KANSAS CORPORATION COMMISSION OIL & GAS CONSERVATION DIVISION Form ACO-4 Form must be typed March 2009 #### APPLICATION FOR COMMINGLING OF Commingling ID#_ PRODUCTION (K.A.R. 82-3-123) OR FLUIDS (K.A.R. 82-3-123a) | OPERAT | OR: License # | API No. 15 | | | |------------------------|--|----------------------------------|-------------------------------------|----------------------------------| | Name:_ | | Spot Description: _ | | | | Address | 1: | <u></u> | _ Sec Twp S. | R East West | | Address | 2: | | Feet from North / | South Line of Section | | City: | State: Zip:+ | | Feet from East / | West Line of Section | | Contact | Person: | County: | | | | Phone: | () | Lease Name: | Well #: _ | | | | | | | | | 1. | Name and upper and lower limit of each production interval to | be commingled: | | | | | Formation: | (Perfs): | | | | □ 2. | Estimated amount of fluid production to be commingled from e | each interval: | | | | | Formation: | | MCFPD: | BWPD: | | | Formation: | | MCFPD: | | | | Formation: | | MCFPD: | | | | Formation: | | MCFPD: | | | | | | | | | | Formation: | BOPD: | MCFPD: | BWPD: | | 3. | Plat map showing the location of the subject well, all other well the subject well, and for each well the names and addresses of | of the lessee of record or ope | erator. | vithin a 1/2 mile radius of | | <u> </u> | Signed certificate showing service of the application and affida | avit of publication as required | I in K.A.R. 82-3-135a. | | | For Con | nmingling of PRODUCTION ONLY, include the following: | | | | | <u> </u> | Wireline log of subject well. Previously Filed with ACO-1: | Yes No | | | | 6. | Complete Form ACO-1 (Well Completion form) for the subject | well. | | | | For Con | uminaling of FLUIDS ONLY include the following: | | | | | For Con | nmingling of FLUIDS ONLY, include the following: | | | | | | Well construction diagram of subject well. | | | | | _ 8. | Any available water chemistry data demonstrating the compati | ibility of the fluids to be comr | ningled. | | | current ir
mingling | /IT: I am the affiant and hereby certify that to the best of my nformation, knowledge and personal belief, this request for comistrue and proper and I have no information or knowledge, which istent with the information supplied in this application. | Su | ubmitted Electronica | lly | | KCC | Office Use Only | Protests may be filed by any | party having a valid interest in th | ne application. Protests must be | | l — | nied Approved | | .A.R. 82-3-135b and must be filed | | Date: _ Approved By: 15-Day Periods Ends: _ #### **KGS STATUS** - DA/PA - EOR - △ INJ/SWD - OIL - **☀** OIL/GAS - OTHER Brant, Jerry 31-1 31-28S-18E 1" = 1,000' ## KANSAS CORPORATION COMMISSION OIL & GAS CONSERVATION DIVISION ORIGINAL Form ACO-1 September 1999 Form Must Be Typed # WELL COMPLETION FORM WELL HISTORY - DESCRIPTION OF WELL & LEASE | Operator: License # 33344 | API No. 15 - 133-26324-0000 | |--|--| | Name: Quest Cherokee, LLC | County: Neosho | | Address: 211 W. 14th Street | cnw _ Sec. 31 _ Twp. 28 _ S. R. 18 _ 🗸 East _ West | | City/State/Zip: Chanute, KS 66720 | feet from S /(N)(circle one) Line of Section | | Purchaser: Bluestem Pipeline, LLC | 1980 | | Operator Contact Person: Gary Laswell | | | Phone: (_620) 431-9500 | (circle one) NE SE (NW) SW | | Contractor: Name: L S Well Service, LLC | Lease Name: Brant, Jerry W. Well #: 31-1 | | License: 33374 | Cherokee Basin CBM | | Wellsite Geologist: Julie Shaffer | | | Designate Type of Completion: | Elevation: Ground: 973 Kelly Bushing: n/a | | New Well Re-Entry Workover | Total Depth: 1112 Plug Back Total Depth: 1107 | | OilSIOWTemp. Abd. | Amount of Surface Pipe Set and Cemented at 21.3 Feet | | ✓ Gas ENHR SIGW | Multiple Stage Cementing Collar Used? | | Dry Other (Core, WSW, Expl., Cathodic, etc) | If yes, show depth setFeet | | If Workover/Re-entry: Old Well Info as follows: | If Alternate II completion, cement circulated from 1107 | | Operator: | feet depth to Surface w/ 140 sx cmt. | | Well Name: | ' | | Original Comp. Date:Original Total Depth: | Drilling Fluid Management Plan (Data must be collected from the Reserve Pit) | | Deepening Re-perf Conv. to Enhr./SWD | Chloride contentppm Fluid volumebbls | | Plug BackPlug Back Total Depth | Dewatering method used | | Commingled Docket No | • | | Dual Completion Docket No | Location of fluid disposal if hauled offsite: | | Other (SWD or Enhr.?) Docket No | Operator Name: | | 11/9/05 11/10/05 11/17/05 | Lease Name: License No.: | | Spud Date or Date Reached TD Completion Date or | Quarter Sec. Twp. S. R. East West | | Recompletion Date Recompletion Date | County: Docket No.: | | | | | Kansas 67202, within 120 days of the spud date, recompletion, wo Information of side two of this form will be held confidential for a period | d with the Kansas Corporation Commission, 130 S. Market - Room 2078, Wichita, orkover or conversion of a well. Rule 82-3-130, 82-3-106 and 82-3-107 apply. d of 12 months if requested in writing and submitted with the form (see rule 82-3-109 and geologist well report shall be attached with this form. ALL CEMENTING wells. Submit CP-111 form with all temporarily abandoned wells. | | All requirements of the statutes, rules and regulations promulgated to rherein are complete and correct to the best of my knowledge. | egulate the oil and gas industry have been fully complied with and the statements | | Signature: / in / émms | KCC Office Use ONLY | | Title: Head of Operations Date: 4/8/06 | Letter of Confidentiality Received | | Subscribed and sworn to before me this Sth day of | If Denied, Yes Date: | | 20 (00) | Wireline Log Received | | | Geologist Report Beceived TATION COMMISSION | | Notary Public: Limber A. Cimmoun | UIC Distribution APR 1 3 2006 | | Date Commission Expires: July 30, 2009 | JENNIFER AMMANN | | V V → | JENNIFER AMMANN Notary Public - State of Kansas Appl. Expires Ch. Ch. 200 200 WICHITA, KS | | Operator Name: Que | est Cherokee, LL | .C | | Lease I | Name: E | 3rant, Jerry \ | W | Well #: _31-1 | <u> </u> | |--|--|--|--|------------------------------|------------|---|---|---|---| | | 28 S. R. 18 | | West | County: | Neosl | no | | | | | INSTRUCTIONS: Si
tested, time tool ope
temperature, fluid red
Electric Wireline Log | n and closed, flowin
covery, and flow rate | g and shutes if gas to | in pressures, surface test, a | whether sho
long with fir | ut-in pre | ssure reached | static level, hydr | ostatic pressure | es, bottom hole | | Drill Stem Tests Take | | Ye | es √ No | | √ L | og Format | tion (Top), Depth | | Sample | | Samples Sent to Ge | ological Survey | ☐ Ye | es 🗹 No | | Nam
See | e
attached | | Тор | Datum | | Cores Taken Electric Log Run (Submit Copy) | | ☐ Ye | _ | | | | | | | | List All E. Logs Run: | | | | | | | | | | | Comp. Density
Dual Induction
Gamma Ray/N | Log | | | | | | | | | | | | Repo | | RECORD | Ne | ew Used
ermediate, produ | ction. etc. | | | | Purpose of String | Size Hole
Drilled | Siz | e Casing
t (In O.D.) | Weig | jht | Setting
Depth | Type of
Cement | # Sacks
Used | Type and Percent
Additives | | Surface | 11" | 8-5/8" | (0.5.) | 20# | | 21.3 | "A" | 6 | Additives | | Production | 6-3/4" | 4-1/2" | | 10.5# | | 1107 | "A" | 140 | | | | | | | | | | | | | | | | 1 | ADDITIONAL | CEMENTIN | IG / SQL | JEEZE RECOR | D | | | | Purpose: Perforate Protect Casing Plug Back TD Plug Off Zone | Depth
Top Bottom | Туре | of Cement | #Sacks | Used | | Type and | Percent Additives | | | | | | | | | | | | | | Shots Per Foot | O " | | RD - Bridge Plug
Each Interval Per | | | | acture, Shot, Ceme
Amount and Kind of N | • | rd Depth | | Shots Per Foot | O " | Footage of E | Each Interval Per | forated | I-1056 | (4 | | flaterial Used) | Depth | | _ | Specify | Footage of E | Each Interval Per | forated | I-1056 | 400gai 15%HCLw/ 40 bb | Amount and Kind of N | <i>flaterial Used)</i>
erw/2% KCL, Biocide, 12222 | Depth 649-653/662-66 | | _ | Specify | Footage of E | Each Interval Per | forated | I-1056 | 400gai 15%HCLw/ 40 bb | Amount and Kind of M | <i>flaterial Used)</i>
erw/2% KCL, Biocide, 12222 | Depth 649-653/662-66 | | | Specify | Footage of E | Each Interval Per | forated | I-1056 | 400gal 15%HCLw/ 40 bb | Amount and Kind of M | Aaterial Used)
erw/2% KCL, Blocide, 12222
s 2%kcl, blocide, 12100# | Depth 649-653/662-66 20/40 sand 794-796/754-75 732-734 | | 4 | Specify 649-653/662-667 | Footage of I | Each Interval Per | forated | | 400gal 15%HCL w/ 2 400gal
15%HCL w/ 2 400gal 15% ecid w/ 55 | Amount and Kind of Moles Sikkd water, 668bble slick water, 668bble slick water, 638bbl | Aaterial Used)
erw/2% KCL, Blocide, 12222
s 2%kcl, blocide, 12100# | Depth 649-653/662-66 20/40 sand 794-796/754-75 732-734 | | TUBING RECORD | Specify | Footage of E | Each Interval Per | forated | | 400gal 15%HCLw/ 40 bb | Amount and Kind of Moles Sikkd water, 668bble slick water, 668bble slick water, 638bbl | Material Used) er w/2% KCL, Biocide, 12222 s 2%kcl, biocide, 12100# | Depth 649-653/662-66 20/40 sand 794-796/754-75 732-734 | | TUBING RECORD 2- | Specify 649-653/662-667 | Footage of It
7/732-734/
Set At
1064.92 | Each Interval Per | Facker Al | | 400gal 15%HCL w/ 2 400gal 15%HCL w/ 2 400gal 15% acid w/ 55 Liner Run | Amount and Kind of Moles 2%kd water, 668bbla slick water, 668bbla slick water, 538bbl 26 bbls 29kkd water, 538bbl 6bbls 29kkd water, 300bbls, n | Material Used) ier w/ 2% KCL, Blocide, 12222 s 2%kcl, blocide, 12100# o gel, 2%kcl, blocide, 52skc | Depth 649-653/662-66 20/40 sand 794-796/754-75 732-734 | | TUBING RECORD 2- Date of First, Resumer | Specify 649-653/662-667 Size 3/8" rd Production, SWD or I | Footage of It
7/732-734/
Set At
1064.92 | Each Interval Per 754-757/794 Producing Meti | Facker Al | t Flowing | 400gal 15%HCL w/ 2 400gal 15%HCL w/ 2 400gal 15% ecid w/ 55 Liner Run | Amount and Kind of Males 2%kd water, 668bbls slick water, 658bbls slick water, 538bbl sbbls 2%kd water, 538bbl sbbls 2%kd water, 300bbls, n | Material Used) ier w/ 2% KCL, Blocide, 12222 s 2%kcl, blocide, 12100# o gel, 2%kcl, blocide, 52skc | Depth 649-653/662-66 20/40 sand 794-796/754-75 732-734 s 20/40 sand 1051-1056 | | TUBING RECORD 2- Date of First, Resumer 3/15/06 Estimated Production | Specify 649-653/662-667 Size 3/8" rd Production, SWD or l | Set At 1064.92 Enhr. | Each Interval Per 754-757/794 Producing Meti Gas 19mcf | Packer At | t Flowing | 400gal 15%HCL w/ 2 400gal 15%HCL w/ 2 400gal 15% ecid w/ 55 Liner Run | Amount and Kind of Modes 2%kd water, 698bbls slick water, 698bbls 2%kd water, 538bbl 5bbls 2%kd water, 300bbls, n | Material Used) er w/ 2% KCL, Blocide, 12222 s 2%kcl, blocide, 12100# o gel, 2%kcl, blocide, 52skc o ifft Othe Gas-Oil Ratio | Depth 649-653/662-66 20/40 sand 794-796/754-75 732-734 1051-1056 | CONSERVATION DIVISION WICHITA, KS | | Α | В | С | D | Е | F | G | Н | 1 | | K | |--|--|---|---|--|--|--|--|--|---|---|-----------------| | 1 | Produced Fluids # | Б | 1 | 2 | 3 | 4 | 5 | 11 | • | <u> </u> | | | | Parameters | Units | Input | Input | Input | Input | Input | | Click he | re | Click | | 3 | Select the brines | Select fluid | | Ī | V | | Ī | Mixed brine: | to run SS | - | | | 4 | Sample ID | by checking | | | | | | Cell H28 is | to ruii oc | | Click | | 5 | Date | the box(es), | 3/19/2012 | 3/4/2012 | 3/14/2012 | 1/20/2012 | 1/20/2012 | STP calc. pH. | — | | | | 6 | Operator | Row 3 | PostRock | PostRock | PostRock | PostRock | PostRock | Cells H35-38 | | | Click | | 7 | Well Name | | Ward Feed | Ward Feed | Clinesmith | Clinesmith | Clinesmith | are used in | Goal Seek | SSP | | | 8 | Location | | #34-1 | #4-1 | #5-4 | #1 | #2 | mixed brines | | | Click | | 9 | Field | | CBM | CBM | Bartles | Bartles | Bartles | calculations. | | | | | 10 | Na ⁺ | (mg/l)* | 19,433.00 | 27,381.00 | 26,534.00 | 25689.00 | 24220.00 | 24654.20 | Initial(BH) | Final(WH) | SI/SR | | 11 | K ⁺ (if not known =0) | (mg/l) | | | | | | 0.00 | Saturation Index | values | (Final-Initial) | | | Mg ²⁺ | (mg/l) | 1,096.00 | 872.00 | 1,200.00 | 953.00 | 858.00 | 995.91 | | lcite | | | | Ca ²⁺ | (mg/l) | 1,836.00 | 2,452.00 | 2,044.00 | 1920.00 | 1948.00 | 2040.23 | -0.73 | -0.60 | 0.13 | | | Sr ²⁺ | | 1,050.00 | 2,432.00 | 2,044.00 | 1720.00 | 1740.00 | | | | 0.13 | | | Ba ²⁺ | (mg/l) | | | | | | 0.00 | Da | rite | | | ., | | (mg/l) | | | | | | 0.00 | | | | | | Fe ²⁺ | (mg/l) | 40.00 | 21.00 | 18.00 | 82.00 | 90.00 | 50.21 | | lite | | | | Zn ²⁺ | (mg/l) | | | | | | 0.00 | -1.77 | -1.80 | -0.03 | | 18 | Pb ²⁺ | (mg/l) | | | | | | 0.00 | Gyp | sum | | | 19 | Cl | (mg/l) | 36,299.00 | 48,965.00 | 47,874.00 | 45632.00 | 43147.00 | 44388.44 | -3.19 | -3.18 | 0.00 | | 20 | SO ₄ ² · | (mg/l) | 1.00 | 1.00 | 8.00 | 1.00 | 1.00 | 2.40 | Hemil | ydrate | | | | F. | (mg/l) | | | | | | 0.00 | -3.96 | -3.90 | 0.06 | | | Br ⁻ | (mg/l) | | | | | | 0.00 | | ydrite | 3.00 | | | SiO2 | (mg/l) SiO2 | | | | | | 0.00 | -3.47 | -3.36 | 0.12 | | _ | | | 100.00 | 224.00 | 250.00 | 200 00 | 254.00 | | | | 0.12 | | | HCO3 Alkalinity** | (mg/l as HCO3) | 190.00 | 234.00 | 259.00 | 268.00 | 254.00 | 241.03 | Cele | estite | | | | CO3 Alkalinity | (mg/l as CO3) | | | | | | _ | | | | | | Carboxylic acids** | (mg/l) | | | | | | 0.00 | | Sulfide | | | 27 | Ammonia | (mg/L) NH3 | | | | | | 0.00 | -0.16 | -0.22 | -0.06 | | 28 | Borate | (mg/L) H3BO3 | | | | | | 0.00 | Zinc | Sulfide | | | 29 | TDS (Measured) | (mg/l) | | | | | | 72781 | | | | | 30 | Calc. Density (STP) | (g/ml) | 1.038 | 1.051 | 1.050 | 1.048 | 1.045 | 1.047 | Calcium | fluoride | | | 31 | CO ₂ Gas Analysis | (%) | 19.97 | 18.76 | 22.41 | 35.53 | 33.79 | 26.16 | | | | | | H ₂ S Gas Analysis*** | (%) | 0.0289 | 0.0292 | 0.0296 | 0.0306 | 0.0151 | 0.0269 | | rbonate | | | 33 | Total H2Saq | (mgH2S/l) | 1.00 | 1.00 | 1.00 | 1.00 | 0.50 | 0.90 | -0.74 | -0.51 | 0.23 | | 34 | pH, measured (STP) | pН | 5.67 | 5.76 | 5.72 | 5.54 | 5.55 | 5.63 | Inhibitor ne | eded (mg/L) | | | | Chassa and antion | 0-CO2%+Alk, | | | | | | | Calcite | NTMP | | | 35 | Choose one option to calculate SI? | | 0 | 0 | 0 | 0 | | | | | | | | Gas/day(thousand cf/day) | (Mcf/D) | | | | | U | 0 | 0.00 | 0.00 | | | | Oil/Day | (B/D) | 0 | 0 | 1 | 1 | 1 | 4 | Barite | BHPMP | - | | | Water/Day | (B/D) | 100 | 100 | 100 | 100 | 100 | 500 | 0.00 | 0.00 | | | 39 | For mixed brines, enter val | | | | | | | | | | | | - | | lues for tempera | tures and pressi | <u>ires in Cells</u> (H | (40-H43) | | | (Enter H40-H43) | p | Н | | | 41 | Initial T | (F) | 66.0 | 71.0 | 70.0 | 41.0 | 49.0 | 60.0 | 5.69 | 5.60 | | | | Final T | | 66.0
66.0 | 71.0
71.0 | 70.0
70.0 | 41.0 | 49.0 | 60.0
89.0 | 5.69
Viscosity (| 5.60
CentiPoise) | | | | | (F) | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0 | 5.69
Viscosity (
1.196 | 5.60
CentiPoise)
0.826 | | | 42
43 | Final T
Initial P
Final P | (F)
(F)
(psia)
(psia) | 66.0
66.0 | 71.0
71.0 | 70.0
70.0 | 41.0 | 49.0 | 60.0
89.0 | 5.69
Viscosity (
1.196
Heat Capaci | 5.60
CentiPoise)
0.826
ty (cal/ml/ ⁰ C) | | | 42
43
44 | Final T Initial P Final P Use TP on Calcite sheet? | (F)
(F)
(psia)
(psia)
1-Yes;0-No |
66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69
Viscosity (
1.196
Heat Capaci
0.955 | 5.60
CentiPoise)
0.826
ty (cal/ml/ ⁰ C)
0.959 | | | 42
43
44
45 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. | (F) (F) (psia) (psia) 1-Yes;0-No API grav. | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no | 5.60
CentiPoise)
0.826
ty (cal/ml/ ⁰ C)
0.959
eeded (mg/L) | | | 42
43
44
45
46 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. | (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne | 5.60
CentiPoise)
0.826
ty (cal/ml/ ⁰ C)
0.959
seded (mg/L)
HDTMP | | | 42
43
44
45
46
47 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. McOH/Day | (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00 | | | 42
43
44
45
46
47
48 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day | (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne | 5.60
CentiPoise)
0.826
ty (cal/ml/ ⁰ C)
0.959
seded (mg/L)
HDTMP | | | 42
43
44
45
46
47
48
49 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH' (Strong base) † | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH* (Strong base) † Quality Control Checks at | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH (Strong base) † Quality Control Checks at H ₂ S Gas | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/l) (pH) | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH* (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) (N) STP: (%) (mgH2S/I) (pH) (%) | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated Alkalinity Caclulated | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated \$\textstyle{\textstyle{\textstyle{2}}}\$ | (F) (F) (psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated Alkalinity Caclulated | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated Scations= \$\times\$ | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/l) as HCO3 (equiv./l) (equiv./l) | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | |
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated ECations= ECations= CAlci TDS= | (F) (F) (psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) | 66.0
66.0
25.0
25.0 | 71.0
71.0
25.0
25.0 | 70.0
70.0
25.0
25.0
Inhibitor
NTMP | 41.0 25.0 25.0 Unit Converter | 49.0
25.0
25.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH* (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated \$\text{\$\cupe{C}\$}\te | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input | 66.0
66.0
25.0
25.0
0
0 | 71.0
71.0
25.0
25.0 | 70.0
70.0
25.0
25.0 | 41.0 25.0 25.0 Unit Converter From Unit | 49.0
25.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH' (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated ECations= EAnions= Calc TDS= Inhibitor Selection Protection Time | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input | 66.0
66.0
25.0
25.0
0
0 | 71.0
71.0
25.0
25.0 | 70.0
70.0
25.0
25.0
Inhibitor
NTMP | 41.0 25.0 25.0 Unit Converter | 49.0
25.0
25.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
60
61
62
63 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated \$\textit{Z}\text{calculated}\$ Lations= \$\text{Lations=}\$ Lanions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer | (F) (F) (psia) (psia) (psia) 1-Yes:0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (equiv./I) Input 120 | 66.0
66.0
25.0
25.0
0
0 | 71.0
71.0
25.0
25.0
4
1
1
2 | 70.0
70.0
25.0
25.0
25.0
Inhibitor
NTMP
BHPMP | 41.0 25.0 25.0 Unit Converter From Unit | 49.0
25.0
25.0
25.0
(From metric
Value
80 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated 2Cations= \$\times\$ \text{Lanions}\$ Lanions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? | (F) (F) (psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (equiv./I) (mg/I) Input 120 | 66.0
66.0
25.0
25.0
0
0
0 | # 1 2 3 | Inhibitor NTMP BHPMP PAA | 41.0 25.0 25.0 Unit Converter From Unit °C m³ | 49.0
25.0
25.0
25.0
(From metric
Value
80
100 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid)* OH* (Strong base)* Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated Alkalinity Caclulated EXATIONS= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: | (F) (F) (psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (equiv./I) (mg/I) Input 120 | 66.0
66.0
25.0
25.0
0
0
0 | 71.0
71.0
25.0
25.0
1
1
1
2
3
4 | Inhibitor NTMP BHPMP PAA DTPMP | Unit Converter From Unit °C m³ m³ | 49.0
25.0
25.0
25.0
(From metric
Value
80
100
100 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
60
61
62
63
64
65
66 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated Alkalinity Caclulated Alkalinity Caclulated Alkalinity Caclulated PCO2 Calculated FOCO FOCO Calculated Alkalinity Caclulated FOCO Calculated Alkalinity Caclulated FOCO Calculated Cal | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (mg/I) Input 120 1 4 | 0 0 0 Unit min 1-Yes;0-No # | ## 1 2 3 4 5 5 | Inhibitor NTMP BHPMP PAA DTPMP PPCA | Unit Converter From Unit °C m³ m³ MPa | 49.0
25.0
25.0
25.0
(From metric
Value
80
100
1,000 | 60.0
89.0
25.0
120.0
30.00
0.60
0
0
To Unit
°F
ft³
bbl(42 US gal)
psia | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 145,074 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
60
61
62
63
64
65
66
67 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH
(Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated SCations= ZAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: If you select Mixed, 1st inhibitor # is: | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (mg/I) Input 120 1 4 | 0 0 0 Unit min 1-Yes;0-No # | ## 1 2 3 4 5 6 | Inhibitor NTMP BHPMP PAA DTPMP PPCA SPA | Unit Converter From Unit C m 3 m 3 MPa Bar | 49.0
25.0
25.0
25.0
(From metric
Value
80
100
1,000
496 | 60.0
89.0
25.0
120.0
30.00
0.60
0
0
To Unit
"F
ft ³
bbl(42 US gal)
psia | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 145,074 7,194 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
44
45
46
47
48
49
50
51
52
53
54
55
56
60
61
62
63
64
65
66
67
68
69 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated ECations= EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: If you select Mixed, 1st inhibitor # is: % of 1st inhibitor is: | (F) (F) (psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/l) as HCO3 (equiv./l) (equiv./l) (mg/l) Input 120 1 4 1 50 | 0 0 0 0 Unit min 1-Yes;0-No # # % | ## 1 2 3 4 4 5 6 6 7 | Inhibitor NTMP BHPMP PAA DTPMP PPCA SPA HEDP | Unit Converter From Unit °C m³ m³ MPa Bar Torr | 49.0
25.0
25.0
25.0
25.0
Value
80
100
1,000
496
10,000 | 60.0 89.0 25.0 120.0 30.00 0.60 0 0 To Unit °F ft³ bbl(42 US gal) psia psia psia | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 145,074 7,194 193 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | #### **Saturation Index Calculations** Champion Technologies, Inc. (Based on the Tomson-Oddo Model) Brine 1: Ward Feed Yard 34-1 Brine 2: Ward Feed Yard 4-1 Brine 3: Clinesmith 5-4 Brine 4: Clinesmith 1 Brine 5: Clinesmith 2 | | | | Ratio | | | | |--------------------------|---------|---------|---------|---------|---------|-------------| | | 20% | 20% | 20% | 20% | 20 | | | Component (mg/L) | Brine 1 | Brine 2 | Brine 3 | Brine 4 | Brine 5 | Mixed Brine | | Calcium | 1836 | 2452 | 2044 | 1920 | 1948 | 1952 | | Magnesium | 1096 | 872 | 1200 | 953 | 858 | 865 | | Barium | 0 | 0 | 0 | 0 | 0 | 0 | | Strontium | 0 | 0 | 0 | 0 | 0 | 0 | | Bicarbonate | 190 | 234 | 259 | 268 | 254 | 253 | | Sulfate | 1 | 1 | 8 | 1 | 1 | 1 | | Chloride | 36299 | 48965 | 47874 | 45632 | 43147 | 43206 | | CO ₂ in Brine | 246 | 220 | 264 | 422 | 405 | 401 | | Ionic Strength | 1.12 | 1.48 | 1.46 | 1.38 | 1.31 | 1.31 | | Temperature (°F) | 89 | 89 | 89 | 89 | 89 | 89 | | Pressure (psia) | 50 | 50 | 120 | 120 | 120 | 119 | #### **Saturation Index** | Calcite | -1.71 | -1.41 | -1.48 | -1.68 | -1.69 | -1.69 | |-------------|-------|-------|-------|-------|-------|-------| | Gypsum | -3.71 | -3.64 | -2.82 | -3.73 | -3.72 | -3.69 | | Hemihydrate | -3.70 | -3.65 | -2.83 | -3.74 | -3.71 | -3.69 | | Anhydrite | -3.89 | -3.79 | -2.97 | -3.89 | -3.88 | -3.85 | | Barite | N/A | N/A | N/A | N/A | N/A | N/A | | Celestite | N/A | N/A | N/A | N/A | N/A | N/A | #### PTB | Calcite | N/A | N/A | N/A | N/A | N/A | N/A | |-------------|-----|-----|-----|-----|-----|-----| | Gypsum | N/A | N/A | N/A | N/A | N/A | N/A | | Hemihydrate | N/A | N/A | N/A | N/A | N/A | N/A | | Anhydrite | N/A | N/A | N/A | N/A | N/A | N/A | | Barite | N/A | N/A | N/A | N/A | N/A | N/A | | Celestite | N/A | N/A | N/A | N/A | N/A | N/A | #### **POSTROCK** ## **Current Completion** WELL : Brant, Jerry W 31-1 : Cherokee Basin STATE : Kansas COUNTY : Neosho PREPARED BY: POSTROCK APPROVED BY: _ **FIELD** SPUD DATE: 11/9/2005 COMP. Date: 11/17/2005 API: 15-133-26324-00-00 **LOCATION: 31-28S-18E (NE, NW)** **ELEVATION: GL - 973'** **DATE:** July, 2012 DATE:_ # **POSTROCK** #### **LEGEND** ## PostRock[®] # BEFORE THE STATE CORPORATION COMMISSION OF THE STATE OF KANSAS NOTICE OF FILING APPLICATION RE: In the Matter of Postrock Midcontinent Production, LLC Application for Commingling of Production in the Brant, Jerry W 31-1 located in Neosho County, Kansas TO: All Oil & Gas Producers, Unleased Mineral Interest Owners, Landowners, and all persons whomever concerned. You, and each of you, are hereby notified that Postrock Midcontinent Production, LLC has filed an application to commingle the Riverton, Fleming, Croweburg, Bevier, Mulky, Summit and Tucker producing formations at the Brant, Jerry W 31-1, located in the SW NE NE, NW, S31-T285-R18E, Approximately 564 FNL & 2027 FWL, Neosho County, Kansas. Any persons who object to or protest this application shall be required to file their objections or protest with the Conservation Division of the State Corporation Commission of the State of Kansas within fifteen (15) days from the date of this publication. These protests shall be filed pursuant to Commission regulations and must state specific reasons why granting the application may cause waste, violate correlative rights or pollute the natural resources of the State of Kansas. All persons interested or concerned shall take notice of the foregoing and shall govern themselves accordingly. All person and/or companies wishing to protest this application are required to file a written protest with the Conservation Division of the Kansas Oil and Gas Commission. Upon the receipt of any protest, the Commission will convene a hearing and protestants will be expected to enter an appearance either through proper legal counsel or as individuals, appearing on their own behalf. Postrock Midcontinent Production, LLC 210 Park Avenue, Suite 2750 Oklahoma City, Oklahoma 73102 (405) 660-7704 A COPY OF THE AFFIDAVIT OF PUBLICATION MUST ACCOM-PANY ALL APPLICATIONS # Affidavit of Publication 🐝 STATE OF KANSAS, NEOSHO COUNTY, ss: *Rhonda Howerter*, being first duly sworn, deposes and says: That *she* is *Classified Manager* of *THE CHANUTE TRIBUNE*, a daily newspaper printed in the State of Kansas, and published in and of general circulation in Neosho County, Kansas, with a general paid circulation on a daily basis in Neosho County, Kansas, and that said newspaper is not a trade, religious or fraternal publication. Said newspaper is a daily published at least weekly 50 times a year: has been so published continuously and uninterruptedly in said county and state for a period of more than five years prior to the first publication of said notice; and has been admitted at the post office of Chanute, in said county as second class matter. | That the attached notice is a true copy thereof published in the regular and entire issue of said per for consentive, the first puthereof being made as aforesaid on the | newspa-
ablication
day of | |--|---------------------------------| | , 2012 | , 2012 | | , 2012 | , 2012 | | Rhonda Hower | le- | | Subscribed and sworn to and before me this | Jotaly Public | | My commission expires: January 9, 2015 Printer's Fee | | #### **AFFIDAVIT** STATE OF KANSAS SS. County of Sedgwick Mark Fletchall, of lawful age, being first duly sworn, deposeth and saith: That he is Record Clerk of The Wichita Eagle, a daily newspaper published in the City of Wichita, County of Sedgwick, State of Kansas, and having a general paid circulation on a daily basis in said County, which said newspaper has been continuously and uninterruptedly published in said County for more than one year prior to the first publication of the notice hereinafter mentioned, and which said newspaper has been entered as second class mail matter at the United States Post Office in Wichita, Kansas, and which said newspaper is not a trade, religious or fraternal publication and that a notice of a true copy is hereto attached was published in the regular and entire Morning issue of said The Wichita Eagle for _1_ issues - weeks, that the first publication of said notice was made as aforesaid on the 20th of July A.D. 2012, with subsequent publications being made on the following dates: And affiant further says that he has personal knowledge of the statements above set forth and that they are true. Fletchall Subscribed and sworn to before me this 20th day of July, 2012 LEGAL PUBLICATION PUBLISHED IN THE WICHITA EAGLE JULY 20, 2012 (3197125) BEFORE THE STATE CORPORATION COMMISSION OF THE STATE OF KANSAS NOTICE OF FILING APPLICATION RE: In the Matter of Postrock Midcontinent Production, LLC Application for Commingling of Production in the Brant, Jerry W 31-1 located in Neosho County, Kansas. Commingling of Production in the Brant, Jerry W 31-1 located in Neosho County, Kansas. TO: All Oil & Gas Producers, Unleased Mineral Interest Owners, Landowners, and all persons whomever concerned. You, and each of you, are hereby notified that Postrock Midconfinent Production, LLC has filed an application to commingle the Riverton, Fleming, Croweburg, Bevier, Mulky, Summit and Tucker producting formations at the Brant, Jerry W 31-1, located in the SW NE NE NW, S31-1285-R18E, Approximately. 564 FNL & 2027 FWL, Neosho County, Kansas. Any persons who object to or profest this application shall be required to file their objections or profest with fine Conservation Division of the State Corporation Commission of the State of
Kansas within filteen (15) days from the date of this publication. These profests shall be filed pursuant to Commission regulations and must state specific reasons why granting the application may cause waste, violate correlative rights or pollute the natural resources of the State of Kansas. All persons interested or concerned shall take notice of the foregoing and shall All persons interested or concerned shall take notice of the foregoing and shall govern themselves accordingly. All person govern menseves accountry. All person and/or companies wishing to protest this application are required to file a written protest with the Conservation Division of the Kansas Oil and Gas Commission. The Kansas Ull and Gas Commission. Upon the receipt of any profest, the Commission will convene a hearing and profestants will be expected to enter an appearance either through proper legal counsel or as individuals, appearing on their own behalf Postrock Midcontinent Production, LLC 210 Park Avenue, Sulfe 2750 Oklahoma City, Oklahoma 73102 (405) 660-7704 A COPY OF THE AFFIDAVIT OF PUBLICATION MUST ACCOMPANY ALL APPLICATIONS Notary Public Sedgwick County, Kansas Printers Fee: \$139.60 #### BRANT, JERRY W 31-1 | 1 NAME & UPPE | | (DEDEC) | 4054 | 4056 | | | | |--|--------------------------------------|---|------------|--|----------|---|-----------| | FORMATION: | RIVERTON | (PERFS): | 1051 - | | | | | | FORMATION: | TUCKER | (PERFS): | 974 - | 978 | | | | | FORMATION: | | (PERFS): | | · | | | | | FORMATION: | | (PERFS): | | | | | | | FORMATION: | | (PERFS): | | | | | | | FORMATION: | | (PERFS): | | | | | | | FORMATION: | | (PERFS): | | · | | | | | FORMATION: | | (PERFS): | | · | | | | | FORMATION: | | (PERFS): | | · | | | | | FORMATION: | | (PERFS): | - | | | | | | FORMATION: | | (PERFS): | - | | | | | | 1 01(11), (11014. | | | | | | | | | FORMATION: | | (PERFS): | | · | | | | | FORMATION: | MOUNT OF FLUID PRODUCTION TO B | _ | I EACH INT | ERVAL MCFPD: | 8.5 | BWPD: | 8.5 | | FORMATION:
2 ESTIMATED AI | | E COMMINGLED FRON | | | 8.5
0 | BWPD:
BWPD: | 8.5
20 | | FORMATION: 2 ESTIMATED AI FORMATION: | RIVERTON | E COMMINGLED FROM
BOPD: | 0 | MCFPD: | | | | | FORMATION: 2 ESTIMATED AI FORMATION: | RIVERTON
TUCKER | E COMMINGLED FRON
BOPD:
BOPD: | 0 | MCFPD: | | BWPD: | | | FORMATION: 2 ESTIMATED AI FORMATION: FORMATION: | RIVERTON TUCKER 0 | E COMMINGLED FROM BOPD: BOPD: BOPD: | 0 | MCFPD: | | BWPD:
BWPD: | | | FORMATION: 2 ESTIMATED AI FORMATION: FORMATION: FORMATION: | TUCKER 0 0 | E COMMINGLED FROM BOPD: BOPD: BOPD: BOPD: BOPD: | 0 | MCFPD: | | BWPD:
BWPD:
BWPD: | | | FORMATION: 2 ESTIMATED AI FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: | RIVERTON TUCKER 0 0 0 | BOPD: BOPD: BOPD: BOPD: BOPD: BOPD: | 0 | MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: | | BWPD:
BWPD:
BWPD: | | | FORMATION: 2 ESTIMATED AI FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: | RIVERTON TUCKER 0 0 0 0 | BOPD: BOPD: BOPD: BOPD: BOPD: BOPD: BOPD: BOPD: BOPD: | 0 | MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: | | BWPD:
BWPD:
BWPD:
BWPD: | | | FORMATION: 2 ESTIMATED AI FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: | RIVERTON TUCKER 0 0 0 0 0 0 | BOPD: | 0 | MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: | | BWPD: BWPD: BWPD: BWPD: BWPD: | | | FORMATION: 2 ESTIMATED AI FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: | RIVERTON TUCKER 0 0 0 0 0 0 0 | BOPD: | 0 | MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: | | BWPD: BWPD: BWPD: BWPD: BWPD: BWPD: | | | FORMATION: 2 ESTIMATED AI FORMATION: | RIVERTON TUCKER 0 0 0 0 0 0 0 0 0 0 | BOPD: | 0 | MCFPD: | | BWPD: BWPD: BWPD: BWPD: BWPD: BWPD: BWPD: | | | Affide | avit of Notice Served | | |----------|--|---| | Re: | | NGLING OF PRODUCTION OR FLUIDS ACO-4 | | | Well Name: BRANT, JERRY W 31-1 | Legal Location: SWNENENW S31-T28S-R18E | | The un | ndersigned hereby certificates that he / she is a duly authorized | . 4 6 | | 2012 | _ | erenced above was delivered or mailed to the following parties: | | | , a the and contest copy of the approximation | PERIORS ADDITION WAS ACTIVATION OF THEMSELVE TO THE PARENTS PROPERTY. | | Vote: ≠ | A copy of this affidavit must be served as a part of the applicat | dion. | | | Name | Address (Attach additional sheets if necessary) | | BR/ | ANT FAMILY TRUST | 2840 HWY 47, THAYER, KS 66776 | • | | | | | | | | | | | | | | | • | | | | | | | | | | | - 17- n. | and the state of t | THE CHANITE TRIBLINE | | | r attest that notice of the filing of this application was published | | | of NE | EOSHO | county. A copy of the affidavit of this publication is attached. | | | this Jyth day of AUGUST | 2012 | | Signed t | his day of AUGUOT | | | | | PhlEll | | | | Applicant or Duly Authorized Agent | | | Subscribed and sv | worn to before me this 24th day of AUGUST , 2012 | | | | | | | JENNIFER R. BEAL | Climber of Deal | | | OFFICIAL MY COMMISSION EXPIRES | Notary Public & Real Notary Public & Auto 201 2011 | | | 7-20-3010 | My Commission Expires: | | | | 0 0 | #### BRANT, JERRY W 31-1-APPLICATION FOR COMMINGLING OF PRODUCTION OR FLUIDS | Offset Operators, Unlea | sed Mineral Owners and Landow | vners acreage | | | |-------------------------------|--|---
--|------------| | (Attach additional sheets if | | · | | | | | Name: | | Legal Description of Leasehold: | | | SEE ATTACHED | | | | | | | | | | | | | | <u> </u> | · | <u></u> | hereby certify that the state | ements made herein are true and cor | rrect to the best of my knowledge an | d belief. | | | | | | | | | | | Chl | EU | | | | | Applicant or Duly Author | ized Agent | | | | | d and sworn before me this _ <i>2</i> 4 | M. AUGUST | 2012 | | | Subscribe | d and sworn before me this | day of 7.00001 | | | i. | | | | | | | | | The state of s | | | SEARY PARKS | IEMMICEO DI DEMI | Notary Pithlid | fu & Qal | | | OFFICIAL | JENNIFER R. BEAL | Notary Pytolic | fe & Seal | | | OFFICIAL
SEAL | MY COMMISSION EXPIRES | Notary Public My Commission Expires | fu & Qual
July 50, 201 | 16 | | OFFICIAL
SEAL. | JENNIFER R. BEAL
MY COMMISSION EXPIRES
7-20-2010 | | fu R Beal
July 50, 201 | 10 | | OFFICIAL SEAL | MY COMMISSION EXPIRES | | fu & Quely 30, 201 | 6 | | OFFICIAL SEAL. | MY COMMISSION EXPIRES | | fu of Qual
July 50, 501 | | | SEAL | MY COMMISSION EXPIRES | | fu & Qual
July 50, 501 | <i>'\O</i> | | OFFICIAL | MY COMMISSION EXPIRES | | fu & Qual
Guly 50, 201 | 16 | | OFFICIAL SEAL | MY COMMISSION EXPIRES | | fu & Quely 50, 501 | <i>'\D</i> | | OFFICIAL SEAL. | MY COMMISSION EXPIRES | | fu & Qual
Guly 30, 301 | · L | | OFFICIAL SEAL. | MY COMMISSION EXPIRES | | fu & Quely 50, 501 | · LO | | SEAL | MY COMMISSION EXPIRES | | | | | SEAL | MY COMMISSION EXPIRES | | | | | OFFICIAL | MY COMMISSION EXPIRES | | | | | OFFICIAL SEAL | MY COMMISSION EXPIRES | | | | | OFFICIAL SEAL | MY COMMISSION EXPIRES | | | | | OFFICIAL SEAL. | MY COMMISSION EXPIRES | | | | | OFFICIAL | MY COMMISSION EXPIRES 7-20-2016 | | | | | OFFICIAL | MY COMMISSION EXPIRES | | | | | SEAL | MY COMMISSION EXPIRES 7-20-2016 | | | | | OFFICIAL SEAL | MY COMMISSION EXPIRES 7-20-2016 | | | | | OFFICIAL SEAL. | MY COMMISSION EXPIRES 7-20-2016 | | | | | OFFICIAL SEAL. | MY COMMISSION EXPIRES 7-20-2016 | | | | | OFFICIAL SEAL. | MY COMMISSION EXPIRES 7-20-2016 | | | | | OFFICIAL SEAL. | MY COMMISSION EXPIRES 7-20-2016 | | | | | OFFICIAL | MY COMMISSION EXPIRES 7-20-2016 | | | | | SEAL | MY COMMISSION EXPIRES 7-20-2016 | | | | | OFFICIAL SEAL. | MY COMMISSION EXPIRES 7-20-2016 | | | | #### BRANT, JERRY W 31-1 ## 31-28S-18E NE4 **BRANT FAMILY TRUST** 2840 HWY 47 THAYER, KS 66776 Conservation Division Finney State Office Building 130 S. Market, Rm. 2078 Wichita, KS 67202-3802 Phone: 316-337-6200 Fax: 316-337-6211 http://kcc.ks.gov/ Mark Sievers, Chairman Thomas E. Wright, Commissioner Sam Brownback, Governor September 11, 2012 Clark Edwards PostRock Midcontinent Production LLC Oklahoma Tower 210 Park Ave, Ste 2750 Oklahoma City, OK 73102 RE: Approved Commingling CO081228 Brant, Jerry W. 31-1, Sec. 31-T28S-R18E, Neosho County API No. 15-133-26324-00-00 Dear Mr. Edwards: Your Application for Commingling (ACO-4) for the above described well, received by the KCC on August 27, 2012, has been reviewed and approved by the Kansas Corporation Commission (KCC) per K.A.R. 82-3-123. Notice was examined and found to be proper per K.A.R. 82-3-135a. No protest had been filed within the 15-day protest period. Based upon the depth of the Riverton formation perforations, total oil production shall not exceed 100 BOPD and total gas production shall not exceed 50% of the absolute open flow (AOF). #### File form ACO-1 upon re-completion of the well to commingle. Commingling ID number CO081228 has been assigned to this approved application. Use this number for well completion reports (ACO-1) and other correspondence that may concern this approved commingling. Sincerely, Rick Hestermann Production Department