/A	N/A	N/A	N/A
Barite	N/A	N/A	N/A	N/A	N/A	N/A
Celestite	N/A	N/A	N/A	N/A	N/A	N/A

KANSAS CORPORATION COMMISSION ORIGINAL OIL & GAS CONSERVATION DIVISION

Form ACO-1 September 1999 Form Must Be Typed

WELL COMPLETION FORM

WELL HISTORY - DESCRIPTION OF WELL & LEASE

Operator: License #33344	API No. 15 - 133-26459-0000
Name: Quest Cherokee, LLC	County: Neosho
Address: 211 W. 14th Street	
City/State/Zip: Chanute, KS 66720	1980 feet from S / N (circle one) Line of Section
Purchaser: Bluestem Pipeline, LLC	1980 feet from E / W (circle one) Line of Section
Operator Contact Person: Jennifer R. Ammann	Footages Calculated from Nearest Outside Section Corner:
Phone: (<u>620</u>) <u>431-9500</u>	(circle one) NE SE NW SW
Contractor: Name: L S Well Service, LLC	Lease Name: Kepley Farms Well #: 13-3
License: 33374	Field Name: Cherokee Basin CBM
Wellsite Geologist: Julie Shaffer	Producing Formation: multiple
Designate Type of Completion:	Elevation: Ground: 960 Kelly Bushing: n/a
New Well Re-Entry Workover	Total Depth: 1162 Plug Back Total Depth: 1157.34
Oil SWD SIOW Temp. Abd.	Amount of Surface Pipe Set and Cemented at 21.6 Feet
Gas ENHR SIGW	Multiple Stage Cementing Collar Used?
Dry Other (Core, WSW, Expl., Cathodic, etc)	If yes, show depth set Feet
If Workover/Re-entry: Old Well Info as follows:	If Alternate II completion, cement circulated from 1157.34
Operator:	feet depth to surface w/ 144 sx cmt.
Well Name:	ALTI WHM 6-9-02
Original Comp. Date: Original Total Depth:	Drilling Fluid Management Plan (Data must be collected from the Reserve Pit)
Deepening Re-perf Conv. to Enhr./SWD	Chloride content ppm Fluid volume bbls
Plug BackPlug Back Total Depth	Dewatering method used
Commingled Docket No	Location of fluid disposal if hauled offsite:
Dual Completion Docket No	
Other (SWD or Enhr.?) Docket No	Operator Name:
1/27/06 1/30/06 2/4/06	Lease Name: License No.:
Spud Date or Date Reached TD Completion Date or Recompletion Date	Quarter Sec TwpS. R East West
Recompletion Date	County: Docket No.:

INSTRUCTIONS: An original and two copies of this form shall be filed with the Kansas Corporation Commission, 130 S. Market - Room 2078, Wichita, Kansas 67202, within 120 days of the spud date, recompletion, workover or conversion of a well. Rule 82-3-130, 82-3-106 and 82-3-107 apply. Information of side two of this form will be held confidential for a period of 12 months if requested in writing and submitted with the form (see rule 82-3-107 for confidentiality in excess of 12 months). One copy of all wireline logs and geologist well report shall be attached with this form. ALL CEMENTING TICKETS MUST BE ATTACHED. Submit CP-4 form with all plugged wells. Submit CP-111 form with all temporarily abandoned wells.

All requirements of the statutes, rules and regulations promulgated to regulate the oil and gas industry have been fully complied with and the statements herein are complete and correct to the best of my knowledge.

Signature: <u>Apprentifie</u> <u>R. Almmann</u> Title: <u>New Well Development Coordinator</u> <u>Pate:</u> 5/25/06 Subscribed and sworn to before me this 25 th day of <u>May</u> 20 <i>Ob</i> . Notary Public: <u>E. Wayne</u> Willhite	KCC Office Use ONLY
U OFFICIAL MY CO	VAYNE WILLHITE MMISSION EXPIRES Nugust 21, 2009

	Side Two		
Operator Name: Quest Cherokee, LLC	Lease Name: Kepley Farms	Well #:	
Sec. <u>13</u> Twp. <u>28</u> S. R. <u>17</u> ZEast West	County: Neosho		

INSTRUCTIONS: Show important tops and base of formations penetrated. Detail all cores. Report all final copies of drill stems tests giving interval tested, time tool open and closed, flowing and shut-in pressures, whether shut-in pressure reached static level, hydrostatic pressures, bottom hole temperature, fluid recovery, and flow rates if gas to surface test, along with final chart(s). Attach extra sheet if more space is needed. Attach copy of all Electric Wireline Logs surveyed. Attach final geological well site report.

Drill Stem Tests Taken (Attach Additional Sheets)	Yes	✓ No	✓ Log	Formation (Top),	Depth and Datum	Sample
Samples Sent to Geological Survey	Ves	✓ No	Name See Attac	hed	Тор	Datum
Cores Taken	Yes	✓ No				
Electric Log Run (Submit Copy)	✓ Yes	No				
List All E. Logs Run:						
Comp. Density/Neutron Log Dual Induction log Gamma Ray CCL						

			IG RECORD	New Used intermediate, produ	iction, etc.		
Purpose of String	Size Hole Drilled	Size Casing Set (In O.D.)	Weight Lbs. / Ft.	Setting Depth	Type of Cement	# Sacks Used	Type and Percent Additives
Surface	11"	8-5/8"	20#	21.6	"A"	5	
Production	6-3/4"	4-1/2"	10.5#	1157.34	"A"	144	

ADDITIONAL CEMENTING / SQUEEZE RECORD

Purpose: Perforate	Depth Top Bottom	Type of Cement	#Sacks Used	Type and Percent Additives
Protect Casing Plug Back TD				
Plug Off Zone				

Shots Per Foot	PERFORATION RECORD - Bridge Plugs Set/Type Specify Footage of Each Interval Perforated		Acid, Fracture, Shot, Cement Squeeze Record (Amount and Kind of Material Used)		
4	1055-1058/880-882/802-80	4/747-750/729-731/665-669/652-656	400gal 15% HCL w/ 47 bbls 2% kcl water, 345bbls water w/ 2% KCL, Blocide 4000# 20/40 sand	1055-1058	
			550gal 15% HCL w/ 61 bbls 2% kcl water, 651bbls water w/ 2% KCL, Blockle 13000# 20/40 sand	880-882/802-804	
				747-750/729-731	
			400gal 15% HCL w/ 55 bbis 2% kcl water, 515bbis water w/ 2% KCL, Biocide 12100# 20/40 sand	665-669/652-656	
TUBING RECORD	Size Se -3/8" 1118	At Packer At .95 n/a	Liner Run		
Date of First, Resume 3/29/06	erd Production, SWD or Enhr.	Producing Method	ng 🖌 Pumping 🗌 Gas Lift 🗌 Other (Explain)	
Estimated Production Per 24 Hours	oil Bbls.	Gas Mcf Wat 1mcf 117b	PECEIV	Gravity ED	
Disposition of Gas	METHOD OF COMPLI d Used on Lease Submit ACO-18.)		Production Interval KANSAS CORPORATIO	2006	

AFFIDAVIT

Ì SS. ---

1

STATE OF KANSAS

County of Sedgwick

Mark Fletchall, of lawful age, being first duly sworn, deposeth and saith: That he is Record Clerk of The Wichita Eagle, a daily newspaper published in the City of Wichita, County of Sedgwick, State of Kansas, and having a general paid circulation on a daily basis in said County, which said newspaper has been continuously and uninterruptedly published in said County for more than one year prior to the first publication of the notice hereinafter mentioned, and which said newspaper has been entered as second class mail matter at the United States Post Office in Wichita, Kansas, and which said newspaper is not a trade, religious or fraternal publication and that a notice of a true copy is hereto attached was published in the regular and entire Morning issue of said The Wichita Eagle for _1_ issues, that the first publication of said notice was

made as aforesaid on the **21st** of

June A.D. 2012, with

subsequent publications being made on the following dates:

And affiant further says that he has personal knowledge of the statements above set forth and that they are true.

Fletchall

Subscribed and sworn to before me this

21st day of June, 2012

My Appt.	PENNY L CASE tary Public - State of Kansas Expires	
Po	mith Car	, ,

Notary Public Sedgwick County, Kansas

LEGAL PUBLICATION

PUBLISHED IN THE WICHITA EAGLE JUNE 21, 2012 (319165) BEFORE THE STATE CORPORATION COMMISSION OF THE STATE OCREDING NOTICE OF FILING APPLICATION RE: In the Matter of Postrack Midcontinent Production, LLC Application for Commingling of Production in the Kepley Every 12 2 benefic to Nether Counts

Farms 13-3 located in Neosho County, Kansas.

TO: All Oll & Gas Producers, Unleased Mineral Interest Owners, Landowners, and all persons whomever concerned.

You, and each of you, are hereby notified that Postrock Midcontinent Production, LLC hat Postfock viuconnient Production, LLC has filed an application to commingle the Riverton, Weir, Fleming, Croweburg, Bevier, Mulky, Summit and Cattleman producing formations at the Kepley Farms 13-3 located in the SW NE NE SW, S13-T28S-R17E, Approximately 2036 FSL & 2028 FWL, Neosho

Approximately 2036 FSL & 2028 FWL, Neosho County, Kansas. Any persons who object to or protest this application shall be required to file their objections or protest with the Conservation Division of the State Corporation Commission of the State of Kansas within fifteen (15) days from the date of this publication. These protests shall be filed pursuant to Commission regulations and must state specific reasons who granting the application may cause waste, violate correlative rights or pollute the natural resources of the State of Kansas. All persons Interested or concerned shall

All persons interested or concerned shall take notice of the foregoing and shall govern themselves accordingly. All person and/or companies wishing to protest this application are required to file a written protest with the Conservation Division of the Kansas Oil and

Conservation Division of the Ransa Oi and Gas Commission. Upon the receipt of any protest, the Commission will convene a hearing and protestants will be expected to enter an appearance either through proper legal counsel or as individuals, appearing on their own behalf.

Postrock Midcontinent Production, LLC 210 Park Avenue, Suite 2750 Oklahoma City, Oklahoma 73102 (405) 660-7704

Printer's Fee : \$132.40

1 NAME & UPPER & LOWER LIMIT OF EACH PRODUCTION INTERVAL TO BE COMMINGLED

FORMATION:	MULKY	(PERFS):	665 - 669
FORMATION:	SUMMITT	(PERFS):	652 - 656
FORMATION:	CATTLEMAN	(PERFS):	814 - 816
FORMATION:	CATTLEMAN	(PERFS):	822 - 828
FORMATION:		(PERFS):	-
FORMATION:		(PERFS):	
FORMATION:		(PERFS):	

2 ESTIMATED AMOUNT OF FLUID PRODUCTION TO BE COMMINGLED FROM EACH INTERVAL

FORMATION:	MULKY	BOPD:	0	MCFPD:	3	BWPD:	5.71
FORMATION:	SUMMITT	BOPD:	0	MCFPD:	3	BWPD:	5.71
FORMATION:	CATTLEMAN	BOPD:	1.5	MCFPD:	0	BWPD:	10
FORMATION:	CATTLEMAN	BOPD:	1.5	MCFPD:	0	BWPD:	10
FORMATION:		BOPD:		MCFPD:		BWPD:	
FORMATION:		BOPD:		MCFPD:		BWPD:	
FORMATION:		BOPD:		MCFPD:		BWPD:	
FORMATION:		BOPD:		MCFPD:		BWPD:	
FORMATION:		BOPD:		MCFPD:		BWPD:	
FORMATION:		BOPD:		MCFPD:		BWPD:	
FORMATION:		BOPD:		MCFPD:		BWPD:	
FORMATION:		BOPD:		MCFPD:		BWPD:	

KEPLEY FARMS 13-3 - APPLICATION FOR COMMINGLING OF PRODUCTION OR FLUIDS

ffset Operators, Unleased Mineral Ov Itach additional sheets if necessary)			
Name:		Legal Description of Leasehold	ł:
EE ATTACHED			
1		•	
······································			
анания и и а р _{ана} киниции ушини ушинани			
ν 			
			· · · · · · · · · · · · · · · · · · ·
•			
· · · · · · · · · · · · · · · · · · ·	,,,,		
reby certify that the statements made her	rein are true and correct to the best of my knowled	lge and belief.	
	_	lge and belief.	
	_	1 Dates	
	_	Authorized Agent	
	_	1 Dates	,2012
	_	Authorized Agent	2012
	_	Authorized Agent	2012
reby certify that the statements made her UNITY D. ISA4 D. ISA4 D. ISA4 D. ISA4 COTARL WOULD EXP. 05/13/13 DELIC OF OKLANDING	_	Authorized Agent 3 day of JULY D D D	2012

	2
*	

KEPLEY FARMS 13-3

SPOT LEGAL LOCATION CURR_OPERA

NE NE NE NW	S24-T28S-R17E	Geo Oil & Gas Service, a General Partnership
W2 NE NE NW	S24-T28S-R17E	Geo Oil & Gas Service, a General Partnership
SW NE NE NW	S24-T28S-R17E	Geo Oil & Gas Service, a General Partnership

KEPLEY FARMS 13-3

NE4 of 24-28S-17E

W2 NE4 less tracts Patricia Smeed address below

NW4 of 24-28S-17E

2 Tracts in N2 NW William D. & Erin S. Brant Living Trust 2517 Main Parsons, KS 67357 Trct in N2 NW Ernest Jr & Christi Drake 2305 160th Rd Chanute, KS 66720 Trct in N2 NE Peter John & Patricia Kay Smeed Living Trust 2605 160th Rd Chanute, KS 66720

NE4 of 13-28S-17E

Legacy Farms LLC ¹/₂ minerals PO Box 5 Chanute, KS 66720

Kepley Enterprises LLC ½ minerals term 3035 160th Rd Chanute, KS 66720

Affidavit of Notice Served	
Re: Application for: APPLICATION FOR COMMINGLING C	OF PRODUCTION OR FLUIDS - ACO-4
Well Name: KEPLEY FARMS 13-3	Legal Location: SWNENESW S13-T28S-R17E
The undersigned hereby certificates that he / she is a duly authorized agent for the	he applicant, and that on the day
2012 , a true and correct copy of the application referenced above	e was delivered or mailed to the following parties:
Note: A copy of this affidavit must be served as a part of the application.	
Name	Address (Attach additional sheets if necessary)
GEO OIL & GAS SERVICE, A GENERAL PARTNERSHIP	430 KANSAS AVE, IOLA, KS 66749
PATRICIA SMEED	2605 160TH RD, CHANUTE, KS 66720
WILLIAM D & ERIN S BRANT LIV TRUST	2517 MAIN, PARSONS, KS 67357
ERNEST JR & CHRISTI DRAKE	2305 160TH RD, CHANUTE, KS 66720
PETER JOHN & PATRICIA KAY SMEED LIV TRUST	2605 160TH RD, CHANUTE, KS 66720
LEGACY FARMS LLC	PO BOX 5, CHANUTE, KS 66720
KEPLEY ENTERPRISES LLC	3035 160TH RD, CHANUTE, KS 66720

I further attest that notice of the filing of this applic	cation was published in the CHANUTE TRIBUNE	, the official county publication
of NEOSHO	county. A copy of the affidavit of this publication is attached.	
Signed thisday of JULY D. ISA ACCURRENT NOTARL CONTINUE # 09004117 EXP. 05/13/13 OF OKLAMMINING	2012 Applicant or Duly Authorized Agent Subscribed and sworn to before me this day of Motary Public My Commission Expires: 5/13/13	, 2012
A		

Phone: 316-337-6200 Fax: 316-337-6211 http://kcc.ks.gov/

Mark Sievers, Chairman Thomas E. Wright, Commissioner Sam Brownback, Governor

July 18, 2012

Clark Edwards PostRock Midcontinent Production LLC Oklahoma Tower 210 Park Ave, Ste 2750 Oklahoma City, OK 73102

RE: Approved Commingling CO071218 Kepley Farms 13-3 Sec.13-T28S-R17E, Neosho County API No. 15-133-26459-00-00

Dear Mr. Edwards:

Your Application for Commingling (ACO-4) for the above described well, received by the KCC on July 3, 2012, has been reviewed and approved by the Kansas Corporation Commission (KCC) per K.A.R. 82-3-123. Notice was examined and found to be proper per K.A.R. 82-3-135a. No protest had been filed within the 15-day protest period.

Based upon the depth of the Riverton formation perforations, total oil production shall not exceed 100 BOPD and total gas production shall not exceed 50% of the absolute open flow (AOF).

File form ACO-1 upon re-completion of the well to commingle.

Commingling ID number CO071218 has been assigned to this approved application. Use this number for well completion reports (ACO-1) and other correspondence that may concern this approved commingling.

Sincerely,

Rick Hestermann Production Department