KANSAS CORPORATION COMMISSION OIL & GAS CONSERVATION DIVISION 1090529 Form ACO-4 Form must be typed March 2009 # APPLICATION FOR COMMINGLING OF Commingling ID # _ PRODUCTION (K.A.R. 82-3-123) OR FLUIDS (K.A.R. 82-3-123a) | OPERAT | OR: License # | API No. 15 | | | |-------------------------------------|--|---------------------------------|-------------------|---| | Name:_ | | Spot Description: _ | | | | Address | 1: | | Sec Twp | _S. R Bast West | | Address | 2: | | Feet from No | orth / South Line of Section | | City: | State: Zip:+ | | Feet from Ea | ast / West Line of Section | | | Person: | | | | | Phone: | () | Lease Name: | We | II #: | | | | | | | | _ 1. | Name and upper and lower limit of each production interval to | be commingled: | | | | | Formation: | (Perfs): | | | | | | | | | | 2. | Estimated amount of fluid production to be commingled from e | | | | | | Formation: | BOPD: | MCFPD: | BWPD: | | | Formation: | BOPD: | MCFPD: | BWPD: | | | Formation: | | | BWPD: | | | Formation: | BOPD: | MCFPD: | BWPD: | | | Formation: | BOPD: | MCFPD: | BWPD: | | □ 3.□ 4. | Plat map showing the location of the subject well, all other well the subject well, and for each well the names and addresses of Signed certificate showing service of the application and affida | of the lessee of record or op- | erator. | ses within a 1/2 mile radius of | | For Con | nmingling of PRODUCTION ONLY, include the following: | | | | | ☐ 5. | Wireline log of subject well. Previously Filed with ACO-1: | Yes No | | | | ☐ 6. | Complete Form ACO-1 (Well Completion form) for the subject | | | | | | | | | | | For Con | nmingling of FLUIDS ONLY, include the following: | | | | | ☐ 7. | Well construction diagram of subject well. | | | | | 8. | Any available water chemistry data demonstrating the compati | ibility of the fluids to be com | mingled. | | | current ir
mingling | VIT: I am the affiant and hereby certify that to the best of my nformation, knowledge and personal belief, this request for comis true and proper and I have no information or knowledge, which istent with the information supplied in this application. | Si | ubmitted Electror | nically | | l — | C Office Use Only nied ☐ Approved | | | st in the application. Protests must be
ne filed wihin 15 days of publication of | Date: _ 15-Day Periods Ends: ___ Approved By: _ | | Α | В | С | D | Е | F | G | Н | 1 | 1 | K | |--|--|---|-----------------------------------|------------------------------|--|---|--|--|---|---|-----------------| | 1 | Produced Fluids # | Б | 1 | 2 | 3 | 4 | 5 | 11 | | <u> </u> | I IX | | | Parameters | Units | Input | Input | Input | Input | Input | | Click her | re | Click | | 3 | Select the brines | Select fluid | 7 | Ī | | V | Ī | Mixed brine: | to run SS | - | | | 4 | Sample ID | by checking | | | | | | Cell H28 is | 10 1411 00 | • | Click | | 5 | Date | the box(es), | 3/19/2012 | 3/4/2012 | 3/14/2012 | 1/20/2012 | 1/20/2012 | STP calc. pH. | | | | | 6 | Operator | Row 3 | PostRock | PostRock | PostRock | PostRock | PostRock | Cells H35-38 | | | Click | | 7 | Well Name | | Ward Feed | Ward Feed | Clinesmith | Clinesmith | Clinesmith | are used in | Goal Seek | SSP | | | 8 | Location | | #34-1 | #4-1 | #5-4 | #1 | #2 | mixed brines | | | Click | | 9 | Field | | CBM | CBM | Bartles | Bartles | Bartles | calculations. | | | | | 10 | Na ⁺ | (mg/l)* | 19,433.00 | 27,381.00 | 26,534.00 | 25689.00 | 24220.00 | 24654.20 | Initial(BH) | Final(WH) | SI/SR | | 11 | K ⁺ (if not known =0) | (mg/l) | | | | | | 0.00 | Saturation Index | values | (Final-Initial) | | | Mg ²⁺ | (mg/l) | 1,096.00 | 872.00 | 1,200.00 | 953.00 | 858.00 | 995.91 | | lcite | | | | Ca ²⁺ | (mg/l) | 1,836.00 | 2,452.00 | 2,044.00 | 1920.00 | 1948.00 | 2040.23 | -0.73 | -0.60 | 0.13 | | | Sr ²⁺ | | 1,030.00 | 2,432.00 | 2,044.00 | 1720.00 | 1740.00 | | | | 0.13 | | | Ba ²⁺ | (mg/l) | | | | | | 0.00 | Ба | rite | | | ., | | (mg/l) | | | | | | 0.00 | | | | | | Fe ²⁺ | (mg/l) | 40.00 | 21.00 | 18.00 | 82.00 | 90.00 | 50.21 | | lite | | | | Zn ²⁺ | (mg/l) | | | | | | 0.00 | -1.77 | -1.80 | -0.03 | | 18 | Pb ²⁺ | (mg/l) | | | | | | 0.00 | Gyp | osum | | | 19 | Cl | (mg/l) | 36,299.00 | 48,965.00 | 47,874.00 | 45632.00 | 43147.00 | 44388.44 | -3.19 | -3.18 | 0.00 | | 20 | SO ₄ ²⁻ | (mg/l) | 1.00 | 1.00 | 8.00 | 1.00 | 1.00 | 2.40 | Hemil | ıydrate | | | | F | (mg/l) | | | | | | 0.00 | -3.96 | -3.90 | 0.06 | | | Br' | (mg/l) | | | | | | 0.00 | | ydrite | 3.00 | | | SiO2 | (mg/l) SiO2 | | | | | | 0.00 | -3.47 | -3.36 | 0.12 | | _ | | | 100.00 | 224.00 | 250.00 | 200 00 | 254.00 | | | | 0.12 | | | HCO3 Alkalinity** | (mg/l as HCO3) | 190.00 | 234.00 | 259.00 | 268.00 | 254.00 | 241.03 | Cele | estite | | | _ | CO3 Alkalinity | (mg/l as CO3) | | | | | | _ | | | | | | Carboxylic acids** | (mg/l) | | | | | | 0.00 | | Sulfide | | | 27 | Ammonia | (mg/L) NH3 | | | | | | 0.00 | -0.16 | -0.22 | -0.06 | | 28 | Borate | (mg/L) H3BO3 | | | | | | 0.00 | Zinc S | Sulfide | | | 29 | TDS (Measured) | (mg/l) | | | | | | 72781 | | | | | 30 | Calc. Density (STP) | (g/ml) | 1.038 | 1.051 | 1.050 | 1.048 | 1.045 | 1.047 | Calcium | fluoride | | | 31 | CO ₂ Gas Analysis | (%) | 19.97 | 18.76 | 22.41 | 35.53 | 33.79 | 26.16 | | | | | | H ₂ S Gas Analysis*** | (%) | 0.0289 | 0.0292 | 0.0296 | 0.0306 | 0.0151 | 0.0269 | | rbonate | | | 33 | Total H2Saq | (mgH2S/l) | 1.00 | 1.00 | 1.00 | 1.00 | 0.50 | 0.90 | -0.74 | -0.51 | 0.23 | | 34 | pH, measured (STP) | pН | 5.67 | 5.76 | 5.72 | 5.54 | 5.55 | 5.63 | Inhibitor ne | eeded (mg/L) | | | | Chasse one ention | 0-CO2%+Alk, | | | | | | | Calcite | NTMP | | | 35 | Choose one option to calculate SI? | | 0 | 0 | 0 | 0 | | | | | | | | Gas/day(thousand cf/day) | (Mcf/D) | • | | 0 | U | | 0 | 0.00 | 0.00 | | | | Oil/Day | (B/D) | 0 | 0 | 1 | 1 | 1 | 4 | Barite | BHPMP | 1 | | | Water/Day | (B/D) | 100 | 100 | 100 | 100 | 100 | 500 | 0.00 | 0.00 | | | 39 | For mixed brines, enter val | ues for temperat | tures and pressi | res in Cells (H | (40-H43) | | | (Enter H40-H43) | | Н | | | 40 | Initial T | iucs for tempera | | | | | | (Linco 1145) | р | п | | | 41 | | (F) | 66.0 | 71.0 | 70.0 | 41.0 | 49.0 | 60.0 | 5.69 | 5.60 | 1 | | | Final T | | 66.0 | 71.0 | 70.0 | 41.0 | 49.0 | 60.0
89.0 | 5.69
Viscosity (| 5.60
CentiPoise) | | | | Final T
Initial P | (F) | 66.0
25.0 | 71.0
25.0 | 70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0 | 5.69
Viscosity (
1.196 | 5.60
CentiPoise)
0.826 | | |
42
43 | Initial P
Final P | (F)
(F)
(psia)
(psia) | 66.0 | 71.0 | 70.0 | 41.0 | 49.0 | 60.0
89.0 | 5.69
Viscosity (
1.196
Heat Capaci | 5.60
CentiPoise)
0.826
ty (cal/ml/ ⁰ C) | | | 42
43
44 | Initial P Final P Use TP on Calcite sheet? | (F)
(F)
(psia)
(psia)
1-Yes;0-No | 66.0
25.0 | 71.0
25.0 | 70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69
Viscosity (
1.196
Heat Capaci
0.955 | 5.60
CentiPoise)
0.826
ty (cal/ml/ ⁰ C)
0.959 | | | 42
43
44
45 | Initial P Final P Use TP on Calcite sheet? API Oil Grav. | (F) (psia) (psia) 1-Yes;0-No API grav. | 66.0
25.0 | 71.0
25.0 | 70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne | 5.60
CentiPoise)
0.826
ty (cal/ml/ ⁰ C)
0.959
eeded (mg/L) | | | 42
43
44
45
46 | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. | (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. | 66.0
25.0 | 71.0
25.0 | 70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne | 5.60
CentiPoise)
0.826
ty (cal/ml/ ⁰ C)
0.959
eded (mg/L)
HDTMP | | | 42
43
44
45
46
47 | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day | (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) | 66.0
25.0 | 71.0
25.0 | 70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00 | | | 42
43
44
45
46
47
48 | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day | (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. | 66.0
25.0 | 71.0
25.0 | 70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne | 5.60
CentiPoise)
0.826
ty (cal/ml/ ⁰ C)
0.959
eded (mg/L)
HDTMP | | | 42
43
44
45
46
47
48
49 | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) | 66.0
25.0 | 71.0
25.0 | 70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50 | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * | (F)
(F)
(psia)
(psia)
1-Yes;0-No
API grav.
Sp.Grav.
(B/D)
(B/D) | 66.0
25.0 | 71.0
25.0 | 70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51 | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) | 66.0
25.0 | 71.0
25.0 | 70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51 | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH* (Strong base) † Quality Control Checks at | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: | 66.0
25.0 | 71.0
25.0 | 70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53 | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH (Strong base) † Quality Control Checks at H ₂ S Gas | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) | 66.0
25.0 | 71.0
25.0 | 70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55 | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH' (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/l) (pH) | 66.0
25.0 | 71.0
25.0 | 70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56 | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH* (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) (N) STP: (%) (mgH2S/I) (pH) (%) | 66.0
25.0 | 71.0
25.0 | 70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57 | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 | 66.0
25.0 | 71.0
25.0 | 70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58 | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated \$\textstyle{\textstyle{2}}\$\text{Control}\$ | (F) (F) (psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) | 66.0
25.0 | 71.0
25.0 | 70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59 | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 | 66.0
25.0 | 71.0
25.0 | 70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated SCations= EAnions= | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/l) as HCO3 (equiv./l) (equiv./l) | 66.0
25.0 | 71.0
25.0 | 70.0
25.0 | 41.0
25.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61 | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas
Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated ECations= ECations= Calc TDS= | (F) (F) (psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) | 66.0
25.0
25.0
0
0 | 71.0
25.0
25.0 | 70.0
25.0
25.0
1nhibitor
NTMP | 41.0
25.0
25.0
Unit Converter | 49.0
25.0
25.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62 | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH* (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated \$\textstyle{\textstyle{2}}\text{Collections=} \$\text{\$\ | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input | 66.0
25.0
25.0
0
0 | 71.0
25.0
25.0 | 70.0
25.0
25.0 | 41.0 25.0 25.0 Unit Converter From Unit | 49.0
25.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62 | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H,S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated E\(\text{Calculated}\) Alkalinity Caclulated E\(\text{Calculated}\) E\(\tex | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input | 66.0
25.0
25.0
0
0 | 71.0
25.0
25.0 | 70.0
25.0
25.0
1nhibitor
NTMP | 41.0
25.0
25.0
Unit Converter | 49.0
25.0
25.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
60
61
62
63 | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated ECations= EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer | (F) (F) (psia) (psia) (psia) 1-Yes:0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (equiv./I) Input 120 | 66.0
25.0
25.0
0
0 | 71.0
25.0
25.0
25.0 | Inhibitor NTMP BHPMP | 41.0 25.0 25.0 Unit Converter From Unit | 49.0
25.0
25.0
25.0
(From metric Value 80 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65 | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated ECations= EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? | (F) (F) (psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (equiv./I) (mg/I) Input 120 | 0
0
0
0
Unit
min | # 1 2 3 | Inhibitor NTMP BHPMP PAA | Unit Converter From Unit C m³ | 49.0
25.0
25.0
25.0
(From metric
Value
80
100 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65 | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated SCations= EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: | (F) (F) (psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (equiv./I) (mg/I) Input 120 | 0
0
0
0
Unit
min | # 1 2 3 4 | Inhibitor NTMP BHPMP PAA DTPMP | Unit Converter From Unit °C m³ m³ | 49.0
25.0
25.0
25.0
(From metric
Value
80
100
100 | 60.0
89.0
25.0
120.0
30.00
0.60
0
0
To Unit | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66 | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated Alkalinity Caclulated Alkalinity Caclulated SCations= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: If you select Mixed, | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (mg/I) Input 120 1 4 | 0 0 0 0 Unit min 1-Yes;0-No # | ## 1 2 3 4 5 5 | Inhibitor NTMP BHPMP PAA DTPMP PPCA | Unit Converter From Unit °C m³ m³ MPa | 49.0
25.0
25.0
25.0
(From metric
Value
80
100
1,000 | 60.0
89.0
25.0
120.0
30.00
0.60
0
0
To Unit
°F
ft³
bbl(42 US gal)
psia | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 145,074 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
55
56
57
58
59
60
61
62
63
64
65
66
67 | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated ECations= EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: If you select Mixed, 1st inhibitor # is: | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (mg/I) Input 120 1 4 | 0 0 0 0 Unit min 1-Yes;0-No # | #
1 2 3 4 5 5 6 | Inhibitor NTMP BHPMP PAA DTPMP PPCA SPA | Unit Converter From Unit °C m³ m³ MPa Bar | 49.0
25.0
25.0
25.0
 | 60.0
89.0
25.0
120.0
30.00
0.60
0
0
To Unit
"F
ft ³
bbl(42 US gal)
psia | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 145,074 7,194 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69 | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated ECAtions= EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor # is: If you select Mixed, 1st inhibitor # is: % of 1st inhibitor is: | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/l) as HCO3 (equiv./l) (equiv./l) (mg/l) Input 120 1 4 1 50 | 0 0 0 0 Unit min 1-Yes;0-No # # % | ## 1 2 3 4 4 5 5 6 7 7 | Inhibitor NTMP BHPMP PAA DTPMP PPCA SPA HEDP | Unit Converter From Unit C m³ m³ MPa Bar Torr | 49.0
25.0
25.0
25.0
25.0
Value
80
100
1,000
496
10,000 | 60.0
89.0
25.0
120.0
30.00
0.60
0
0
To Unit
°F
ft³
bbl(42 US gal)
psia
psia | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 145,074 7,194 193 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | ## **Saturation Index Calculations** Champion Technologies, Inc. (Based on the Tomson-Oddo Model) Brine 1: Ward Feed Yard 34-1 Brine 2: Ward Feed Yard 4-1 Brine 3: Clinesmith 5-4 Brine 4: Clinesmith 1 Brine 5: Clinesmith 2 | | | | Ratio | | | | |--------------------------|---------|---------|---------|---------|---------|-------------| | | 20% | 20% | 20% | 20% | 20 | | | Component (mg/L) | Brine 1 | Brine 2 | Brine 3 | Brine 4 | Brine 5 | Mixed Brine | | Calcium | 1836 | 2452 | 2044 | 1920 | 1948 | 1952 | | Magnesium | 1096 | 872 | 1200 | 953 | 858 | 865 | | Barium | 0 | 0 | 0 | 0 | 0 | 0 | | Strontium | 0 | 0 | 0 | 0 | 0 | 0 | | Bicarbonate | 190 | 234 | 259 | 268 | 254 | 253 | | Sulfate | 1 | 1 | 8 | 1 | 1 | 1 | | Chloride | 36299 | 48965 | 47874 | 45632 | 43147 | 43206 | | CO ₂ in Brine | 246 | 220 | 264 | 422 | 405 | 401 | | Ionic Strength | 1.12 | 1.48 | 1.46 | 1.38 | 1.31 | 1.31 | | Temperature (°F) | 89 | 89 | 89 | 89 | 89 | 89 | | Pressure (psia) | 50 | 50 | 120 | 120 | 120 | 119 | ### **Saturation Index** | Calcite | -1.71 | -1.41 | -1.48 | -1.68 | -1.69 | -1.69 | |-------------|-------|-------|-------|-------|-------|-------| | Gypsum | -3.71 | -3.64 | -2.82 | -3.73 | -3.72 | -3.69 | | Hemihydrate | -3.70 | -3.65 | -2.83 | -3.74 | -3.71 | -3.69 | | Anhydrite | -3.89 | -3.79 | -2.97 | -3.89 | -3.88 | -3.85 | | Barite | N/A | N/A | N/A | N/A | N/A | N/A | | Celestite | N/A | N/A | N/A | N/A | N/A | N/A | ## PTB | Calcite | N/A | N/A | N/A | N/A | N/A | N/A | |-------------|-----|-----|-----|-----|-----|-----| | Gypsum | N/A | N/A | N/A | N/A | N/A | N/A | | Hemihydrate | N/A | N/A | N/A | N/A | N/A | N/A | | Anhydrite | N/A | N/A | N/A | N/A | N/A | N/A | | Barite | N/A | N/A | N/A | N/A | N/A | N/A | | Celestite | N/A | N/A | N/A | N/A | N/A | N/A | ## **POSTROCK** ## **Current Completion** WELL : Taylor, Wayne L 1-1 FIELD : Cherokee Basin STATE: Kansas COUNTY: Neosho PREPARED BY: POSTROCK APPROVED BY: _ SPUD DATE: 10/22/2004 COMP DATE: 11/12/2004 API: 15-133- 26198-00-00 **LOCATION: 1-29S-17E (NE,SE)** **ELEVATION: 975'** **DATE:** July, 2012 DATE:_ ## **POSTROCK** ## **LEGEND** ## PostRock[®] APR 1 8 2006 # KANSAS CORPORATION COMMISSION ORIGINAL September 1999 OIL & GAS CONSERVATION DIVISION Form Must Be Typed CONSERVATION DIVISION WICHITA, KS **WELL HISTORY - DESCRIPTION OF WELL & LEASE** | Operator: License #_33344 | API No. 15 - 133-26198-00-00 | |--|---| | Name: Quest Cherokee, LLC | County: Neosho | | Address: 211 W. 14th Street | | | City/State/Zip: Chanute, KS 66720 | 1980 feet from S N (circle one) Line of Section | | Purchaser: Bluestem Pipeline, LLC | 660 feet from (E) W (circle one) Line of Section | | Operator Contact Person: Gary Laswell | Footages Calculated from Nearest Outside Section Corner: | | Phone: (620) 431-9500 | (circle one) NE (SE) NW SW | | Contractor: Name: Barton T. Lorenz | Lease Name: Taylor, Wayne L. Well #: 1-1 | | License: 33286 | Field Name: Cherokee Basin CBM | | Wellsite Geologist: n/a | Producing Formation: Riverton | | Designate Type of Completion: | Elevation: Ground: 975 Kelly Bushing: n/a | | New Well Re-Entry Workover | Total Depth: 1112 Plug Back Total Depth: 1106 | | Oil SWD SIOWTemp. Abd. | Amount of Surface Pipe Set and Cemented at 21.5 Feet | | Gas ENHR SIGW | Multiple Stage Cementing Collar Used? | | Dry Other (Core, WSW, Expl., Cathodic, etc) | If yes, show depth setFeet | | If Workover/Re-entry: Old Well Info as follows: | If Alternate II completion, cement circulated from 1119 | | Operator: | feet depth to Surface w/ 133 sx cmt. | | Well Name: | | | Original Comp. Date: Original Total Depth: | Drilling Fluid Management Plan (Data must be collected from the Reserve Pit) | | Deepening Re-perf Conv. to Enhr./SWD | Chloride content ppm Fluid volume bbls | | Plug BackPlug Back Total Depth | Dewatering method used | | Commingled Docket No | | | Dual Completion Docket No | Location of fluid disposal if hauled offsite: | | Other (SWD or Enhr.?) Docket No | Operator Name: | | 10/22/04 10/25/04 11/12/04 | Lease Name: License No.: | | Spud Date or Date Reached TD Completion Date or | Quarter Sec Twp S. R | | Recompletion Date Recompletion Date | County: Docket No.: | | Kansas 67202, within 120 days of the spud date, recompletion, workow Information of side two of this form will be held confidential for a period of 107 for confidentiality in excess of 12 months). One copy of all wireline logs TICKETS MUST BE ATTACHED. Submit CP-4 form with all plugged wells | the Kansas Corporation Commission, 130 S. Market - Room 2078, Wichita, er or conversion of a well. Rule 82-3-130, 82-3-106 and 82-3-107 apply. It months if requested in writing and submitted with the form (see rule 82-3-12 and geologist well report shall be attached with this form. ALL CEMENTING and Submit CP-111 form with all temporarily abandoned wells. | | | | | Signature: /) ey (/ Cisnut | KCC Office Use ONLY | | Title: Head of Operations Date: 4/13/06 | Letter of Confidentiality Received | | Subscribed and sworn to before me this 13th day of 10 fi | If Denied, Yes Date: | | 20.06. | Wireline Log Received | | | Geologist Report Received | | Notary Public: Jennah 7. Ammann | UIC Distribution | | Date Commission Expires: (1/1/// /7//) A/// | ENNIFER AMMANN ary Public - State of Kansas | | Operator Name: Qu | est Cherokee, LL | С | | Lease | -
 | Γaylor, V | Vayne L. | | Well #:1-1 | | | |--|--|----------------------------|--------------------------------------|---------------------------|---------------|--------------
--|----------------------------------|--|--|-------------| | Sec. 1 Twp. 2 | | | West | | y: Neos | | | | | | | | INSTRUCTIONS: S
tested, time tool ope
temperature, fluid re
Electric Wireline Log | n and closed, flowing
covery, and flow rate | g and shut-
s if gas to | in pressures,
surface test, a | whether sh
long with f | hut-in pre | ssure rea | ached stati | c level, hydr | ostatic pressure | es, botto | m hole | | Drill Stem Tests Take | | Ye | es √ No | | V L | og Fo | ormation (| Гор), Depth | and Datum | | Sample | | Samples Sent to Ge | ological Survey | ☐ Ye | es 🗹 No | | Nam
See | e
attache | d | | Тор | ļ | Datum | | Cores Taken | • | ☐ Ye | s V No | | 000 | attaono | - | | | | | | Electric Log Run
(Submit Copy) | | ✓ Ye | | | | | | | RECEIVED | N 20 20 20 20 20 20 20 20 20 20 20 20 20 | No. | | List All E. Logs Run: | | | | | | | | Kansas C | ORPORATION CO | ACCINANA | NA. | | Comp. Density
Dual Induction
Gamma Ray/N | Log | | | | | | | | NPR 1 8 200
NSERVATION DIV
WICHITA, KS | | | | | | | | | | | | | MOUITA, NO | | | | | | Repor | CASING
t all strings set-c | RECORD conductor, si | Lancon III | | sed
production, | etc. | | | | | Purpose of String | Size Hole
Drilled | | e Casing
(In O.D.) | Wei | | Setti
Dep | | Type of
Cement | # Sacks
Used | | and Percent | | Surface | 11" | 8-5/8" | | 20# | | 21.5' | " A | \" | 6 | | | | Production | 6-3/4" | 4-1/2" | | 10.5# | | 1106' | " A | \" | 133 | | | | Purpose: | Depth
Top Bottom | Туре | ADDITIONAL of Cement | CEMENTI | | JEEZE RE | ECORD | Type and | Percent Additives | | | | Perforate Protect Casing Plug Back TD Plug Off Zone | | | | | | | | | | | | | | T | | | | | | | | | | | | Shots Per Foot | | | D - Bridge Plug
Each Interval Per | | • | A | | , Shot, Cemei
t and Kind of N | nt Squeeze Recor
faterial Used) | d | Depth | | 4 | 1048-1052 | | | | | Acid jol | b, 350 gal | 15% acid, | KCL .25 gal, E | Biocide | 1048-1052 | | | | | | | | | | | | | | | TUBING RECORD | Size | Set At | • | Packer A | At | Liner Ru | | - | · · · · · · · · · · · · · · · · · · · | | | | | 3/8" | 1081.15 | | n/a | | | Ye | es 🗸 No |) | | | | 4/04/05 | rd Production, SWD or E | zriffi. | Producing Met | 110 u | Flowin | g 🗸 | Pumping | Gas L | ift Othe | er (Explain |) | | Estimated Production
Per 24 Hours | Oil
n/a | Bbls. | Gas
55 mcf | Mcf | Wate
20 bl | | Bbls. | | Gas-Oil Ratio | | Gravity | | Disposition of Gas | METHOD OF (| COMPLETIC | | | | | on Interval | | | | | | Vented ✓ Sold (If vented, S | Used on Lease ubmit ACO-18.) | | Open Hole Other (Spec | ✓ Perf | f. [| Dually Com | processor of the same s | Commingled _ | | | | CHANUTE, KS 66720 620-431-9500 THORIZTION_ TOTAL DATE ## TREATMENT REPORT & FIELD TICKET | _ | | | | | | |---|----|-----|---|----|---| | C | F | NЛ | ⊏ | N | т | | • | ь, | 141 | ᆫ | 14 | • | | 11-12-2004 | WELL NAME & NUMBER Taylor, Wayne L. # 1-1 | SECTION | TOWNSHIP | RANGE | COUNTY | |------------|--|---------|----------|-------|--------| | <u></u> | 7 | | 295 | 175 | Ma | | FOREMAN | TIME | T | T | T | | | 1 / 6 | |----------|--------|------|-------|-------|-------------|------------|-------------| | | IIIVIE | TIME | LESS | TRUCK | TRUCK | EMPLO | /EE | | OPERATOR | IN | OUT | LUNCH | # | | | | | John. M | 11:30 | 5:46 | | | HOURS | SIGNAT | JFHE | | wes. 7 | | 1 | No | 348 | 5 | | 7 | | | 11:30 | 5:14 | No | 197 | ~ | 11/10/00 1 | | | Jimmy, 4 | 11:30 | 512 | No | 103 | >- | Westery O | your | | Tim . A | 11:30 | 503 | No | 140 | | | | | RODNE, A | 11:30 | 4:40 | | | <u>_</u> | On agent | | | | | 1160 | No | 286 | 5 | Rod | | | | | 1 | | | | | | | The state of s | 1 1 | | |--|------------------|------------------------------| | J.TYPE Long String HOLE SIZE 63 | HOLE DEPTH /// Z | | | CASING DEPTH //06 DRILL PIPE | TUBING | CASING SIZE & WEIGHT 4 /10.5 | | SLURRY WEIGHTSLURRY VOL | | OTHER | | DISPLACEMENT 17.5 DISPLACEMENT DEL 750 | WATER gal/sk | CEMENT LEFT in CASING | | REMARKS: Cife Land | MIX PSI 250 | RATE | | REMARKS: Circulate with frost 13 BBL Dge with 15 cantill Dge Refus, flush | 4º6 RON | Gol about, Pan | | water, set float stoe. | 20/10/05 2001 | um Silicate, coment | | water, set flood stop | The party | plag with K.C.L. | | Wait ON BORDY to MOR L | | | | Very Nost, Maddy landing | COCETION / | 44. | | Very Nost, Muddy Location, all | (tows pulled | in, acound, and out of | | | | | | ACCOUNT
CODE | QUANITY or UNITS | DESCRIPTION of SERVICES or PRODUCT | T | 1 | |-----------------|------------------|------------------------------------|------------------|-----------| | | # 348 | Foreman Pickup | UNIT PRICE * | TOTAL | | | # 197 | Cement Pump Truck | RECEIVED | | | 1110 | #103 | Bulk Truck KANE | AS CORPORATION C | OMMISSION | | | 13sts | Gilsonite | APR 1 8 200 | 6 | | 1118 | 1 5 k s | Flo-Seal
Premiun Gel | CONSERVATION DIV | SION | | 1215A | 1991 | KCL | WICHITA, KS | | | -1111B | 159915 | Sodium SIlicate | | | | 1123 | 6,300 995 | City Water /50 BBC | | | | | #140 | Transport | | | | | #786
170 = K- | 80 Vac | | | | | W/out a dditions | Cement 133 sts w/additives | SALES TAX | | | | | | ESTIMATED | | TITLE___ ## BARTON T. LORENZ #33286 543-A 22000 Rd. Cherryvale, KS 67335 620-328-4433 502-503 503-539 539-541 541-550 550-552 561-571 571-592 592-614 614-616 616-619 619-623 623-628 628-630 630-631 631-633 633-635 635-646 646-659 659-676 552-561 SHALE SHALE SHALE SHALE SHALE LIME SHALE SHALE LIME SAND SHALE LIME LIME PINK **BLACK SHALE** SANDY SHALE LIME OSWEGO **BLACK SHALE** SANDY SHALE COAL LESS THAN 8" SAND/ODOR ## DRILLER LOG ### QUEST CHEROKEE, LLC
Wayne Taylor #1-1 S1, T29, R17E Neosho County API # 15-133-26198-00-00 | 0-8
8-40'
40-91
91-96 | DIRT
SAND
SHALE
LIME | | 10-22-04 Drilled 11" hole and
Set 21.5' of 8 5/8" Surface pipe
Set with 6 sacks of Portland Cen | nent | |--------------------------------|-------------------------------|-----------|--|--| | 96-107 | SHALE | | 10-25-04 Started drilling 6 3/4" he | ole | | 107-178 | LIME | | | | | 178-182 | SHALE | | 10-25-04 Finished drilling to T.D | . 1112' | | 182-187 | LIME | | | | | 187-200 | SANDY SHALE | | WATER @ 511' | | | 200-220 | SAND | | WATER INCREASE @ 980' | Dr. | | 220-227 | SHALE | | 10510110110110110 | RECEIVED KANSAS CORPORATION COMMISSION | | 227-238
238-241 | LIME | 00 7 1405 | 485' 3" ON 1/2" ORIFICE | WALLON COMMISSION | | 230-241
241-253 | SHALE | 62.7 MCF | 511 100 511 HZ 5111 10E | APR 1 8 2006 | | 241-255
253-265 | LIME | 77 MCF | 561' 8" ON 1" ORIFICE | 7 8 2006 | | 265-316 | SHALE
LIME | 141 MCF | 586' 28" ON 1" ORIFICE | CONSERVATION DIVISION
WICHITA, KS | | 316-370 | SANDY SHALE | 190 MCF | 626' 54" ON 1" ORIFICE | WICHITA, KS | | 370-370 | SHALE | 181 MCF | 636' 17" ON 1 1/4" ORIFICE | | | 380-383 | LIME | | 711' 15" ON 1 1/4" ORIFICE | | | 383-413 | SHALE | | 736' 17" ON 1 1/4" ORIFICE
761' 16" ON 1 1/4" ORIFICE | | | 413-425 | LIME | | 786' 15" ON 1 1/4" ORIFICE | | | 425-431 | SHALE | 340 MCF | | | | 431-438 | SAND | 822 MCF | 887' 13 LBS ON 1 1/4" ORIFICE | | | 438-464 | SHALE | 1495 MCF | | | | 464-491 | SANDY SHALE | | 1012' UNABLE TO TEST DUE TO | WATER | | 491-501 | LIME | 1715 MCF | | v v / \ 1 \ 1 \ | | 501-502 | COAL LESS THAN 6" | | The State of S | | | E00 E00 | | | | | * BARTON T. LORENZ #33286 543-A 22000 Rd. Cherryvale, KS 67335 620-328-4433 ## DRILLER LOG QUEST CHEROKEE, LLC Wayne Taylor #1-1 S1, T29, R17E Neosho County API # 15-133-26198-00-00 | 676-686 | SANDY SHALE | |-----------|-----------------------| | 686-701 | SHALE | | 701-702 | COAL | | 702-720 | SHALE | | 720-722 | LIME | | 722-724 | SHALE | | 724-725 | COAL LESS THAN 8" | | 725-738 | SAND | | 738-759 | SANDY SHALE | | 759-760 | COAL | | 760-773 | SAND | | 773-777 | SHALE | | 777-798 | SAND/ODOR | | 798-808 | SANDY SHALE | | 808-818 | SHALE | | 818-819 | COAL LESS THAN 8" | | 819-826 | SAND | | 826-836 | SANDY SHALE | | 836-853 | SAND | | 853-861 | SANDY SHALE | | 861-873 | LAMINATED SAND/ODOR | | 873-897 | LAMINATED SAND | | 897-912 | SAND | | 912-934 | SANDY SHALE | | 934-960 | SAND/ODOR | | 960-990 | SAND | | 990-991 | COAL | | 991-999 | SHALE | | 999-1000 | | | 1000-1042 | | | 1042-1044 | | | 1044-1057 | | | 1057-1112 | LIME MISSISSIPPI/ODOR | APR 1 8 2006 RECEIVED KANSAS CORPORATION COMMISSION CONSERVATION DIVISION WICHITA, KS T.D. 1112' ## **KGS STATUS** - ◆ DA/PA - EOR - **⇔** GAS - △ INJ/SWD - OIL - **♦** OIL/GAS - OTHER Taylor, Wayne L 1-1 1-29S-17E 1" = 1,000' #### BEFORE THE STATE CORPO-RATION COMMISSION OF THE STATE OF KANSAS NOTICE OF FILING APPLICATION RE: In the Matter of Postrock Midcontinent Production, LLC Application for Commingling of Production in the Taylor, Wayne L 1-1 located in Neosho County, Kansas. TO: All Oil & Gas Producers, Unleased Mineral Interest Owners, Landowners, and all persons whomever concerned. You, and each of you, are hereby notified that Postrock Midcontinent Production, LLC has filed an application to commingle the Summit, Mulky, Bevier, Croweburg, Fleming, Rowe, Neutral, Riverton and Bartlesville producing formations at the Taylor, Wayne L 1-1, located in the NESWNESE S1-T29S-R17E, Approximately 1867 FSL & 687 FEL, Neosho County, Kansas. Any persons who object to or protest this application shall be required to file their objections or protest with the Conservation Division of the State Corporation Commission of the State of Kansas within fifteen (15) days from the date of this publication. These protests shall be filed pursuant to Commission regulations and must state specific reasons why granting the application may cause waste, violate correlative rights or pollute the natural resources of the State of Kansas. All persons interested or concerned shall take notice of the foregoing and shall govern themselves accordingly. All person and/or companies wishing to protest this application are required to file a written protest with the Conservation Division of the Kansas Oil and Gas Commission. Upon the receipt of any protest, the Commission will convene a hearing and protestants will be expected to enter an appearance either through proper legal counsel or as individuals, appearing on their own behalf. Postrock Midcontinent Production, LLC 210 Park Avenue, Suite 2750 Oklahoma City, Oklahoma 73102 (405) 660-7704 A COPY OF THE AFFIDAVIT OF PUBLICATION MUST ACCOM-PANY ALL APPLICATIONS ## Affidavit of Publication 🐝 STATE OF KANSAS, NEOSHO COUNTY, ss: Rhonda Howerter, being first duly sworn, deposes and says: That she is Classified Manager of THE CHANUTE TRIBUNE, a daily newspaper printed in the State of Kansas, and published in and of general circulation in Neosho County, Kansas, with a general paid circulation on a daily basis in Neosho County, Kansas, and that said newspaper is not a trade, religious or fraternal publication. Said newspaper is a daily published at least weekly 50 times a year: has been so published continuously and uninterruptedly in said county and state for a period of more than five years prior to the first publication of said notice; and has been admitted at the post office of Chanute, in said county as second class matter. That the attached notice is a true copy thereof and was Total Publication Fees \$ 73,0 #### AFFIDAVIT STATE OF KANSAS SS. County of Sedgwick Mark Fletchall, of lawful age, being first duly sworn, deposeth and saith: That he is Record Clerk of The Wichita Eagle, a daily newspaper published in the City of Wichita, County of Sedgwick, State of Kansas, and having a general paid circulation on a daily basis in said County, which said newspaper has been continuously and uninterruptedly published in said County for more than one year prior to the first publication of the notice hereinafter mentioned, and which said newspaper has been entered as second class mail matter at the United States Post Office in Wichita, Kansas, and which said newspaper is not a trade, religious or fraternal publication and that a notice of a true copy is hereto attached was published in the regular and entire Morning issue of said The Wichita Eagle for _1_ issues, that the first publication of said notice was made as aforesaid on the 17th of August A.D. 2012, with subsequent publications being made on the following dates: And affiant further says that he has personal knowledge of the statements above set forth and that they are true. Subscribed and sworn to before me this 17th day of August, 2012 PENNY L. CASE Notary Public State of Kansas My Appt. Expires Notary Public Sedgwick County, Kansas Printer's Fee: \$139.60 ## LEGAL PUBLICATION PUBLISHED IN THE WICHITA EAGLE AUGUST 17, 2012 (3201729) BEFORE THE STATE CORPORATION COMMISSION OF THE STATE OF KANSAS NOTICE OF FILING APPLICATION RE: in the Maiter of Postrock Midcontinent Production, LLC Application for Commingling of Production in the Taylor, Wayne L 1-1 located in Neosho County, Kansas. Kansas. TO, All Oil & Gas Producers, Unleased Mineral interest Owners, Landowners, and all persons whomever concerned. You, and each of you, are hereby notified that Postrock Midcontinent Production, LLC has filed an application to commingle the Summit, Mulky, Bevier, Croweburg, Fleming, Rowe, Neutral, Riverton and Bartlesville producing formations at the Taylor, Wayne, L1-1, located in the NESWNESE 51-T295-R17E, Approximately 1867 FSL & 687 FEL, Neosho County, Kansas. Any persons who object to or profest Neosto County, Kansas. Any persons who object to or protest this application shall be required to file their
objections or protest with the Conservation Division of the State Corporation Commission of the State of Kansas within fifteen (15) days from the date of this publication. These protests shall be filed pursuant to Commission regulations and must state specific reasons withour calling the analysis. why granting the application may cause waste, violate correlative rights or pollute the natural resources of the State of Kansas. resources of the State of Kansas. All persons interested or concerned shall take notice of the foregoing and shall govern themselves accordingly. All person and/or companies wishing to protest this application are required to file a written protest with the Conservation Division of the Kansas Oil and Gas Commission. Cas commission. Upon the receipt of any protest, the Commission will convene a hearing and protestants will be expected to enter an appearance either through proper legal counsel or as individuals, appearing on their own health. own behalf. Denair. Postrock Midcontinent Production, LLC 210 Park Avenue, Suite 2750 Oklahoma City, Oklahoma 73102 (405) 660-7704 A COPY OF THE AFFIDAVIT OF PUBLICATION MUST ACCOMPANY ALL APPLICATIONS ## TAYLOR, WAYNE L 1-1 | 1 NAME & UPPE | R & LOWER LIMIT OF EACH PRO | DUCTION INTE | RVAL TO BE | COMMING | _ED | | | | |----------------|-----------------------------|--------------|------------|-------------|--------|-----|-------|----| | FORMATION: | FLEMING | | (PERFS): | 763 - | 765 | | | | | FORMATION: | ROWE | | (PERFS): | 1003 - | 1005 | | | | | FORMATION: | NEUTRAL | | (PERFS): | 1008 - | 1010 | | | | | FORMATION: | NEUTRAL | | (PERFS): | 1016 - | 1018 | | | | | FORMATION: | RIVERTON | <u> </u> | (PERFS): | 1048 - | 1052 | | | | | FORMATION: | BARTLESVILLE | | (PERFS): | 798 - | 802 | | | | | FORMATION: | | | (PERFS): | | | | | | | FORMATION: | | | (PERFS): | | | | | | | FORMATION: | | | (PERFS): | | | | | | | FORMATION: | | | (PERFS): | | | | | | | FORMATION: | | | (PERFS): | | | | | | | FORMATION: | | | (PERFS): | | | | | | | 2 ESTIMATED AN | MOUNT OF FLUID PRODUCTION | ГО ВЕ СОММІ | NGLED FROM | M EACH INTI | ERVAL | | | | | FORMATION: | FLEMING | | BOPD: | 0 | MCFPD: | 1.6 | BWPD: | 4 | | FORMATION: | ROWE | | BOPD: | 0 | MCFPD: | 1.6 | BWPD: | 4 | | FORMATION: | NEUTRAL | | BOPD: | 0 | MCFPD: | 1.6 | BWPD: | 4 | | FORMATION: | NEUTRAL | | BOPD: | 0 | MCFPD: | 1.6 | BWPD: | 4 | | FORMATION: | RIVERTON | | BOPD: | 0 | MCFPD: | 1.6 | BWPD: | 4 | | FORMATION: | BARTLESVILLE | _ | BOPD: | 3 | MCFPD: | 0 | BWPD: | 20 | | FORMATION: | | 0 | BOPD: | | MCFPD: | | BWPD: | | | FORMATION: | | 0 | BOPD: | | MCFPD: | | BWPD: | | | FORMATION: | | 0 | BOPD: | | MCFPD: | | BWPD: | | | FORMATION: | | 0 | BOPD: | | MCFPD: | | BWPD: | | | FORMATION: | | 0 | BOPD: | | MCFPD: | | BWPD: | | | FORMATION: | | 0 | BOPD: | | MCFPD: | | BWPD: | | | Affidav | fidavit of Notice Served | ! | l | |-------------|---|--------------------------------------|-----------------------| | Re: | Application for: APPLICATION FOR COMMINGLING OF PRODUCTION | OR FLUIDS ACO-4 | | | | Well Name: TAYLOR, WAYNE L 1-1 Legal Location: | NESWNESE S1-T29S-R17E | | | The und | e undersigned hereby certificates that he / she is a duly authorized agent for the applicant, and that on | the day 18th of Septemb | <u> </u> | | 2012 | | | | | Note: A | te: A copy of this affidavit must be served as a part of the application. | | | | | | dditional sheets if necessary) | | | POST | OSTROCK MIDCONTINENT PRODUCTION ,LLC 210 PARK AVENU | IE, SUITE 2750, OKLAHOMA CITY, (| OK 73102-5641 | I further a | rther attest that notice of the filing of this application was published in the <u>The Chanu</u> | e Tribune , the officia | al county publication | | of | Neosho county. A copy of the affida | vit of this publication is attached. | | | | ned this 18th day of September 2012 | • | | | Signed th | ned this 18th day of September, 2012 | 110 | | | | Applicant or Duly Authorized | Acont // Lours | | | | | day of <u>September</u> | | | ę | Subscribed and sworn to before me this | day of Oepre/430er | , 2012 | | , | JENNIFER R. BEAL | fu K. Deal | | | \$ | MY COMMISSION EXPIRES Notary Public 7-20-2010 My Commission Expires: | (2.1. 20 2NI | f ₁₀ | | (! | My Commission Expires: | guez. a xorg | | | | | | | | | | | | | | | | | | | · | | | | t Operators, Unleased Mineral Owners and Landowners acreage | i | |--|--| | h additional sheets if necessary) |) | | Name: | Legal Description of Leasehold: | | STROCK MIDCONTINENT PRODUCTION, LLC | POSTROCK HAS LEASED ALL ACREAGE IN THE 1/2 | | THOOK WILDOON THE LITT THOO DO THON, ELO | | | | MILE RADIUS | y certify that the statements made herein are true and correct to the best | of my knowledge and belief. | | | () Manage | | | Jest & Maris | | Appl | ligant or Duly Authorized Agent | | Subscribed and sworn bef | fore me this 18th day of September ,2012 | | A those in the west like and the west of the spirit program to the spirit | | | JENNIFER R. BEAL | Chanter K Beal | | Notes SEAL 2015 MY COMMISSION EXPIRES | ary Public | | The second secon | Commission Expires: July 30, 2016 | Conservation Division Finney State Office Building 130 S. Market, Rm. 2078 Wichita, KS 67202-3802 Phone: 316-337-6200 Fax: 316-337-6211 http://kcc.ks.gov/ Sam Brownback, Governor Mark Sievers, Chairman Thomas E. Wright, Commissioner Shari Feist Albrecht, Commissioner October 3, 2012 Clark Edwards PostRock Midcontinent Production LLC Oklahoma Tower 210 Park Ave, Ste 2750 Oklahoma City, OK 73102 RE: Approved Commingling CO091209 Taylor, Wayne L. 1-1, Sec. 1-T29S-R17E, Neosho County API No. 15-133-26198-00-00 Dear Mr. Edwards: Your Application for Commingling (ACO-4) for the above described well, received by the KCC on September 18, 2012, has been reviewed and approved by the Kansas Corporation Commission (KCC) per K.A.R. 82-3-123. Notice was examined and found to be proper per K.A.R. 82-3-135a. No protest had been filed within the 15-day protest period. Based upon the depth of the Riverton formation perforations, total oil production shall not exceed 100 BOPD and total gas production shall not exceed 50% of the absolute open flow (AOF). ## File form ACO-1 upon re-completion of the well to commingle. Commingling ID number CO091209 has been assigned to this approved application. Use this number for well completion reports (ACO-1) and other correspondence that may concern this approved commingling. Sincerely, Rick Hestermann Production Department