KANSAS CORPORATION COMMISSION OIL & GAS CONSERVATION DIVISION Form ACO-4 Form must be typed March 2009 #### APPLICATION FOR COMMINGLING OF Commingling ID#_ PRODUCTION (K.A.R. 82-3-123) OR FLUIDS (K.A.R. 82-3-123a) | OPERAT | OR: License # | API No. 15 | | | |-------------------------------------|--|----------------------------------|-------------------|---| | Name:_ | | Spot Description: _ | | | | Address | 1: | | _ Sec Twp | _S. R | | Address | 2: | | Feet from No | orth / South Line of Section | | City: | | | Feet from Ea | ast / West Line of Section | | Contact F | Person: | County: | | | | Phone: | () | Lease Name: | We | II #: | | | | | | | | 1. | Name and upper and lower limit of each production interval to | be commingled: | | | | | Formation: | (Perfs): | | | | | | | | | | 2. | Estimated amount of fluid production to be commingled from e | | | | | | Formation: | | | BWPD: | | | Formation: | | | BWPD: | | | Formation: | BOPD: | MCFPD: | BWPD: | | | Formation: | BOPD: | MCFPD: | BWPD: | | | Formation: | BOPD: | MCFPD: | BWPD: | | □ 3.□ 4. | Plat map showing the location of the subject well, all other well the subject well, and for each well the names and addresses of Signed certificate showing service of the application and affida | of the lessee of record or ope | erator. | ses within a 1/2 mile radius of | | For Com | nmingling of PRODUCTION ONLY, include the following: | | | | | ☐ 5. | Wireline log of subject well. Previously Filed with ACO-1: | Yes No | | | | ☐ 6. | Complete Form ACO-1 (Well Completion form) for the subject | _ | | | | | | | | | | For Com | nmingling of FLUIDS ONLY, include the following: | | | | | 7. | Well construction diagram of subject well. | | | | | 8. | Any available water chemistry data demonstrating the compati | ibility of the fluids to be com- | mingled. | | | current in mingling i | IT: I am the affiant and hereby certify that to the best of my formation, knowledge and personal belief, this request for comistrue and proper and I have no information or knowledge, which istent with the information supplied in this application. | Sı | ubmitted Electror | nically | | | Office Use Only | | | st in the application. Protests must be
ne filed wihin 15 days of publication of | Date: _ Denied Approved 15-Day Periods Ends: __ Approved By: ## **Wellbore Schematic** TOC - Surface **WELL:** Hardin, B 27-1 **SSI:** 720336 **API:** 15-205-25665 LOCATION: E2 NW Sec. 27 28S-17E | | COUNTY: Wilson STATE: Kansas | | |--------------|--|---| | Casing | 8.625" 24.75# @ 24'
4.5" 10.5# J-55, 4.05" ID w/ 0.0159 bbl/ft
capacity @ 1156' | | | Perforations | Original Perfs: 12/2/05 & 1/17/06 - Riverton 1100-1102' (9) - Rowe 1049-1051' (9) - Tebo 955-957' (9) - Fleming 846-847' (5) - Croweburg 807-809' (9) - Bevier 789-790' (9) - Mulky 720-724' (17) - Summit 708-712' (17) | 8.625" 14.75# @ 24'
6 sks Class "A" cemer | | Completions | Spud Date: 10/8/03 RV Completion: 1/17/06 - 400 gals 15% HCl - 16.5 BPM - 7,400# 20/40 - 427 bbls fluid BCFT Completion: 1/17/06 - 450 gals 15% HCl - 14.8 BPM - 9,500# 20/40 - 564 bbls fluid SM Completion: 1/18/06 - 400 gals 15% HCl - 16.5 BPM - 3,300# 20/40 - 254 bbls fluid | 4.5" 10.5# @ 1156'
180 sks Class"A" cement | ## **KGS STATUS** - ◆ DA/PA - EOR - **⇔** GAS - △ INJ/SWD - OIL - **♦** OIL/GAS - OTHER Hardin, B 27-1 27-28S-17E 1" = 1,000' | | A | В | С | D | Е | F | C | П | ı | ı | К | |--|--|--|--|--|--|--|---|---|---|---|-----------------| | 1 | Produced Fluids # | O | 1 | 2 | 3 | 4 | G
5 | Н | <u> </u> | J | 1 N | | | Parameters | Units | Input | Input | Input | Input | Input | | Click he | ro | Click | | 3 | Select the brines | Select fluid | 7 | | 7 | | 7 | Mixed brine: | to run S | | | | 4 | Sample ID | by checking | | | | | · · | Cell H28 is | to run St | | Click | | | Date | the box(es), | 3/19/2012 | 3/4/2012 | 3/14/2012 | 1/20/2012 | 1/20/2012 | STP calc. pH. | > | | | | 6 | Operator | Row 3 | PostRock | PostRock | PostRock | PostRock | PostRock | Cells H35-38 | | | Click | | | Well Name | | Ward Feed | Ward Feed | Clinesmith | Clinesmith | Clinesmith | are used in | Goal Seek | SSP | | | 8 | Location | | #34-1 | #4-1 | #5-4 | #1 | #2 | mixed brines | | | Click | | _ | Field | | CBM | CBM | Bartles | Bartles | Bartles | calculations. | | | | | 10 | Na ⁺ | (mg/l)* | 19,433.00 | 27,381.00 | 26,534.00 | 25689.00 | 24220.00 | 24654.20 | Initial(BH) | Final(WH) | SI/SR | | 11 | K ⁺ (if not known =0) | (mg/l) | | | | | | 0.00 | Saturation Index | values | (Final-Initial) | | 12 | Mg ²⁺ | (mg/l) | 1,096.00 | 872.00 | 1,200.00 | 953.00 | 858.00 | 995.91 | Ca | lcite | | | 13 | Ca ²⁺ | (mg/l) | 1,836.00 | 2,452.00 | 2,044.00 | 1920.00 | 1948.00 | 2040.23 | -0.73 | -0.60 | 0.13 | | | Sr ²⁺ | (mg/l) | | · | | | | 0.00 | Ba | rite | | | 15 | Ba ²⁺ | (mg/l) | | | | | | 0.00 | | | | | | Fe ²⁺ | (mg/l) | 40.00 | 21.00 | 18.00 | 82.00 | 90.00 | 50.21 | н | alite | | | | Zn ²⁺ | | 40.00 | 21.00 | 10.00 | 02.00 | 70.00 | 0.00 | -1.77 | -1.80 | -0.03 | | | | (mg/l) | | | | | | | | | -0.03 | | | Pb ²⁺ | (mg/l) | 2 < 200 00 | 40.045.00 | 47.074.00 | 45.22.00 | 424 47 00 | 0.00 | | osum | 0.00 | | | Cl' | (mg/l) | 36,299.00 | 48,965.00 | 47,874.00 | 45632.00 | 43147.00 | 44388.44 | -3.19 | -3.18 | 0.00 | | - | SO ₄ ² · | (mg/l) | 1.00 | 1.00 | 8.00 | 1.00 | 1.00 | 2.40 | | nydrate | | | 21 | F | (mg/l) | | | | | | 0.00 | -3.96 | -3.90 | 0.06 | | | Br [*] | (mg/l) | | | | | | 0.00 | Anh | ydrite | | | 23 | SiO2 | (mg/l) SiO2 | | | | | | 0.00 | -3.47 | -3.36 | 0.12 | | 24 | HCO3 Alkalinity** | (mg/l as HCO3) | 190.00 | 234.00 | 259.00 | 268.00 | 254.00 | 241.03 | Cele | estite | | | 25 | CO3 Alkalinity | (mg/l as CO3) | | | | | | | | | | | 26 | Carboxylic acids** | (mg/l) | | | | | | 0.00 | Iron S | Sulfide | | | 27 | Ammonia | (mg/L) NH3 | | | | | | 0.00 | -0.16 | -0.22 | -0.06 | | 28 | Borate | (mg/L) H3BO3 | | | | | | 0.00 | Zinc | Sulfide | | | | TDS (Measured) | (mg/l) | | | | | | 72781 | | | | | | Calc. Density (STP) | (g/ml) | 1.038 | 1.051 | 1.050 | 1.048 | 1.045 | 1.047 | Calcium | ı fluoride | | | | CO ₂ Gas Analysis | (%) | 19.97 | 18.76 | 22.41 | 35.53 | 33.79 | 26.16 | Curezun | | | | | H ₂ S Gas Analysis*** | (%) | 0.0289 | 0.0292 | 0.0296 | 0.0306 | 0.0151 | 0.0269 | Iron Ca |
arbonate | | | _ | Total H2Saq | (mgH2S/l) | 1.00 | 1.00 | 1.00 | 1.00 | 0.50 | 0.90 | -0.74 | -0.51 | 0.23 | | - | pH, measured (STP) | pН | 5.67 | 5.76 | 5.72 | 5.54 | 5.55 | 5.63 | Inhibitor ne | eeded (mg/L) | | | | | 0-CO2%+Alk, | | | | | | | Calcite | NTMP | | | | Choose one option | | | | _ | | | | | | | | 35 | to calculate SI? | • | 0 | 0 | 0 | 0 | 0 | | 0.00 | 0.00 | | | | Gas/day(thousand cf/day) | (Mcf/D) | | 0 | | 1 | 4 | 0 | 0.00 | 0.00 | | | | Oil/Day
Water/Day | (B/D)
(B/D) | 100 | 100 | 100 | 100 | 100 | 500 | Barite
0.00 | 0.00 | | | | J | | | 100 | 100 | 100 | 100 | 200 | | о.00
оН | | | | For mixed brines, enter val | . , | | ures in Cells (H | (40-H43) | | | (Enter H40-H43) | n | | | | 40 | For mixed brines, enter val
Initial T | . , | | ures in Cells (H
71.0 | (40-H43)
70.0 | 41.0 | 49.0 | (Enter H40-H43)
60.0 | 5.69 | 5.60 | | | | | lues for tempera | tures and press
66.0
66.0 | ` | | 41.0 | 49.0 | 60.0
89.0 | 5.69 | | | | 41 | Initial T | lues for temperator (F) | tures and press
66.0 | 71.0 | 70.0 | | | 60.0
89.0 | 5.69 | 5.60 | | | 41
42
43 | Initial T Final T Initial P Final P | (F) (F) (psia) (psia) | tures and press
66.0
66.0 | 71.0
71.0 | 70.0
70.0 | 41.0 | 49.0 | 60.0
89.0 | 5.69
Viscosity (
1.196
Heat Capaci | 5.60
CentiPoise)
0.826
ity (cal/ml/ ⁰ C) | | | 41
42
43
44 | Initial T Final T Initial P Final P Use TP on Calcite sheet? | (F) (F) (psia) (psia) 1-Yes;0-No | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69
Viscosity (
1.196
Heat Capaci
0.955 | 5.60
CentiPoise)
0.826
ty (cal/ml/ ⁰ C)
0.959 | | | 41
42
43
44
45 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. | ues for temperat (F) (F) (psia) (psia) (psia) 1-Yes;0-No API grav. | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no | 5.60
CentiPoise)
0.826
ty (cal/ml/ ⁰ C)
0.959
eeded (mg/L) | | | 41
42
43
44
45
46 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. | ues for tempera (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. | 66.0
66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
eded (mg/L)
HDTMP | | | 41
42
43
44
45
46
47 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day | ues for tempera (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 | 5.60 CentiPoise) 0.826 ty (cal/ml/°C) 0.959 eded (mg/L) HDTMP 0.00 | | | 41
42
43
44
45
46
47
48 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. | ues for tempera (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
eded (mg/L)
HDTMP | | | 41
42
43
44
45
46
47
48
49 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier | ues for tempera (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * | ues for tempera (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier | ues for tempera (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † | ues for tempera (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. McOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH* (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) | ues for tempera
(F)
(F)
(psia)
(psia)
1-Yes;0-No
API grav.
Sp.Grav.
(B/D)
(N)
(N)
STP: | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH' (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) PH Calculated | ues for tempera (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated | (F) (F) (psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (PH) (%) | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated | (F) (F) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated | (F) (F) (psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (PH) (%) | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite |
5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated EXAnions= EXAnions= Calc TDS= | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated 2Cations= 2Anions= Calc TDS= Inhibitor Selection | ues for tempera (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input | tures and pressures 66.0 66.0 25.0 25.0 0 0 0 Unit | 71.0
71.0
25.0
25.0 | 70.0
70.0
25.0
25.0 | 41.0
25.0
25.0
Unit Converter | 49.0
25.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor nc Gypsum 0.00 Anhydrite 0.00 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
60
61
62 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated \$\textit{\subseteq}\text{Calculated}Calc | (F) (F) (psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) | tures and press
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0
25.0 | 70.0
70.0
25.0
25.0
Inhibitor
NTMP | 41.0 25.0 25.0 Unit Converter | 49.0
25.0
25.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite 0.00 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated 2Cations= 2Anions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer | (F) (F) (psia) (psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (equiv./I) (mg/I) Input 120 | tures and pressures 66.0 66.0 25.0 25.0 0 0 0 Unit min | 71.0
71.0
25.0
25.0
4
1
1
2 | 70.0
70.0
25.0
25.0
25.0
Inhibitor
NTMP
BHPMP | 41.0 25.0 25.0 25.0 Unit Converter From Unit | 49.0
25.0
25.0
25.0
(From metric Value 80 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite 0.00 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. McOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated 2Cations= EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? | (F) (F) (psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input 120 | tures and pressures 66.0 66.0 25.0 25.0 0 0 0 0 Unit min | 71.0
71.0
25.0
25.0
4
1
1
2
3 | Inhibitor NTMP BHPMP PAA | 41.0 25.0 25.0 25.0 Unit Converter From Unit °C m³ | 49.0
25.0
25.0
25.0
(From metric
Value
80
100 | 60.0
89.0
25.0
120.0
30.00
0.60
0
0
To Unit | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
53
54
55
56
67
75
88
89
60
61
62
63
64
65 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H† (Strong acid) † OH' (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated 2Cations= EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: | (F) (F) (psia) (psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (equiv./I) (mg/I) Input 120 | tures and pressures 66.0 66.0 25.0 25.0 0 0 0 Unit min | 71.0
71.0
25.0
25.0
4
1
2
3 | Inhibitor NTMP BHPMP PAA DTPMP | Unit Converter From Unit °C m³ m³ | 49.0
25.0
25.0
25.0
(From metric
Value
80
100
100 | 60.0
89.0
25.0
120.0
30.00
0.60
0
0
To Unit
"F
ft"3
bbl(42 US gal) | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
67
78
89
60
61
62
63
64
65
66 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong acid) * OH* (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated SCations= EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: If you select Mixed, | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) (N) STP: (%) (mgH2S/I) (pH) (mg/I) as HCO3 (equiv./I) (mg/I) Input 120 1 4 | tures and press 66.0 66.0 25.0 25.0 0 0 0 1-Yes;0-No # | 71.0
71.0
25.0
25.0
4
1
2
3
4
5 | Inhibitor NTMP BHPMP PAA DTPMP PPCA | Unit Converter From Unit °C m³ m³ MPa | 49.0
25.0
25.0
25.0
(From metric
Value
80
100
1,000 | 60.0
89.0
25.0
120.0
30.00
0.60
0
0
10
10
10
10
10
10
10
10
10
10
10
1 | Value 176 3,531 629 145,074 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
67
60
61
62
63
64
65
66
66 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc.
Multiplier H* (Strong acid) * OH' (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated Alkalinity Caclulated EXATIONS= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: If you select Mixed, 1st inhibitor # is: | (F) (F) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/l) as HCO3 (equiv./I) (mg/l) Input 120 1 4 | Unit min 1-Yes;0-No # | ## 1 2 3 4 4 5 6 | Inhibitor NTMP BHPMP PAA DTPMP PPCA SPA | Unit Converter From Unit °C m³ m³ MPa Bar | 49.0
25.0
25.0
25.0
 | 60.0
89.0
25.0
120.0
30.00
0.60
0
0
0
To Unit
"F
ft ³
bbl(42 US gal)
psia | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 145,074 7,194 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
67
63
64
65
66
67
68 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated SCations= EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: If you select Mixed, 1st inhibitor is: | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input 120 1 4 1 50 | Unit min 1-Yes;0-No # # % | # # 1 2 3 4 4 5 6 6 7 | Inhibitor NTMP BHPMP PAA DTPMP PPCA SPA HEDP | Unit Converter From Unit °C m³ m³ MPa Bar Torr | 49.0
25.0
25.0
25.0
25.0
 | 60.0
89.0
25.0
120.0
30.00
0.60
0
0
0
To Unit
"F
ft ³
bbl(42 US gal)
psia
psia | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 145,074 7,194 193 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
67
62
63
64
65
66
67
68
69 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated Alkalinity Caclulated PCO2 Calculated Alkalinity Caclulated EXAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor for you? If you select Mixed, 1st inhibitor # is: % of 1st inhibitor is: % of 1st inhibitor is: 2nd inhibitor is: | (F) (F) (psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) 1 120 1 4 1 50 2 | Unit min 1-Yes;0-No # # % # | ## 1 2 3 4 4 5 6 6 7 8 | Inhibitor NTMP BHPMP PAA DTPMP PPCA SPA HEDP HDTMP | Unit Converter From Unit °C m³ MPa Bar Torr Gal | 49.0
25.0
25.0
25.0
25.0
25.0
25.0
25.0
25 | 60.0 89.0 25.0 120.0 30.00 0.60 0 0 10 10 10 10 10 10 10 10 10 10 10 1 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 145,074 7,194 193 238 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
67
62
63
64
65
66
67
68
69 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated SCations= EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: If you select Mixed, 1st inhibitor is: | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input 120 1 4 1 50 | Unit min 1-Yes;0-No # # % | # # 1 2 3 4 4 5 6 6 7 | Inhibitor NTMP BHPMP PAA DTPMP PPCA SPA HEDP | Unit Converter From Unit °C m³ m³ MPa Bar Torr | 49.0
25.0
25.0
25.0
25.0
 | 60.0
89.0
25.0
120.0
30.00
0.60
0
0
0
To Unit
"F
ft ³
bbl(42 US gal)
psia
psia | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 145,074 7,194 193 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | ## **Saturation Index Calculations** Champion Technologies, Inc. (Based on the Tomson-Oddo Model) Brine 1: Ward Feed Yard 34-1 Brine 2: Ward Feed Yard 4-1 Brine 3: Clinesmith 5-4 Brine 4: Clinesmith 1 Brine 5: Clinesmith 2 | | 20% | 20% | 20% | 20% | 20 | | |--------------------------|---------|---------|---------|---------|---------|-------------| | Component (mg/L) | Brine 1 | Brine 2 | Brine 3 | Brine 4 | Brine 5 | Mixed Brine | | Calcium | 1836 | 2452 | 2044 | 1920 | 1948 | 1952 | | Magnesium | 1096 | 872 | 1200 | 953 | 858 | 865 | | Barium | 0 | 0 | 0 | 0 | 0 | 0 | | Strontium | 0 | 0 | 0 | 0 | 0 | 0 | | Bicarbonate | 190 | 234 | 259 | 268 | 254 | 253 | | Sulfate | 1 | 1 | 8 | 1 | 1 | 1 | | Chloride | 36299 | 48965 | 47874 | 45632 | 43147 | 43206 | | CO ₂ in Brine | 246 | 220 | 264 | 422 | 405 | 401 | | Ionic Strength | 1.12 | 1.48 | 1.46 | 1.38 | 1.31 | 1.31 | | Temperature (°F) | 89 | 89 | 89 | 89 | 89 | 89 | | Pressure (psia) | 50 | 50 | 120 | 120 | 120 | 119 | ### **Saturation Index** | Calcite | -1.71 | -1.41 | -1.48 | -1.68 | -1.69 | -1.69 | |-------------|-------|-------|-------|-------|-------|-------| | Gypsum | -3.71 | -3.64 | -2.82 | -3.73 | -3.72 | -3.69 | | Hemihydrate | -3.70 | -3.65 | -2.83 | -3.74 | -3.71 | -3.69 | | Anhydrite | -3.89 | -3.79 | -2.97 | -3.89 | -3.88 | -3.85 | | Barite | N/A | N/A | N/A | N/A | N/A | N/A | | Celestite | N/A | N/A | N/A | N/A | N/A | N/A | ## PTB | Calcite | N/A | N/A | N/A | N/A | N/A | N/A | |-------------|-----|-----|-----|-----|-----|-----| | Gypsum | N/A | N/A | N/A | N/A | N/A | N/A | | Hemihydrate | N/A | N/A | N/A | N/A | N/A | N/A | | Anhydrite | N/A | N/A | N/A | N/A | N/A | N/A | | Barite | N/A | N/A | N/A | N/A | N/A | N/A | | Celestite | N/A | N/A | N/A | N/A | N/A | N/A | ## Kansas Corporation Commission Oil & Gas Conservation Division Form ACO-1 September 1999 Form Must Be Typed # WELL COMPLETION FORM WELL HISTORY - DESCRIPTION OF WELL & LEASE | Operator: License # 31796 | API No. 15 - 205-25,665-0000 | |---|---| | Name: Quest Energy Service, Inc. | API No. 15 - 205-25,665-0000 ORIGINAL County: Wilson | | Address: P.O. Box 100 | E2 - E2 - NW - 4 Sec. 27 Twp. 28 S. R. 17 [7] East West | | City/State/Zip: Benedict, KS 66714 | 1320 feet from S /N (circle one) Line of Section | | Purchaser: Quest Energy Service, Inc. | 2280 feet from E / (w) (circle one) Line of Section | | Operator Contact Person: Douglas L. Lamb | Footages Calculated from Nearest Outside Section Corner; | | Phone: (_620) _698-2250 | (circle one) NE SE (NW) SW | | Contractor: Name: James D. Lorenz FEB 0 9 2004 | Lease Name: B. Hardin Well #: 27-1 | | License: 9313 | Field Name: Cherokee Basin CBM | | Wellsite Geologist: Mike Ebers KCC WICHITA | Producing Formation: Not completed into producing zone | | Designate Type of Completion: | Elevation: Ground: | | | Total Depth: 1164 Plug Back Total Depth: 1155.5' | | Oil | Amount of Surface Pipe Set and Cemented at 24 Feet | | Gas ENHR SIGW | Multiple Stage Cementing Collar Used? | | Dry Other (Core, WSW, Expl., Cathodic, etc) | If yes, show depth setFeet | | If Workover/Re-entry: Old Well Info as follows: | If Alternate II completion, cement circulated from | | Operator: | feet depth to sufacew/_180sx cmt. | | Well Name: | Drilling Fluid Management Plan All 1973-17-04 | | Original Comp. Date: Original Total Depth: | Drilling Fluid Management Plan (Data must be collected from the Reserve Pit) | | Deepening Re-perf Conv. to Enhr./SWD | Chloride content ppm Fluid volume bbls | | Plug Back Plug Back Total Depth | Dewatering method used_Air Drilled | | Commingled Docket No | Location of fluid disposal if hauled offsite: | | Dual Completion Docket No | · | | Other (SWD or Enhr.?) Docket No | Operator Name: | | 10-8-03 10-10-03 11-5-03 | Lease Name: License No.: | | Spud Date or Date Reached TD Completion Date or Recompletion Date Recompletion Date | Quarter Sec TwpS. R | | ' Trecompletion Bate | County: Docket No.: | | INSTRUCTIONS: An original and two copies of this form shall be filed with the Kansas 67202, within 120 days of the spud date, recompletion, workover information of side two of this form will be held confidential for a period of 12 107 for confidentiality in excess of 12 months). One copy of all wireline logs at TICKETS MUST BE ATTACHED. Submit CP-4 form with all plugged wells. | r or conversion of a well. Rule 82-3-130, 82-3-106 and 82-3-107 apply. If months if requested in
writing and submitted with the form (see rule 82-3-101) and geologist well report shall be attached with this form. ALL CEMENTING Submit CP-111 form with all temporarily abandoned wells. | | All requirements of the statutes, rules and regulations promulgated to regulat herein are complete and correct to the best of my knowledge. | e the oil and gas industry have been fully complied with and the statements | | Signature: Nouglas L'Lumb | KCC Office Use ONLY | | Title: President Date: 2/4/04 | Letter of Confidentiality Attached | | Subscribed and sworn to before me this 4th day of February | If Denied, Yes [_] Date: | | | Wireline Log Received | | 20 <u>04</u> . | Geologist Report Received | | Notary Public: Famela J. Salls | UIC Distribution | | Pamela G. Graves Date Commission Expires: 6/4/05 | | | A. PAMELA G. GRAVES Notary Public - State of Kansas | | My Appt. Expires 6/4/05 # ORIGINAL #### Side Two | Operator Name: Quest Energy Service, Inc. | | | Lease N | Lease Name: B. Hardin | | | Well #: 27-1 | | | |--|--|---|----------------------------------|--|---------------------------|--|------------------------------|---|--| | Sec. 27 Twp. 28 S. R. 17 Fast West | | | County: | | | | | | | | INSTRUCTIONS: Show
tested, time tool open a
temperature, fluid recove
Electric Wireline Logs s | and closed, flowing
very, and flow rate | and shut-in pressures
if gas to surface test, | s, whether shu
along with fin | ut-in pres | ssure reached st | atic level, hydr | ostatic pressure | es, bottom hole | | | Orill Stem Tests Taken (Attach Additional Sh | neets) | Yes No | | v Lo | g Formation | (Top), Depth | and Datum | ✓ Sample | | | Samples Sent to Geolo | • | ∐ Yes 🔽 No | | Name | | | Тор | Datum | | | Cores Taken
Electric Log Run
(Submit Copy) | , | ☐ Yes No
☐ Yes ☐ No | | Altam | oah Lime
oont Lime | | 474'
508' | +516'
+482' | | | list All E. Logs Run: | | | | | ee Lime
ego Lime | | 645'
686' | +345'
+304' | | | Density - Neutro | on, Dual Indi | uction - Guard | | Verd | egris Lime
ssippi Lime | | 804'
1114' | +186'
-124' | | | | | CASING
Report all strings set | G RECORD | Nev | , | n, etc. | | | | | Purpose of String | Size Hole
Drilled | Size Casing
Set (In O.D.) | Weigh
Lbs. / F | | Setting
Depth | Type of
Cement | # Sacks
Used | Type and Percent
Additives | | | Surface | 11.00" | 8.625" | 24.75 | 5 | 24' | "A" | 6 | | | | Production | 6.75" | 4.50" | 10.50 |) | 1155.5' | "A" | 180 | | | | THE RESERVE THE PROPERTY AND ADDRESS OF THE PARTY PA | J | ADDITIONA | L CEMENTING | | EEZE RECORD | | | THE REPORT OF THE PROPERTY | | | Purpose: Perforate Protect Casing . Plug Back TD Plug Off Zone | Depth
Top Bottom | Type of Cement | #Sacks U | · · · T | | Type and F | Percent Additives | | | | Shots Per Foot | | ON RECORD - Bridge Plu
Footage of Each Interval Pe | | | | re, Shot, Cemen | t Squeeze Record | i
Depth | | | None | Wait | ng on Pipeline | | THE PERSONNEL WAS IN A PART OF THE PERSONNEL PROPERTY | | . 100 0 10 00 00 00 00 00 00 00 00 00 00 | | | | | | | | | | | | | | | | TUBING RECORD | Size | Set At | Packer At | The state of s | Liner Run | Yes No | | | | | Date of First, Resumerd P | roduction, SWD or E | nhr. Producing Me | | Flowing | Pumping | Gas Lit | ft Othe | r (Explain) | | | Estimated Production
Per 24 Hours | Oil | Bbls. Gas | Mcf | Water | Bbls | . 0 | Gas-Oil Ratio | Gravity | | | Disposition of Gas | METHOD OF C | OMPLETION | MATERIAL SECURITY SECURITY | | Production Interva | 1 part 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | dell — ir ya na nome i un unan de , — everencesse | | | Vented Sold Sold (If vented, Subm | Used on Lease
it ACO-18.) |
Open Hole Other (Spe | 4 | Du | ally Comp. | Commingled _ | - 1 mm = appearance apr an . | RECEIVE | | FEB 0 9 2004 KCC WICHITA ### **AFFIDAVIT** STATE OF KANSAS SS. County of Sedgwick Mark Fletchall, of lawful age, being first duly sworn, deposeth and saith: That he is Record Clerk of The Wichita Eagle, a daily newspaper published in the City of Wichita, County of Sedgwick, State of Kansas, and having a general paid circulation on a daily basis in said County, which said newspaper has been continuously and uninterruptedly published in said County for more than one year prior to the first publication of the notice hereinafter mentioned, and which said newspaper has been entered as second class mail matter at the United States Post Office in Wichita, Kansas, and which said newspaper is not a trade, religious or fraternal publication and that a notice of a true copy is hereto attached was published in the regular and entire Morning issue of said The Wichita Eagle for 1 issues, that the first publication of said notice was made as aforesaid on the 21st of June A.D. 2012, with subsequent publications being made on the following dates: And affiant further says that he has personal knowledge of the statements above set forth and that they are true. Subscribed and sworn to before me this 21st day of June, 2012 PENNY L. CASE Notary Public My Appt. Expires Notary Public Sedgwick County, Kansas Printer's Fee: \$132.40 ## LEGAL PUBLICATION PUBLISHED IN THE WICHITA EAGLE JUNE 21, 2012 (3191674) BEFORE THE STATE CORPORATION COMMISSION OF THE STATE OF KANSAS NOTICE OF FILING APPLICATION RE: in the Marier of Postrock Midcontinent Production, LLC Application for Commingling of Production in the Hardin, B 27-1 located in Wilson County, Kansas, TO: All Oil & Gas Producers. Unleased Mineral TO: All Oil & Gas Producers; Unleased Mineral Interest Owners, Landowners, and all persons whomever concerned. You, and each of you, are hereby notified that Postrock Midcontinent Production, LLC has filed an application to commingle the Riverton, Rowe, Tebo, Fleming, Croweburg, Bevier, Mulky, Summit and Bartiesville producing formations at the Hardin, B 27-1 located in the E2 E2 NW, S27-T28S-R17E, Approximately 1350 FNL & 2274 FWL, Wilson County, Kansas. Any persons who object to or protest this application shall be required to file their objections or profest with the Conservation Division of the State Corporation Commission of the State of Kansas within fifteen (15) days from the date of this publication. These profests shall be filed pursuant to Commission regulations and must state specific reasons why granting the application may cause waste. violate correlative rights or pollute the natural resources of the State of Kansas. All persons interested or concerned shall take notice of the foregoing and shall govern themselves accordingly. All person and/or companies wishing to protest this application are required to file a written protest with the Conservation Division of the Kansas Oll and Gas Commission. Upon the receipt of any protest, the Commission will convene a hearing and protestants will be expected to enter an appearance either through proper legal counsel or as individuals, appearing on their own behalf. Postrock Midcontinent Production, LLC 210 Park Avenue, Suite 2750 Oklahoma City, Oklahoma 73102 (405) 660-7704 ### PROOF OF PUBLICATION ## STATE OF KANSAS Wilson County - SS JOSEPH S. and RITA M. RELPH, of lawful age, being duly sworn upon oath that they are the Owners and Publishers of the WILSON COUNTY CITIZEN: THAT said newspaper has been published at least weekly fifty (50) times a year and has been so published for at least five years prior to the first publication of the attached notice: THAT said newspaper is a general circulation on a daily, or weekly, or monthly, or yearly basis in; WILSON COUNTY, KANSAS and is NOT a trade, religious or fraternal publication and has been PRINTED and PUBLISHED in Wilson County, Kansas. THE ATTACHED was published on the following dates in a regular issue of said newspaper: | 1st publication was made on the | 18 HW day of | |---|-----------------| | | e | | 2nd publication was made on the | day of | | | . 20——— | | 3rd publication was made on the | day of | | | . 20 | | 4th publication was made on the | day of | | | . 20 | | 5th publication was made on the | day of | | | . 20 | | 6th publication was made on the | day of | | | . 210 | | TOTAL PUBLICATION FEE: \$ | 3850 | | (Signed) Joseph J. Celph | (| | Subscribed and sworn to before me, this | 19th day of | | | ,2012 | | Beta M. Felge | (Notary Public) | | My commission expires Qua. | 30, 2014 | (Published in the Wilson Coundy Citizen on Monday, June 18, 2012.) BEFORE THE STATE CORPORATION COMMISSION OF THE STATE OF KANSAS #### NOTICE OF FILING APPLICATION RE: In the Matter of Postrock Midcontinent Production, LLC Application for Commingling of Production in the Hardin, B 27-1 located in Wilson County, Kansas. TO: All Oil & Gas Producers, Unleased Mineral Interest Owners, Landowners, and all persons whomever concerned. You, and each of you, are hereby notified that Postrock Midcontinent Production, LLC has filed an application to commingle the Riverton, Rowe, Tebo, Fleming, Croweburg, Bevier, Mulky, Summit and Bartlesville producing formations at the Hardin, B 27-1 located in the E2 E2 NW, S27-T28S-R17E, Approximately 1350 FNL & 2274 FWL, Wilson County, Kansas. Any persons who object to or protest this application shall be required to file their objections or protest with the Conservation Division of the State Corporation Commission of the State of Kansas within fifteen (15) days from the date of this publication. These protests shall be filed pursuant to Commission regulations and must state specific reasons why granting the application may cause waste, violate correlative rights or poliute the natural resources of the State of Kansas. All persons interested or concerned shall take notice of the foregoing and shall govern themselves accordingly. All person and/or companies wishing to protest this application are required to file a written protest with the Conservation Division of the Kansas Oil and Gas Commission. Upon the receipt of any protest, the Commission will convene a hearing and protestants will be expected to enter an appearance either through proper legal counsel or as individuals, expecting on their own behalf appearing on their own behalf Postrock Midcontinent Production, LLC 210 Park Avenue, Suite 2750 Oklahoma City, Oklahoma 73102 (405) 660-7704 35 1 cpy. ## HARDIN, B 27-1 | R & LOWER LIMIT OF EACH PRODU | JCTION INTERVAL TO BE C | OMMING | LED | | | | |--|--|---|-----------------------|--|--------|--------| | BEVIER | (PERFS): | 789 - | - 790 | | | | | MULKY | (PERFS): | 720 - | 724 | | | | | SUMMIT | (PERFS): | 708 - | - 712 | | | | | BARTLESVILLE | (PERFS): | 918 - | 924 | | | | | | (PERFS): | | | | | | | | (PERFS): | - | - | | | | | | (PERFS): | | - <u></u> | | | | | - | (PERFS): | | | | | | | | (PERFS): | - | - | | | | | | (PERFS): | | - <u></u> | | | | | | (PERFS): | | - | | | | | | (PERFS): | - | - | | | | | MOUNT OF FLUID PRODUCTION TO
BEVIER | BE COMMINGLED FROM BOPD: | EACH INT | ERVAL MCFPD: | 2.25 | BWPD: | 5 | | MULKY | BOPD: | 0 | MCFPD: | 2.25 | BWPD: | 5 | | SUMMIT | BOPD: | 0 | MCFPD: | 2.25 | BWPD: | 5 | | BARTLESVILLE | BOPD: | 3 | MCFPD: | 0 | BWPD: | 20 | | | BOPD: | | MCFPD: | | BWPD: | | | | BOPD: | | MCFPD: | | BWPD: | | | - | BOPD: | | MCFPD: | | BWPD: | | | | DODD: | | MCFPD: | | BWPD: | | | | BOPD: | | IVICI PD. |
| DVVID. | | | | BOPD: | | MCFPD: | | BWPD: | | | | | | | | - | | | | BOPD: | | MCFPD: | | BWPD: | | | | BEVIER MULKY SUMMIT BARTLESVILLE MOUNT OF FLUID PRODUCTION TO BEVIER MULKY SUMMIT | BEVIER MULKY SUMMIT BARTLESVILLE (PERFS): SUMMIT BOPD: BOPD: BOPD: BOPD: | BEVIER (PERFS): 789 | MULKY SUMMIT (PERFS): 720 - 724 SUMMIT (PERFS): 708 - 712 BARTLESVILLE (PERFS): 918 - 924 (PERFS): - (PERF | BEVIER | BEVIER | | Affidavit of Notice Served | | |---|--| | Re: Application for: APPLICATION FOR COMMING | LING OF PRODUCTION OR FLUIDS ACO-4 | | Well Name: HARDIN, B 27-1 | Legal Location: E2E2NW S27-T28S-R17E | | The undersigned hereby certificates that he / she is a duly authorized a | | | | ced above was delivered or mailed to the following parties: | | , 4 (40 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.1 | | | Note: A copy of this affidavit must be served as a part of the application | | | Name | Address (Attach additional sheets if necessary) | | ROBERT J BOLLIG | 14374 ANDERSON RD, CHANUTE, KS 66720 | | THOMAS R & JANET L ERBE | 21184 800 RD, ALTOONA, KS 66710 | I further attest that notice of the filing of this application was published in | the WILSON COUNTY CITIZEN , the official county publication | | of WILSON | county. A copy of the affidavit of this publication is attached. | | Signed this 7TH day of AUGUST | 2012 | | | () 11 / Maris | | | Applicant or Dyly Authorized Agent | | JENNIFER R. BEAL OFFICIAL MY COMMISSION EXPIRES | a to before me this | | JENNIFEH H. BEAL OFFICIAL MY COMMISSION EXPIRES | a 1 D Band | | 7-20-2016 | Notary Pupilic Notary Pupilic | | | My Commission Expires: January & Beal | | | 0.0 | | | | | | | | | | ## HARDIN, B 27-1 - APPLICATION FOR COMMINGLING OF PRODUCTION OR FLUIDS | fset Operators, Unleased Mineral Owners and Landowners | acreage | |--|---| | tach additional sheets if necessary)
Name:
OBERT J BOLLIG | Legal Description of Leasehold: NWNESENE S27-T28S-R17E | | HOMAS R & JANET L ERBE | SE/4 LESS 27 ACRE TRAC OF S28-T28S-R17E | reby certify that the statements made herein are true and correct to | the best of my knowledge and belief. | | | Applicant or Duly Authorized Agent | | Subscribed and s | sworn before me this | | JENNIFER R. BEAL OFFICIAL MY COMMISSION EXPIRES | Notary Public R Beal | | 7-20-2016 | Notary Public My Commission Expires: Quely 20, 2010 | Conservation Division Finney State Office Building 130 S. Market, Rm. 2078 Wichita, KS 67202-3802 Phone: 316-337-6200 Fax: 316-337-6211 http://kcc.ks.gov/ Mark Sievers, Chairman Thomas E. Wright, Commissioner Sam Brownback, Governor August 22, 2012 Clark Edwards PostRock Midcontinent Production LLC Oklahoma Tower 210 Park Ave, Ste 2750 Oklahoma City, OK 73102 RE: Approved Commingling CO081205 B. Harding 27-1 Sec.27-T28S-R17E, Wilson County API No. 15-205-25665-00-00 Dear Mr. Edwards: Your Application for Commingling (ACO-4) for the above described well, received by the KCC on August 9, 2012, has been reviewed and approved by the Kansas Corporation Commission (KCC) per K.A.R. 82-3-123. Notice was examined and found to be proper per K.A.R. 82-3-135a. No protest had been filed within the 15-day protest period. Based upon the depth of the Riverton formation perforations, total oil production shall not exceed 100 BOPD and total gas production shall not exceed 50% of the absolute open flow (AOF). ## File form ACO-1 upon re-completion of the well to commingle. Commingling ID number CO081205 has been assigned to this approved application. Use this number for well completion reports (ACO-1) and other correspondence that may concern this approved commingling. Sincerely, Rick Hestermann Production Department