KANSAS CORPORATION COMMISSION OIL & GAS CONSERVATION DIVISION 1086604 Form ACO-4 Form must be typed March 2009 # APPLICATION FOR COMMINGLING OF Commingling ID # _ PRODUCTION (K.A.R. 82-3-123) OR FLUIDS (K.A.R. 82-3-123a) | OPERAT | OR: License # | API No. 15 | | | | | | |-------------------------------------|--|---------------------------------|-------------------|---|--|--|--| | Name:_ | | Spot Description: _ | | | | | | | Address | 1: | | Sec Twp | _S. R East West | | | | | Address | 2: | | Feet from N | orth / South Line of Section | | | | | City: | State: Zip:+ | <u> </u> | Feet from E | ast / West Line of Section | | | | | | Person: | | | | | | | | Phone: | () | Lease Name: | We | ll #: | | | | | | | | | | | | | | 1. | Name and upper and lower limit of each production interval to | be commingled: | | | | | | | | Formation: | (Perfs): | | | | | | | | Formation: | (Perfs): | | | | | | | | Formation: | (Perfs): | | | | | | | | Formation: | (Perfs): | | | | | | | | Formation: | (Perfs): | | | | | | | | | | | | | | | | 2. | Estimated amount of fluid production to be commingled from e | | | | | | | | | Formation: | BOPD: | MCFPD: | BWPD: | | | | | | Formation: | BOPD: | MCFPD: | BWPD: | | | | | | Formation: | | | BWPD: | | | | | | Formation: | BOPD: | MCFPD: | BWPD: | | | | | | Formation: | BOPD: | MCFPD: | BWPD: | | | | | □ 3.□ 4. | Plat map showing the location of the subject well, all other well the subject well, and for each well the names and addresses of Signed certificate showing service of the application and affida | of the lessee of record or op | erator. | ses within a 1/2 mile radius of | | | | | For Con | nmingling of PRODUCTION ONLY, include the following: | | | | | | | | 5. | Wireline log of subject well. Previously Filed with ACO-1: | Yes No | | | | | | | ☐ 6. | Complete Form ACO-1 (Well Completion form) for the subject | _ | | | | | | | | Complete Committee (Train Complete Line) to the Complete | | | | | | | | For Con | nmingling of FLUIDS ONLY, include the following: | | | | | | | | 7. | Well construction diagram of subject well. | | | | | | | | 8. | Any available water chemistry data demonstrating the compati | ibility of the fluids to be com | mingled. | | | | | | current ir
mingling | /IT: I am the affiant and hereby certify that to the best of my formation, knowledge and personal belief, this request for comis true and proper and I have no information or knowledge, which istent with the information supplied in this application. | S | ubmitted Electror | nically | | | | | l — | Office Use Only | | | st in the application. Protests must be
be filed wihin 15 days of publication of | | | | Date: _ 15-Day Periods Ends: ___ Approved By: _ ### **KGS STATUS** - ◆ DA/PA - EOR - GAS - △ INJ/SWD - OIL - **♦** OIL/GAS - OTHER Slayter, Cheryl J 13-1 13-34S-18E 1" = 1,000' # **ORIGINAL** # KANSAS CORPORATION COMMISSION OIL & GAS CONSERVATION DIVISION Form ACO-1 September 1999 Form Must Be Typed KCC WICHITA #### **WELL COMPLETION FORM WELL HISTORY - DESCRIPTION OF WELL & LEASE** | Operator: License # 33344 | API No. 15 - ⁰⁹⁹⁻²⁴⁵⁴⁷⁻⁰⁰⁰⁰ | |--|--| | Name: Quest Cherokee, LLC | County: LABETTE | | Address: 211 W. 14th Street | <u>SW_Sw_Sec. 13</u> Twp. 34 S. R. 18 | | City/State/Zip: Chanute, KS 66720 | 660 feet from S)/ N (circle one) Line of Section | | Purchaser: Bluestem Pipeline, LLC | 660 feet from E (W) (circle one) Line of Section | | Operator Contact Person: Jennifer R. Smith | Footages Calculated from Nearest Outside Section Corner: | | Phone: (_620) 431-9500 | (circle one) NE SE NW SW | | Contractor: Name: MICHAEL DRILLING | Lease Name: SLAYTER, CHERYL J. Well #: 13-1 | | License: 33783 | Field Name: Cherokee Basin CBM | | Wellsite Geologist: Ken Recoy | Producing Formation: NOT YET COMPLETED | | Designate Type of Completion: | Elevation: Ground: 889 Kelly Bushing: n/a | | New Well Re-Entry Workover | Total Depth: 941 Plug Back Total Depth: 936.22 | | Oil SWD SIOWTemp. Abd. | Amount of Surface Pipe Set and Cemented at 23 Feet | | ✓ Gas ENHR SIGW | Multiple Stage Cementing Collar Used? | | Dry Other (Core, WSW, Expl., Cathodic, etc) | If yes, show depth setFeet | | If Workover/Re-entry: Old Well Info as follows: | If Alternate II completion, cement circulated from 936.22 | | Operator: | feet depth to surface w/ 125 sx cmt | | Well Name: | Alt 2-Dig-16/13/ | | Original Comp. Date: Original Total Depth: | Drilling Fluid Management Plan (Data must be collected from the Reserve Pit) | | Deepening Re-perf Conv. to Enhr./SWD | Chloride content ppm Fluid volume bbls | | Plug Back Plug Back Total Depth | Dewatering method used | | Commingled Docket No. | | | Dual Completion Docket No | Location of fluid disposal if hauled offsite: | | Other (SWD or Enhr.?) Docket No | Operator Name: | | 7/28/09 7/29/09 7/30/09 | Lease Name: License No.: | | 7/28/09 7/29/09 7/30/09 Spud Date or Date Reached TD Completion Date or | Quarter Sec TwpS. R 🗌 East 🗌 West | | Recompletion Date Recompletion Date | County: Docket No.: | | | 1 | | Kansas 67202, within 120 days of the spud date, recompletion, workow Information of side two of this form will be held confidential for a period of 107 for confidentiality in excess of 12 months). One copy of all wireline logs | the Kansas Corporation Commission, 130 S. Market - Room 2078, Wichita, per or conversion of a well. Rule 82-3-130, 82-3-106 and 82-3-107 apply. 12 months if requested in writing and submitted with the form (see rule 82-3-5 and geologist well report shall be attached with this form. ALL CEMENTING | | TICKETS MUST BE ATTACHED. Submit CP-4 form with all plugged wells | . Submit CP-111 form with all temporarily abandoned wells. | | All requirements of the statutes, rules and regulations promulgated to regulation are complete and correct to the best of my knowledge. | ate the oil and gas industry have been fully complied with and the statements | | | V00 0/// 11 0/// | | Signature: Dinub R Minuth | KCC Office Use ONLY | | Title: New Well Development Coordinator Date: 10/12/09 | Letter of Confidentiality Received | | Subscribed and sworn to before me this 13th day of | , If Denied, Yes Date: | | 20 09. | Wireline Log Received | | , <i>(</i> A | Geologist Report Received RECEIVED | | Notary Public: Devra Klauman | UIC Distribution RRA KLAUMAN OCT 1 3 2009 | | | RRA KLAUMAN UC 1 3 2009 Public - State of Kansas | | My Appt. Expire | es 8-4-2010 KCC WICHITA | #### Side Two | Operator Name: Que | est Cherokee, LL | .C | | Leas | se Name: S | SLAYTER, CH | ERYL J. | _ Well #: | | | |--|---|---------------------------------------|------------------------|-------------------------|-------------|-----------------------------|----------------------|-------------------|---------------------|-------------| | Sec Twp3 | | | West | Coun | nty: LABET | ITE | | | | | | INSTRUCTIONS: Si
tested, time tool ope
temperature, fluid red
Electric Wireline Log | n and closed, flowing covery, and flow rate | g and shut-in pr
s if gas to surfa | essures,
ce test, a | whether a
along with | shut-in pre | ssure reached | static level, hydr | ostatic pressure | es, bottom | n hole | | Drill Stem Tests Take | | ☐ Yes | √ No | | ⊘ L | | ion (Top), Depth | | _ | ample | | Samples Sent to Ge | ological Survey | Yes | ✓No | | Nam
See | e
attached | | Тор | D | atum | | Cores Taken Electric Log Run (Submit Copy) | | ☐ Yes
✓ Yes | ✓ No
No | | | | · | | | | | List All E. Logs Run: | | | | | | | | | | | | Compensated Dual Induction | • | tron Log | | | | | | | | | | | | Deposit all a | | RECORD | | _ | otion oto | | | | | Purpose of String | Size Hole | Size Cas | | W | /eight | ermediate, produ
Setting | Type of | # Sacks | | ind Percent | | | Drilled | Set (In O |).D.) | 22 | s. / Ft. | Depth | Cement | Used | Ad | ditives | | Surface | 12-1/4 | - | 8-5/8" | | | 23 | | 5 | 1 | | | Production | 7-7/8 | 5-1/2 | | 14.5 | | 936.22 | "A" | 125 | - | | | | | | | <u> </u> | | | | | | | | D | Dorath | | | | | JEEZE RECOR | | | | | | Purpose: Perforate | Depth
Top Bottom | Type of Cement | | #Sac | ks Used | s Used Type and Perce | | Percent Additives | | | | Protect Casing Plug Back TD | | | | | | | | | | | | Plug Off Zone | | | | | | | | | | | | | PERFORAT | ION RECORD - | Bridge Plu | as Set/Typ |
ое | Acid, Fr | acture, Shot, Cemer | nt Squeeze Recor | d | | | Shots Per Foot | Specify | Footage of Each | Interval Pe | rforated | | | Amount and Kind of N | | | Depth | | | WAITING ON PIPI | ELINE | | | | | | | | | | | | | | | | | | | | | | | , | | | | ** | TUBING RECORD | Size | Set At | | Packe | r At | Liner Run | Yes N | o . | | | | Date of First, Resumer | rd Production, SWD or | Enhr. Pro | ducing Met | thod | Flowin | g Pump | oing Gas L | ift | er <i>(Explain)</i> | | | Estimated Production
Per 24 Hours | Oil | Bbls. | Gas | Mcf | Wat | er | Bbls. | Gas-Oil Ratio | |
Gravity | | Disposition of Gas | METHOD OF | COMPLETION | | | <u> </u> | Production Inte | erval | | | | | Vented Sold | | = | Open Hole | Pe | erf. 🔲 I | Dually Comp. | Commingled . | | | | | (If vented, S | ubmit ACO-18.) | | Other (Spec | cify) | | • | . | | | | 211 W. 14TH STREET. CHANUTE, KS 66720 620-431-9500 TICKET NUMBER 6881 | FIELD TICKET REF # | |--------------------| |--------------------| FOREMAN Dwayne SSI 629316 TREATMENT REPORT & FIELD TICKET CEMENT API_15-099- 24547 | DATE | WELL NAME & NU | | | | SECTION | TOWNSHIP | RANGE | COUNTY | |-----------------------|----------------|-------------|---------------|----------------------|--------------|--------------|---------|-----------------------| | 7-30-09 | Slayte | r Chel | <u>'y/ T</u> | 13-1 | /3 | 34 | 18 | 13 | | FOREMAN /
OPERATOR | TIME
IN | TIME
OUT | LESS
LUNCH | TRUCK
| TRAILER
| TRUCK | · I ' | EMPLOYEE
SIGNAPURE | | Dwayne | 6:30 | 4:00 | | 904850 | - | 9.5 | 5 - | denh | | wes_ | 6:30 | 4:00 | | 903/47 | | 9,< | 6 | les This | | JOHN | 630 | 4:00 | | 903600 | | 9.5 | Jo | - | | Todd | 6:30 | 400 | | Helper | | 9,5 | | | | Jasov | 620 | 4100 | | | | 9.5 | Jos | JAC- | | OB TYPE Long So | Cia HOLE | SIZE 7 3/8 | Н. | OLE DEPTH 94/ | CASII | NG SIZE & WE | EIGHT 5 | L- 414 = | CASING DEPTH 936.92 DRILL PIPE TUBING OTHER SLURRY WEIGHT 13.5 SLURRY VOL WATER gal/sk CEMENT LEFT in CASING O DISPLACEMENT 21.4 DISPLACEMENT PSI MIX PSI RATE 4 8 PM REMARKS: Run In 986, 122 ft of Siz Casing- Then Hook onto well and Break circulatation Pump 6 SKs. From gel Followed By 15 BBrl Dyc marker & Start Coment and Pump 125 Sacks to get Dyc marker Back. Stop and Flush Pump. Then pump wiper Plug to Bottom and Set Float Shoe. | ACCOUNT
CODE | QUANTITY or UNITS | DESCRIPTION OF SERVICES OR PRODUCT | TOTAL
AMOUNT | |-----------------|-------------------|--|-----------------| | 90\$ 850 | 9,5 | Foreman Pickup | | | 903197 | 9.5 | Cement Pump Truck | | | 903600 | 9.5 | Bulk Truck | | | 93/385 | 9.5 | Transport Truck | ירווירם | | | 9,5 | Transport Trailer | EIVED | | | 9.5 | 80 Vac | 1 3 2009 | | | 936.22 | Casing 5 ½ | 1 0 2003 | | | 5 | Centralizers | WICHITA | | | 1 | Float Shoe | WICHIA | | | | Wiper Plug Sca 696 | | | | 2 | Wiper Plug Sco' 696' Frac Baffles Cupper and Lower | | | | 115 SK | Portland Cement | | | | 12 SK | Gilsonite | | | | 1 SK | Fio-Seal | .2 | | | 18 SK | Premium Gel 12 In Load 6 Ahead of Tol | 3 | | | 3 5K | Cal Chloride | | | | 1 Gal | KCL | | | | 7000 Gal | City Water | | | | | | | | | | | | 072909 ### Michael Drilling, LLC P.O. Box 402 Iola, KS 66749 620-365-2755 | Company: | Quest Cherokee LLC | | | | |----------|--------------------------|--|--|--| | Address: | 210 Park Ave. Suite 2750 | | | | OUL City Olds are 721 Oklahoma City, Oklahoma 73102 Ordered By: Richard Marlin Date: <u>07/29/09</u> Lease: Slayter, Cheryl J. County: Labette Well#: 13-1 API#: 15-099-24547-00-00 ### **Drilling Log** | | <u> </u> | | | |---------|---------------------------|---------|---------------------------| | FEET | DESCRIPTION | FEET | DESCRIPTION | | 0-23 | Overburden | 432-445 | Shale | | 23-154 | Shale | 445-450 | Black Shale and Coal | | 154-179 | Lime | 450-538 | Shale | | 179-183 | Black Shale | 538-540 | Black Shale and Coal | | 183-250 | Shale . | 540-547 | Sandy Shale | | 233 | Gas Test 0"at 1/4" Choke | 547-549 | Coal | | 250-280 | Lime | 549-570 | Sandy Shale | | 280-283 | Black Shale | 565 | Gas Test 48"at 1/2" Choke | | 283-316 | Lime | 570-590 | Sand | | 313 | Gas Test 5"at 1/2" Choke | 590-650 | Sandy Shale | | 316-321 | Black Shale | 650-667 | Sand | | 321-336 | Lime | 667-811 | Shale | | 336-340 | Shale | 740 | Went To Water | | 340 | Gas Test 35"at 1/2" Choke | 811-813 | Coal | | 340-345 | Lime | 813-818 | Shale | | 345-390 | Shale | 815 | Gas Test 38"at 1/2" Choke | | 390-391 | Coal | 818-940 | Mississippi Lime | | 391-400 | Shale | 820 | Oil Oder | | 400-401 | Coal | 840 | Gas Test 44"at 1/2" Choke | | 401-421 | Shale | 940 | Gas Test 44"at 1/2" Choke | | 421-423 | Lime | 940 | TD | | 423-425 | Black Shale | | | | 425-427 | Lime | | Surface 23' | | 427-432 | Black Shale and Coal | | RECEIVE | OCT 13 2009 | | A | В | С | D | Е | F | C | П | ı | ı | К | |--|---|--|--|--|--|--|---|---|---|---|-----------------| | 1 | Produced Fluids # | O | 1 | 2 | 3 | 4 | G
5 | Н | <u> </u> | J | 1 N | | | Parameters | Units | Input | Input | Input | Input | Input | | Click he | ro | Click | | 3 | Select the brines | Select fluid | 7 | | 7 | | 7 | Mixed brine: | to run S | | | | 4 | Sample ID | by checking | | | | | · · | Cell H28 is | to run St | | Click | | | Date | the box(es), | 3/19/2012 | 3/4/2012 | 3/14/2012 | 1/20/2012 | 1/20/2012 | STP calc. pH. | > | | | | 6 | Operator | Row 3 | PostRock | PostRock | PostRock | PostRock | PostRock | Cells H35-38 | | | Click | | | Well Name | | Ward Feed | Ward Feed | Clinesmith | Clinesmith | Clinesmith | are used in | Goal Seek | SSP | | | 8 | Location | | #34-1 | #4-1 | #5-4 | #1 | #2 | mixed brines | | | Click | | _ | Field | | CBM | CBM | Bartles | Bartles | Bartles | calculations. | | | | | 10 | Na ⁺ | (mg/l)* | 19,433.00 | 27,381.00 | 26,534.00 | 25689.00 | 24220.00 | 24654.20 | Initial(BH) | Final(WH) | SI/SR | | 11 | K ⁺ (if not known =0) | (mg/l) | | | | | | 0.00 | Saturation Index | values | (Final-Initial) | | 12 | Mg ²⁺ | (mg/l) | 1,096.00 | 872.00 | 1,200.00 | 953.00 | 858.00 | 995.91 | Ca | lcite | | | 13 | Ca ²⁺ | (mg/l) | 1,836.00 | 2,452.00 | 2,044.00 | 1920.00 | 1948.00 | 2040.23 | -0.73 | -0.60 | 0.13 | | | Sr ²⁺ | (mg/l) | | | | | | 0.00 | Ba | rite | | | 15 | Ba ²⁺ | (mg/l) | | | | | | 0.00 | | | | | | Fe ²⁺ | (mg/l) | 40.00 | 21.00 | 18.00 | 82.00 | 90.00 | 50.21 | н | alite | | | | Zn ²⁺ | | 40.00 | 21.00 | 10.00 | 02.00 | 70.00 | 0.00 | -1.77 | -1.80 | -0.03 | | | | (mg/l) | | | | | | | | | -0.03 | | | Pb ²⁺ | (mg/l) | 2 < 200 00 | 40.045.00 | 47.074.00 | 45.22.00 | 424 47 00 | 0.00 | | osum | 0.00 | | | Cl' | (mg/l) | 36,299.00 | 48,965.00 | 47,874.00 | 45632.00 | 43147.00 | 44388.44 | -3.19 | -3.18 | 0.00 | | - | SO ₄ ² · | (mg/l) | 1.00 | 1.00 | 8.00 | 1.00 | 1.00 | 2.40 | | nydrate | | | 21 | F | (mg/l) | | | | | | 0.00 | -3.96 | -3.90 | 0.06 | | | Br [*] | (mg/l) | | | | | | 0.00 | Anh | ydrite | | | 23 | SiO2 | (mg/l) SiO2 | | | | | | 0.00 | -3.47 | -3.36 | 0.12 | | 24 | HCO3 Alkalinity** | (mg/l as HCO3) | 190.00 | 234.00 | 259.00 | 268.00 | 254.00 | 241.03 | Cele | estite | | | 25 | CO3 Alkalinity | (mg/l as CO3) | | | | | | | | | | | 26 | Carboxylic acids** | (mg/l) | | | | | | 0.00 | Iron S | Sulfide | | | 27 | Ammonia | (mg/L) NH3 | | | | | | 0.00 | -0.16 | -0.22 | -0.06 | | 28 | Borate | (mg/L) H3BO3 | | | | | | 0.00 | Zinc | Sulfide | | | | TDS (Measured) | (mg/l) | | | | | | 72781 | | | | | | Calc. Density (STP) | (g/ml) | 1.038 | 1.051 | 1.050 | 1.048 | 1.045 | 1.047 | Calcium | ı fluoride | | | | CO ₂ Gas Analysis | (%) | 19.97 | 18.76 | 22.41 | 35.53 | 33.79 | 26.16 | Curezun | | | | | H ₂ S Gas Analysis*** | (%) | 0.0289 | 0.0292 | 0.0296 | 0.0306 | 0.0151 | 0.0269 | Iron Ca | arbonate | | | _ | Total H2Saq | (mgH2S/l) | 1.00 | 1.00 | 1.00 | 1.00 | 0.50 | 0.90 | -0.74 | -0.51 | 0.23 | | - | pH, measured (STP) | pН | 5.67 | 5.76 | 5.72 | 5.54 | 5.55 | 5.63 | Inhibitor ne | eeded (mg/L) | | | | | 0-CO2%+Alk, | | | | | | | Calcite | NTMP | | | | Choose one option | | | | _ | | | | | | | | 35 | to calculate SI? | • | 0 | 0 | 0 | 0 | 0 | | 0.00 | 0.00 | | | | Gas/day(thousand cf/day) | (Mcf/D) | | 0 | | 1 | 4 | 0 | 0.00
Rorito | 0.00 | | | | Oil/Day
Water/Day | (B/D)
(B/D) | 100 | 100 | 100 | 100 | 100 | 500 | Barite
0.00 | 0.00 | | | | J | | | 100 | 100 | 100 | 100 | 200 | | о.00
оН | | | | For mixed brines, enter val | . , | | ures in Cells (H | (40-H43) | | | (Enter H40-H43) | n | | | | 40 | For mixed brines, enter val
Initial T | . , | | ures in Cells (H
71.0 | (40-H43)
70.0 | 41.0 | 49.0 | (Enter H40-H43)
60.0 | 5.69 | 5.60 | | | | | lues for tempera | tures and press
66.0
66.0 | ` | | 41.0 | 49.0 | 60.0
89.0 | 5.69 | | | | 41 | Initial T | lues for temperator (F) | tures and press
66.0 | 71.0 | 70.0 | | | 60.0
89.0 | 5.69 | 5.60 | | | 41
42
43 | Initial T Final T Initial P Final P | (F) (F) (psia) (psia) | tures and press
66.0
66.0 | 71.0
71.0 | 70.0
70.0 | 41.0 | 49.0 | 60.0
89.0 | 5.69
Viscosity
(
1.196
Heat Capaci | 5.60
CentiPoise)
0.826
ity (cal/ml/ ⁰ C) | | | 41
42
43
44 | Initial T Final T Initial P Final P Use TP on Calcite sheet? | (F) (F) (psia) (psia) 1-Yes;0-No | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69
Viscosity (
1.196
Heat Capaci
0.955 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959 | | | 41
42
43
44
45 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. | ues for temperat (F) (F) (psia) (psia) (psia) 1-Yes;0-No API grav. | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no | 5.60
CentiPoise)
0.826
ty (cal/ml/ ⁰ C)
0.959
eeded (mg/L) | | | 41
42
43
44
45
46 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. | ues for tempera (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. | 66.0
66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
eded (mg/L)
HDTMP | | | 41
42
43
44
45
46
47 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day | ues for tempera (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 | 5.60 CentiPoise) 0.826 ty (cal/ml/°C) 0.959 eded (mg/L) HDTMP 0.00 | | | 41
42
43
44
45
46
47
48 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. | ues for tempera (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
eded (mg/L)
HDTMP | | | 41
42
43
44
45
46
47
48
49 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier | ues for tempera (F) (F) (psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * | ues for tempera (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier | ues for tempera (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † | ues for tempera (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. McOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH* (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) | ues for temperar (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH' (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) PH Calculated | ues for tempera (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated | (F) (F) (psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (PH) (%) | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated | (F) (F) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated | (F) (F) (psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (PH) (%) | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated EXAnions= EXAnions= Calc TDS= | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) | tures and presss
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2
Calculated Alkalinity Caclulated 2Cations= 2Anions= Calc TDS= Inhibitor Selection | ues for tempera (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input | tures and pressures 66.0 66.0 25.0 25.0 0 0 0 Unit | 71.0
71.0
25.0
25.0 | 70.0
70.0
25.0
25.0 | 41.0
25.0
25.0
Unit Converter | 49.0
25.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor nc Gypsum 0.00 Anhydrite 0.00 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
60
61
62 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated \$\textit{\textit{Z}}\text{Calculated}\$ Alkalinity Caclulated \$\text{\text{\text{Z}}}\text{Calculated}\$ Calc TDS= Inhibitor Selection Protection Time | (F) (F) (psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) | tures and press
66.0
66.0
25.0
25.0 | 71.0
71.0
25.0
25.0 | 70.0
70.0
25.0
25.0
Inhibitor
NTMP | 41.0 25.0 25.0 Unit Converter | 49.0
25.0
25.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite 0.00 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated 2Cations= 2Anions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer | (F) (F) (psia) (psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (equiv./I) (mg/I) Input 120 | tures and pressures 66.0 66.0 25.0 25.0 0 0 0 Unit min | 71.0
71.0
25.0
25.0
4
1
1
2 | 70.0
70.0
25.0
25.0
25.0
Inhibitor
NTMP
BHPMP | 41.0 25.0 25.0 25.0 Unit Converter From Unit | 49.0
25.0
25.0
25.0
(From metric Value 80 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite 0.00 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. McOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? | (F) (F) (psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input 120 | tures and pressures 66.0 66.0 25.0 25.0 0 0 0 0 Unit min | 71.0
71.0
25.0
25.0
4
1
1
2
3 | Inhibitor NTMP BHPMP PAA | 41.0 25.0 25.0 25.0 Unit Converter From Unit °C m³ | 49.0
25.0
25.0
25.0
(From metric
Value
80
100 | 60.0
89.0
25.0
120.0
30.00
0.60
0
0
To Unit | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
53
54
55
56
67
75
88
89
60
61
62
63
64
65 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H† (Strong acid) † OH' (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated 2Cations= EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: | (F) (F) (psia) (psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (equiv./I) (mg/I) Input 120 | tures and pressures 66.0 66.0 25.0 25.0 0 0 0 Unit min | 71.0
71.0
25.0
25.0
4
1
2
3 | Inhibitor NTMP BHPMP PAA DTPMP | Unit Converter From Unit °C m³ m³ | 49.0
25.0
25.0
25.0
(From metric
Value
80
100
100 | 60.0
89.0
25.0
120.0
30.00
0.60
0
0
To Unit
"F
ft"3
bbl(42 US gal) | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
67
78
88
60
61
62
63
64
65
66 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong acid) * OH* (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated SCations= EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: If you select Mixed, | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) (N) STP: (%) (mgH2S/I) (pH) (mg/I) as HCO3 (equiv./I) (mg/I) Input 120 1 4 | tures and press 66.0 66.0 25.0 25.0 0 0 0 1-Yes;0-No # | 71.0
71.0
25.0
25.0
4
1
2
3
4
5 | Inhibitor NTMP BHPMP PAA DTPMP PPCA | Unit Converter From Unit °C m³ m³ MPa | 49.0
25.0
25.0
25.0
(From metric
Value
80
100
1,000 | 60.0
89.0
25.0
120.0
30.00
0.60
0
0
To Unit
"F
ft"3
bbl(42 US gal) | Value 176 3,531 629 145,074 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
67
60
61
62
63
64
65
66
66 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH' (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated Alkalinity Caclulated EXATIONS= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: If you select Mixed, 1st inhibitor # is: | (F) (F) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/l) as HCO3 (equiv./I) (mg/l) Input 120 1 4 | Unit min 1-Yes;0-No # | # # 1 2 3 4 4 5 6 | Inhibitor NTMP BHPMP PAA DTPMP PPCA SPA | Unit Converter From Unit °C m³ m³ MPa Bar | 49.0
25.0
25.0
25.0
 | 60.0
89.0
25.0
120.0
30.00
0.60
0
0
0
To Unit
"F
ft ³
bbl(42 US gal)
psia | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 145,074 7,194 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
67
63
64
65
66
67
68 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated SCations= EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: If you select Mixed, 1st inhibitor is: | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input 120 1 4 1 50 | Unit min 1-Yes;0-No # # % | # # 1 2 3 4 4 5 6 6 7 | Inhibitor NTMP BHPMP PAA DTPMP PPCA SPA HEDP | Unit Converter From Unit °C m³ m³ MPa Bar Torr | 49.0
25.0
25.0
25.0
25.0
 | 60.0
89.0
25.0
120.0
30.00
0.60
0
0
0
To Unit
"F
ft ³
bbl(42 US gal)
psia
psia | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 145,074 7,194 193 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
67
62
63
64
65
66
67
68
69 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated Alkalinity Caclulated PCO2 Calculated Alkalinity Caclulated EXAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor for you? If you select Mixed, 1st inhibitor # is: % of 1st inhibitor is: % of 1st inhibitor is: 2nd inhibitor is: | (F) (F) (psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%)
(mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) 1 120 1 4 1 50 2 | Unit min 1-Yes;0-No # # % # | ## 1 2 3 4 4 5 6 6 7 8 | Inhibitor NTMP BHPMP PAA DTPMP PPCA SPA HEDP HDTMP | Unit Converter From Unit °C m³ MPa Bar Torr Gal | 49.0
25.0
25.0
25.0
25.0
25.0
25.0
25.0
25 | 60.0 89.0 25.0 120.0 30.00 0.60 0 0 10 10 10 10 10 10 10 10 10 10 10 1 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 145,074 7,194 193 238 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
67
62
63
64
65
66
67
68
69 | Initial T Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated SCations= EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: If you select Mixed, 1st inhibitor is: | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input 120 1 4 1 50 | Unit min 1-Yes;0-No # # % | # # 1 2 3 3 4 5 5 6 7 | Inhibitor NTMP BHPMP PAA DTPMP PPCA SPA HEDP | Unit Converter From Unit °C m³ m³ MPa Bar Torr | 49.0
25.0
25.0
25.0
25.0
 | 60.0
89.0
25.0
120.0
30.00
0.60
0
0
0
To Unit
"F
ft ³
bbl(42 US gal)
psia
psia | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 145,074 7,194 193 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | #### **Saturation Index Calculations** Champion Technologies, Inc. (Based on the Tomson-Oddo Model) Brine 1: Ward Feed Yard 34-1 Brine 2: Ward Feed Yard 4-1 Brine 3: Clinesmith 5-4 Brine 4: Clinesmith 1 Brine 5: Clinesmith 2 | | | | Ratio | | | | |--------------------------|---------|---------|---------|---------|---------|-------------| | | 20% | 20% | 20% | 20% | 20 | | | Component (mg/L) | Brine 1 | Brine 2 | Brine 3 | Brine 4 | Brine 5 | Mixed Brine | | Calcium | 1836 | 2452 | 2044 | 1920 | 1948 | 1952 | | Magnesium | 1096 | 872 | 1200 | 953 | 858 | 865 | | Barium | 0 | 0 | 0 | 0 | 0 | 0 | | Strontium | 0 | 0 | 0 | 0 | 0 | 0 | | Bicarbonate | 190 | 234 | 259 | 268 | 254 | 253 | | Sulfate | 1 | 1 | 8 | 1 | 1 | 1 | | Chloride | 36299 | 48965 | 47874 | 45632 | 43147 | 43206 | | CO ₂ in Brine | 246 | 220 | 264 | 422 | 405 | 401 | | Ionic Strength | 1.12 | 1.48 | 1.46 | 1.38 | 1.31 | 1.31 | | Temperature (°F) | 89 | 89 | 89 | 89 | 89 | 89 | | Pressure (psia) | 50 | 50 | 120 | 120 | 120 | 119 | #### **Saturation Index** | Calcite | -1.71 | -1.41 | -1.48 | -1.68 | -1.69 | -1.69 | |-------------|-------|-------|-------|-------|-------|-------| | Gypsum | -3.71 | -3.64 | -2.82 | -3.73 | -3.72 | -3.69 | | Hemihydrate | -3.70 | -3.65 | -2.83 | -3.74 | -3.71 | -3.69 | | Anhydrite | -3.89 | -3.79 | -2.97 | -3.89 | -3.88 | -3.85 | | Barite | N/A | N/A | N/A | N/A | N/A | N/A | | Celestite | N/A | N/A | N/A | N/A | N/A | N/A | #### PTB | Calcite | N/A | N/A | N/A | N/A | N/A | N/A | |-------------|-----|-----|-----|-----|-----|-----| | Gypsum | N/A | N/A | N/A | N/A | N/A | N/A | | Hemihydrate | N/A | N/A | N/A | N/A | N/A | N/A | | Anhydrite | N/A | N/A | N/A | N/A | N/A | N/A | | Barite | N/A | N/A | N/A | N/A | N/A | N/A | | Celestite | N/A | N/A | N/A | N/A | N/A | N/A | ## **Wellbore Schematic** TOC - Surface WELL: Slayter, Cheryl J 13-1 **SSI:** 629310 **API:** 15-099-24547-00-00 **LOCATION:** SW SW Sec. 13-34S-18E | | COUNTY: Labette STATE: Kansas | | | |--------------|--|----------|-----------------------------------| | Casing | 8.625" @ 23'
5.5'' 14# J-55, 5.01" ID w/ 0.0244 bbl/ft
capacity @ 936' | | | | Perforations | Original Perfs: 3/1/2010 - Riverton 809-811 (8) - Tebo 551-553 (8) - Fleming 468-470 (8) - Fleming 453-455 (8) - Iron Post 392-394 (8) - Mulky 319-323 (16) - Summit 289-293 (16) | | 8.625" @ 23' | | Completions | Spud Date: 7/28/2009 Completion date: 3/1/2010 Riverton: - 1900# 20/40 - 300 gals 15% - 493 bbls - 11 bpm Tebo/Flem/Iron Post: - 7500# 20/40 - 400 gals 15% - 664 bbls - 16 bpm Mulky/Summit: - 3800# 20/40 - 300 gals 15% - 642 bbls - 16 bpm | TD -940' | 5.5" 14# @ 936'
115 sks cement | #### SLAYTER, CHERYL J 13-1 | 5.71 | |------| | 5.71 | | 20 | Affidavit | of Notice Served | | | | | |---|--|---|-------------------------|-----------------------|--| | Re: | ADDITION FOR COMMINCLING OF REQUIREMON OR FILLIDG ACO. | | | | | | | Well Name: SLAYTER, CHERYL J 13-1 | Legal Location: SWSW | S13-T34S-R18E | | | | | signed hereby certificates that he / she is a duly authorized ag | | 7TH of AUGUST | | | | 2012 | | , | | | | | , a true and correct copy of the application referenced above was delivered or mailed to the following parties: | | | | | | | Note: A co | py of this affidavit must be served as a part of the application | | | | | | 1 | Name | Address (Atlach additional sh | eets if necessary) | | | | POSTR | OCK MIDCONTINENT PRODUCTION, LLC | 210 PARK AVENUE, SUIT | E 2750, OKLAHOMA CITY, | OK 73102-5641 | I further atte | st that notice of the filing of this application was published in | hePARSONS SUN | , the offici | al county publication | | | of <u>LABE</u> | TTE | county. A copy of the affidavit of this p | ublication is attached. | | | | Signed this . | 7TH day of AUGUST | 2012 | • | | | | oigned tills . | day or, | | 1 Man | | | | | | Applicant or Duly Authorized Agent | promis | | | | | Subscribed and sworn | | AUGUST | | | | | William Control of the th | day of _/ |) () | , 2012 | | | | JENNIFER R. BEAL SEAL MY COMMISSION EXPIRES | Notary Public S | Bal | | | | | 7-20-2016 | | 1. 20 2011 | | | | | | My Commission Expires: | 0 00,00,4 | ## Affidavit of Publication & STATE OF KANSAS, LABETTE COUNTY, ss: Kim Root, being first duly sworn, deposes and says: That she is Classified Manager of PARSONS SUN, a daily newspaper printed in the State of Kansas, and published in and of general circulation in Labette County, Kansas, with a general paid circulation on a daily basis in Labette County, Kansas, and that said newspaper is not a trade, religious or fraternal publication. Said newspaper is a daily published at least weekly 50 times a year: has been so published continuously and uninterruptedly in said county and state for a period of more than five years prior to the first publication of said notice; and has been admitted at the post office of Parsons, in said county as second class matter. That the attached notice is a true copy thereof and was published in the regular and entire issue of said newspaper for <u>l</u> consecutive <u>Way</u>, the first publication thereof being made as aforesaid on the 17 day of 1 2012 with subsequent publications being made | on the following dates: | |---| | | | | | Kingley Clost | | Subscribed and sworn to and before me this
23 | | day of Suly 2012 | | Morry Rublic | | My commission expires: January 9, 2015 | | Printer's Fee\$ 73,03 | | Affidavit, Notary's Fee\$_3.00\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | Auditional Codics | (Published in the Parsons Sun RE: In the Matter of Postrock Mid-continent Production, LLC Applica-tion for Commingling of Production in the Slayter, Cheryl J 13-1 located in Labette County, Kansas. TO: All Oil & Gas Producers, Unleased Mineral Interest Owners, Landowners, and all persons whomever concerned. You, and each of you, are hereby notified that Postrock Midcontinent Production, LLC has filed an appliriouction, LLC has filed an application to commingle the Riverton, Tebo, Fleming, Iron Post, Mulky, Summit and Bartlesville producing formations at the Slayter, Cheryl J 13-1, located in the SW SW, S13-T34S-R18E, Approximately 660 FSI 2 860 TM 660 FSL & 660 FWL, Labette County, Kansas. Any persons who object to or protest this application shall be re- quired to file their objections or protest with the Conservation Division of the State Corporation Commission of the State of Kansas within tifteen (15) days from the date of this publication. These protests shall be filed pursuant to Commission regulations and must state specific reasons why granting the application may cause waste, violate correlative rights or pollute the publical resources of the State of natural resources of the State of Kansas. All persons interested or con-cerned shall take notice of the forecerned snail take notice of the fore-going and shall govern themselves accordingly. All person and/or companies wishing to protest this application are required to file a written protest with the Conserva-tion Division of the Kansas Oil and Gas Commission. Gas Commission. Upon the receipt of any protest, the Commission will convene a hearing and protestants will be ex-pected to enter an appearance elther through proper legal counsel or as individuals, appearing on their Postrock Midcontinent Production, 210 Park Avenue, Suite 2750 Oklahoma City, Oklahoma 73102 (405) 660-7704. July 17 Total Publication Fees \$ 76.03 #### **AFFIDAVIT** STATE OF KANSAS - SS. County of Sedgwick 1 Mark Fletchall, of lawful age, being first duly sworn, deposeth and saith: That he is Record Clerk of The Wichita Eagle, a daily newspaper published in the City of Wichita, County of Sedgwick, State of Kansas, and having a general paid circulation on a daily basis in said County, which said newspaper has been continuously and uninterruptedly published in said County for more than one year prior to the first publication of the notice hereinafter mentioned, and which said newspaper has been entered as second class mail matter at the United States Post Office in Wichita, Kansas, and which said newspaper is not a trade, religious or fraternal publication and that a notice of a true copy is hereto attached was published in the regular and entire Morning issue of said The Wichita Eagle for 1 issues, that the first publication of said notice was made as aforesaid on the 19th of July A.D. 2012, with subsequent publications being made on the following dates: And affiant further says that he has personal knowledge of the statements above set forth and that they are true. Subscribed and sworn to before me this 19th day of July, 2012 PENNY L. CASE Notary Public State of Kansas My Appt. Expires Notary Public Sellgwick County, Kansas Printer's Fee: \$132.40 #### LEGAL PUBLICATION PUBLISHED IN THE WICHITA EAGLE ON JULY 19, 2012 (3196745) BEFORE THE STATE CORPORATION COMMISSION OF THE STATE OF KANSAS NOTICE OF FILING APPLICATION RE:In the Matter of Postrock Midcontinent Production, LLC Application for Commissions of Production in the Slayter, Cheryl J 13-1 located in Labette County, Kansas. TO: All Oll & Gas Producers, Unleased Mineral Interest Owners, Landowners, and all persons whomever concerned. You, and each of you, are hereby notified that Postrock Midcontinent Production, LLC has filed an application to commingle the Riverton, Tebo, Fleming, Iron Post, Mulky, Summit and Bartlesville producing formations at the Slayter, Cheryl J 13-1, located in the SW SW, \$13-T345-R18E, Approximately 660 FSL & 660 FWL, Labette County, Kansas. SW, 313-1343-RIBE, Approximately 660 FSL & 660 FWL, Labette Country, Kansas. Any persons who object to or profest this application shall: be required to fille their objections or profest with the Conservation Division of the State Corporation Commission of the State of Kansas within fifteen (15) days from the date of this publication. These profests shall be filled pursuant to Commission regulations and must state specific reasons why granting the application may cause waste, violate correlative rights or pollute the natural resources of the State of Kansas. All persons interested or concerned shall All persons interested or concerned shall take notice of the foregoing and shall govern themselves accordingly. All person and/or companies wishing to protest this application are required to tile a written protest with the Conservation Division of the Kansas Oil and Gas Commission. Conservation Division of the Ransas Of the Gas Commission. Upon the receipt of any protest, the Commission will convene a hearing and protestaints will be expected to enter an appearance either through proper legal counsel or as individuals, appearing on their own behalf. Postrock Midconfinent Production, LLC 210 Park Avenue, Suite 2750 Oklahoma City, Oklahoma 73102 (405) 660-7704 Conservation Division Finney State Office Building 130 S. Market, Rm. 2078 Wichita, KS 67202-3802 Phone: 316-337-6200 Fax: 316-337-6211 http://kcc.ks.gov/ Mark Sievers, Chairman Thomas E. Wright, Commissioner Sam Brownback, Governor August 22, 2012 Clark Edwards PostRock Midcontinent Production LLC Oklahoma Tower 210 Park Ave, Ste 2750 Oklahoma City, OK 73102 RE: Approved Commingling CO081210 Slayter, Cheryl J. 13-1, Sec.13-T34S-R18E, Labette County API No. 15-099-24547-00-00 Dear Mr. Edwards: Your Application for Commingling (ACO-4) for the above described well, received by the KCC on August 9, 2012, has been reviewed and approved by the Kansas Corporation Commission (KCC) per K.A.R. 82-3-123. Notice was examined and found to be proper per K.A.R. 82-3-135a. No protest had been filed within the 15-day protest period. Based upon the depth of the Rivertonl formation perforations, total oil production shall not exceed 100 BOPD and total gas production shall not exceed 50% of the absolute open flow (AOF). #### File form ACO-1 upon re-completion of the well to commingle. Commingling ID number CO081210 has been assigned to this approved application. Use this number for well completion reports (ACO-1) and other correspondence that may concern this approved commingling. Sincerely, Rick Hestermann Production Department