

155 N. Market, Suite 710, Wichita, KS 67202 316-263-5785, 316-263-1851 fax

DRILLING AND COMPLETION REPORT Thissen #4-27

2520' FNL & 1965' FWL in NW/4 SURFACE CASING: 8 5/8", 23# set at 307' LOCATION:

Section 27-27S-7W

PRODUCTION CASING: 5 1/2", 15.5# New set at 4363'

COUNTY: Kingman

ANTICIPATED RTD: 4300'

API:

15-095-22253-0000

RTD: 4360°

CONTRACTOR: Landmark Drilling, Rig #6

G.L.: 1597' K.B.: 1606'

GEOLOGIST: David Goldak

SPUD DATE: 4-19-12

NOTIFY: American Energies Corp.

COMPLETION DATE: 4-26-12

Dianne Y. DeGood Family Trust, Gar Oil Corp., Hyde Resources, Inc., Debbie Schmitt, LLC

REFERENCE WELLS:

MTM Petroleum, Inc., Pickrell Drilling,

#1 - AEC's Thissen 1-27 - NE NW SW 27-27S-7W #2 - AEC's Thissen 2-27 - SE SW NW 27-27S-7W

Kathleen A. Hill, Buffalo Creek Oil and Gas, LLC,

R & T Investments

FORMATION:	SAMPI	E LOG:	Compariso	on:	ELECTRIC LO			OG TOPS: Comparison:	
_			<u>#1-27</u>	<u>#2-27</u>			#1-27	#2-27	
Onaga Shale	2029	- 423	+2	+3	2030	-424	+1	+2	
Indian Cave	2056	- 450	+3	+1	2066	-460	-7	flat	
Wabaunsee	2114	- 508	+3	-2	2116	-510	+1	flat	
Heebner	2973	-1367	Flat	-4	2974	-1368	-1	-5	
Lansing	3224	-1618	+3	-4	3226	-1620	+1	-6	
Stark Shale	3570	-1964	+5	+1	3572	-1966	+3	-0 -1	
Cherokee	3810	-2204	+6	+2	3813	-2207	+3	-1 -1	
Mississippian	3923	-2317	+11	+7	3926	-2320	+8	-1 +4	
Kinderhook	4124	-2518	+7	+6	4140	-2534	-9	-	
Viola	4256	-2650	+2	+2	4259	-2554 -2653	-9 -1	-10	
Simpson Ss A	4276	-2670	+3	N/A	4282	-2676	-1 -3	-1	
Simpson Ss B	4293	-2687	+1	N/A	4298	-2692		NA	
Total Depth	4360	-2754	_	* 1/1 E	4364	-2092 -2758	-4	NA	

- 04-19-12 Landmark Drilling, LLC, Rig #6 MIRT, RURT
- 04-20-12 Drilling out cement plug, at 310' and waiting on cement. Spud well at 11:15 a.m. on 4-19-12, set surface casing 307'. Drilled 12 1/4" surface hole. Ran in 7 jts of 8 5/8" new 23# surface casing set at 307'. Allied cemented w 175 sx Class A Cement w 2% CC, 3% Gel. Plug down at 10:45 p.m.
- 04-21-12 Drilling ahead at 1780'.
- 04-22-12 Drilling ahead 2676'.
- 04-23-12 Drilling ahead at 3395'.
- 04-24-12 Tripping in hole @ 3576' at 7:00 a.m. after DST #1. Results DST #1: 3542 3576' (Dennis) Times:15-30-45-60, IF: Strong blow off bottom of bucket in 20 seconds. FF: Strong blow off bottom of bucket in 10 seconds. GTS in 9 minutes - too small to measure into second flow period. Rec: 10' GO, (20% G, 80% O), 115' GOCM (30% G, 20% O, 50% M), ISIP: 667, FSIP: 578, IFP: 35-40, FFP: 38-68, IHP: 1764, FHP: 1704 Temperature 113 degrees.
- 04-25-12 Circulating for samples at 3940'.
- 04-26-12 At 4260' and tripping in hole for DST #2, Viola: 4256-60' Times:30-60-30-60. Rec 2700' TF, reversed out fluid 2615' clean gassy oil, 115' GOWCM (5% g, 13% oil, 30% SW, 52% Mud. Should make a good well, and run open hole logs. DIL, CNL/FDCwGR. IF: Strong Blow, BOB in 30 seconds. ISI: 2" Blow Back. FF: Strong Blow, BOB in 90 seconds. GTS in 3 minutes, too small to measure. FSI: BOB Blow back in10 minutes. IFP:156-616, ISIP:1537, FFP:617-958, FSIP:1537 IH: 2118', FH: 2091, Gravity:41, Temperature 140 degrees.
- 04-27-12 At 4360'. TOH for Logs, Logging today and running pipe.
- 04-27-12 In reviewing the logs The Viola pay zone from 4260 to 68 appears to be separated from a lower bench of Viola porosity by a 4' shale zone. The upper bench has good resistivity and the lower bench is wet. We will run 5 1/2" casing cement it in with 125Sxs proceeded by 500 gallons of mud flush. Cementing is scheduled for around midnight.

- 04-28-12 Ran 104 jts of new 5 ½", 15.5# production casing to 4363' and tagged bottom. Came up 3' to 4360' and circulated for 1 hour. Hooked up Allied Cementing and started down with 500 gallons mud flush and then 125 sx of ASC cement. Plug down at 5:00 a.m. circulated throughout. Allied Ticket #38055.

 Set 21' shoe joint, Centralizers at 4343, 4301, 4217, 4175 and 4091'.
- 05/07/12 RU American Energies Rig #2. Log Tech of Kansas, ran Cement Bond Log, indicated good cement bond. Swabbed to 2300'.
- 05/08/12 Rig up Perforator's, TIH w Perf gun, Perforated at 4260', 2 shots. Swab down SION.
- 05/09/12 Swabbed fluid at 4300' with 75' gas w/trace of oil. Swabbed 25' fluid with gassy oil on top. Swabbed down, no fluid entry Spotted 250' MCA on perfs & 2000' water on acid, continued to add 500' every 30" for 1-1/2 hours. Fluid level 800' from Surface, started the last 12-1/2 bbls, zone broke down, went on vacuum. Static level at 1500' from surface, started swabbing Swabbed back 30 bbls of water. SION.
- 05/10/12 7:00 a.m. Gas at surface went on in with casing sub, pulled 250 bbl fluid, well kicked off flowing at a rate of 14 barrels of oil per hour. Will allow well to die and run 2-7/8" tubing, rods and pump.
- 05/11/12 Went in tagged fluid 450' from surface. Pulled 250' & had 240' oil with good show of gas. After 5 minutes, well stated flowing:

1st hour: Flowed 10 bbls 2nd hour: Flowed 3.5 bbls

3rd hour: Flowed 0 bbls, just gas.

Ran MA, SN & 110 joints new 2-7/8" tubing to 4218'. Ran 14' RWB pump, 30 7/8" rods, 68 3/4" & 70 7/8 rods, 22' polish rod with 2 -5' subs. Hook up well head & RDMO. Will set equipment next week.

- 05/21/12 Set 228 Century Pumping Unit with 25 HP Electric motor. Will use existing tank battery.
- 05/24/12 Started pumping unit and well began pumping at 1:00 p.m. today.

	BO - Total Lease Production	NOTES
05/25/12	65	97% Oil and 3% Water at wellhead
05/26/12	85	
05/27/12	86	Thissen 4-27 making approx. 68 BOPD, 1-27, 2-27, 3-27 making 18 BOPD
05/28/12	70	The second of Borb, 127, 2-27, 5-27 making 10 BOrb
05/29/12	71	Hooking up chemical pump today – having some water problems.
05/30/12	42	Removed 20 bbls water from Heater Treater
05/31/12	30	Storm came thru around 5:00 p.m. and knocked out power - wells all down when pumper arrived on location this morning.
06/01/12	65	men pumper arrived on location this mothing,
06/02/12	71	
06/03/12	63	#2 well down with motor problems – still making approximately 3% water.
06/04/12	65	still making approximately 370 water.
06/05/12	65	#2 well up and running - motor repaired.
06/06/12	66	me were and running motor topunou.
06/07/12	65	

American Energies Corporation

27-27S-7W Kingman

155 N Market Ste 710 Wichita, KS 67202

ATTN: Dave Goldak

Thiessen 4-27

Job Ticket: 47486

DST#: 1

Test Start: 2012.04.23 @ 22:46:01

GENERAL INFORMATION:

Formation:

Dennis

Deviated:

Interval:

Nο Whipstock: ft (KB)

Test Type: Conventional Bottom Hole (Initial)

Time Tool Opened: 00:52:16 Time Test Ended: 05:32:01

Tester:

Leal Cason

Unit No:

1606.00 ft (KB)

Total Depth:

3542.00 ft (KB) To 3576.00 ft (KB) (TVD)

Reference Elevations:

1597.00 ft (CF)

Hole Diameter:

3576.00 ft (KB) (TVD)

KB to GR/CF:

9.00 ft

7.88 inches Hole Condition: Good

Serial #: 6798

Press@RunDepth:

Inside

67.66 psig @

3543.00 ft (KB)

Capacity:

8000.00 psig

Start Date: Start Time:

2012.04.23

End Date:

2012.04.24

Last Calib.:

2012.04.24

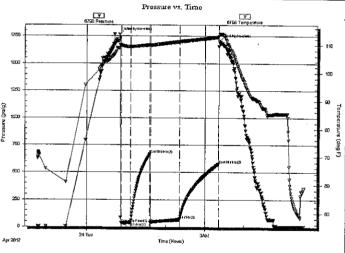
22:46:02 End Time:

05:32:01

Time On Btm:

2012.04.24 @ 00:49:46

Time Off Btm:


2012.04.24 @ 03:21:46

TEST COMMENT: IF: Strong Blow, BOB in 20 seconds

ISI: No Blow Back

FF: Strong Blow, BOB in 10 seconds, GTS in 9 minutes, TSTM

FSI: No Blow Back

_	PRESSURE SUMMARY							
	Tîme	Pressure	Temp	Annotation				
	(Min.)	(psig)	(deg F)					
	0	1763.54	109.05	Initial Hydro-static				
	3	35.25	109.89	Open To Flow (1)				
i	17	40.35	109.38	Shut-ln(1)				
a	47	667.19	110.06	End Shut-In(1)				
Temperature (deg F)	48	37.92	109.87	Open To Flow (2)				
eture	92	67.66	111.18	Shut-ln(2)				
(degi	151	578.02	112.82	End Shut-In(2)				
ا ٔ	152	1703.71	113.68	Final Hydro-static				
١								
		İ						

Recovery

Length (ft)	Description	Volume (bbl)
0.00	3401 GIP	0.00
115.00	GOCM 30%G 20%O 50%M	0.57
10.00	GSY OIL 20%G 80%O	0.14
-		-

Gas	Rates	

	Chake (inches)	Pressure (psig)	Gas Rate (Mcf/d)
_		···	

Trilobite Testing, Inc.

Ref. No: 47486

Printed: 2012.04.24 @ 07:25:47

FLUID SUMMARY

American Energies Corporation

27-27S-7W Kingman

155 N Market Ste 710 Wichita, KS 67202

Thiessen 4-27 Job Ticket: 47486

DST#: 1

36.3 deg API

ppm⁻

ATTN: Dave Goldak

Test Start: 2012.04.23 @ 22:46:01

Oil API:

Water Salinity:

Printed: 2012.04.24 @ 07:25:48

Mud and Cushion Information

Mud Weight:

Mud Type: Gel Chem

Viscosity:

9.00 lb/gal 53.00 sec/at 9.19 in³

0.20 inches

ohm.m

Water Loss:

Resistivity:

Salinity: Filter Cake: 5000.00 ppm

Cushion Type:

Cushion Length:

Cushion Volume: Gas Cushion Type:

Gas Cushion Pressure:

psig

ft

bbl

Recovery Information

Recovery Table

Length Description Volume bbl 0.00 3401 GIP 0.000 115.00 GOCM 30%G 20%O 50%M 0.566 10.00 GSY OIL 20%G 80%O 0.140

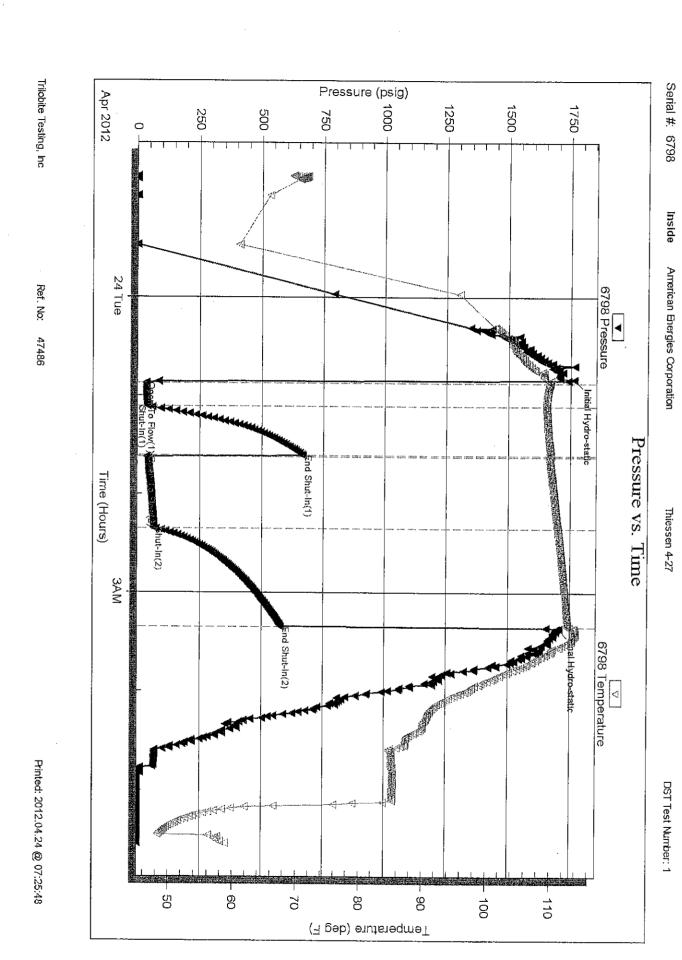
Total Length:

125.00 ft

Total Volume:

0.706 bbl

Num Fluid Samples: 0


Num Gas Bombs:

Serial #:

Laboratory Name:

Laboratory Location:

Recovery Comments: Gravity Was 36.3 @ 60 degrees

American Energies Corporation

Thiessen 4-27

27-27S-7W Kingman

155 N Market Ste 710 Wichita, KS 67202

Job Ticket: 47487

DST#:2

ATTN: Dave Goldak

Test Start: 2012.04.26 @ 06:02:09

GENERAL INFORMATION:

Formation:

Viola

Deviated:

No Whipstock: ft (KB)

Time Tool Opened: 08:36:39 Time Test Ended: 16:16:09

Interval:

4256.00 ft (KB) To 4260.00 ft (KB) (TVD)

Total Depth:

4260.00 ft (KB) (TVD)

Hole Diameter:

7.88 inches Hole Condition: Good

Test Type: Conventional Bottom Hole (Reset)

Tester:

Leal Cason

Unit No: 45

Reference Elevations:

1606,00 ft (KB)

1597.00 ft (CF)

KB to GR/CF:

9.00 ft

Serial #: 6798

Press@RunDepth:

Inside

957.78 psig @

4257.00 ft (KB)

Capacity: 2012.04.26

8000.00 psig

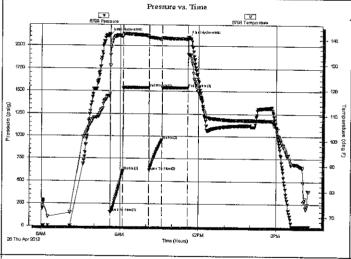
Start Date: Start Time:

2012.04.26 06:02:10 End Date: End Time:

16:16:09

Last Calib.: Time On Btm: 2012.04.26

Time Off Btm:


2012.04.26 @ 08:35:54 2012.04.26 @ 11:36:39

TEST COMMENT: IF: Strong Blow , BOB in 30 seconds

ISI: 2 inch Blow Back

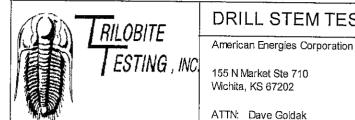
FF: Strong Blow, BOB in 90 seconds, GTS in 3 minutes, TSTM

FSI: BOB Blow Back in 10 minutes

_							
	PRESSURE SUMMARY						
	Time	Pressure	Temp	Annotation			
140	(Min.)	(psig)	(deg F)				
	0	2118.29	118.57	Initial Hydro-static			
130	1	156.23	129.53	Open To Flow (1)			
20	31	616.22	141,17	Shut-In(1)			
≓	90	1537.14	141.55	End Shut-In(1)			
Temperature (deg F	91	616.95	140.53	Open To Flow (2)			
e de la composición dela composición de la composición de la composición dela composición de la composición de la composición dela composición dela composición de la composición dela composición del	120	957.78	140.10	Shut-ln(2)			
90 G	180	1537.12	140.30	End Shut-In(2)			
	181	2090.63	134.21	Final Hydro-static			
	Ì						
3							
0							

Recovery

Length (ft)	Description	Volume (bbl)
0.00	1514 GIP	0.00
115.00	GOWCM 5%G 13%O 30%W 52%M	0.57
2615.00	Oil	36.68
		-
Recovery from r	nultiple lesis	


Gas Rates

Choke (Inches) Pressure (psig) Gas Rate (Mcf/d)

Trilobite Testing, Inc.

Ref. No: 47487

Printed: 2012.04.27 @ 08:05:12

27-27S-7W Kingman

Thiessen 4-27

Job Ticket: 47487

DST#: 2

FLUID SUMMARY

41.4 deg API

65000 ppm

Test Start: 2012.04.26 @ 06:02:09

Oil API:

Water Salinity:

Mud and Cushion Information

Mud Type: Gel Chem Mud Weight:

9.00 lb/gal

Viscosity:

46.00 sec/qt 9.99 in³

Water Loss: Resistivity:

ohm.m

Salinity: Filter Cake: 3500.00 ppm 0.20 inches Cushion Type:

Cushion Length:

Cushion Volume:

Gas Cushion Type:

Gas Cushion Pressure:

bbi

ft

psig

Recovery Information

Recovery Table

Length ft	Description	Volume bbl
0.00	1514 GIP	0.000
115.00	GOWCM 5%G 13%O 30%W 52%M	0.566
2615.00	Oil	36.682

Total Length:

2730.00 ft

Total Volume:

37.248 bbl

Num Fluid Samples: 0

Num Gas Bombs:

Laboratory Name:

Laboratory Location: Recovery Comments: Gravity Was 44.4 @ 90 degrees

RW was .085 @ 90 degrees

Serial#;

Trilobite Testing, inc

Ref. No: 47487

Printed: 2012.04.27 @ 08:05:12

Temperature (deg F)

120

130

Serial #: 6798

Inside

American Energies Corporation

Thiessen 4-27

DST Test Number: 2

140