KANSAS CORPORATION COMMISSION OIL & GAS CONSERVATION DIVISION 1093831 Form ACO-4 Form must be typed March 2009 # APPLICATION FOR COMMINGLING OF Commingling ID # _ PRODUCTION (K.A.R. 82-3-123) OR FLUIDS (K.A.R. 82-3-123a) | OPERA | OR: License # | API No. 15 | | | |-------------------------------------|---|----------------------------------|--------------------------------------|-------------------------------| | Name:_ | | Spot Description: | | | | Address | 1: | | Sec TwpS. F | R Bast West | | Address | 2: | | Feet from North / | South Line of Section | | City: | State: Zip:+ | | Feet from East / | West Line of Section | | Contact | Person: | County: | | | | Phone: | () | Lease Name: | Well #: | | | 1. | Name and upper and lower limit of each production interval to | be commingled: | | | | | Formation: | (Perfs): _ | | | | | Formation: | (Perfs): _ | | | | | Formation: | (Perfs): _ | | | | | Formation: | (Perfs): _ | | | | | Formation: | (Perfs): _ | | | | | | | | | | 2. | Estimated amount of fluid production to be commingled from e | | | | | | Formation: | | MCFPD: | | | | Formation: | BOPD: | MCFPD: | BWPD: | | | Formation: | | MCFPD: | | | | Formation: | BOPD: | MCFPD: | _ BWPD: | | | Formation: | BOPD: | MCFPD: | _ BWPD: | | □ 3.□ 4. | Plat map showing the location of the subject well, all other we the subject well, and for each well the names and addresses of Signed certificate showing service of the application and affide | of the lessee of record or oper | ator. | thin a 1/2 mile radius of | | For Con | nmingling of PRODUCTION ONLY, include the following: | | | | | <u> </u> | Wireline log of subject well. Previously Filed with ACO-1: | Yes No | | | | ☐ 6. | Complete Form ACO-1 (Well Completion form) for the subject | well. | | | | For Con | nmingling of FLUIDS ONLY, include the following: | | | | | 7. | Well construction diagram of subject well. | | | | | 8. | Any available water chemistry data demonstrating the compat | ibility of the fluids to be comm | ingled. | | | current in mingling | /IT: I am the affiant and hereby certify that to the best of my nformation, knowledge and personal belief, this request for comis true and proper and I have no information or knowledge, which istent with the information supplied in this application. | Su | bmitted Electronical | ly | | KCC | C Office Use Only | Protests may be filed by any | party having a valid interest in the | application. Protests must be | Date: _ Approved By: | - | Α | В | С | D | Е | F | G | Н | 1 | | K | |--|--|--|---|--|--|---|--|--|---|---|-----------------| | 1 | Produced Fluids # | В | 1 | 2 | 3 | 4 | 5 | 11 | • | <u> </u> | | | | Parameters | Units | Input | Input | Input | Input | Input | | Click he | re | Click | | 3 | Select the brines | Select fluid | | Ī | | V | Ī | Mixed brine: | to run SS | - | | | 4 | Sample ID | by checking | | | | | | Cell H28 is | to ruii oc | • | Click | | 5 | Date | the box(es), | 3/19/2012 | 3/4/2012 | 3/14/2012 | 1/20/2012 | 1/20/2012 | STP calc. pH. | ———— | | | | 6 | Operator | Row 3 | PostRock | PostRock | PostRock | PostRock | PostRock | Cells H35-38 | | | Click | | 7 | Well Name | | Ward Feed | Ward Feed | Clinesmith | Clinesmith | Clinesmith | are used in | Goal Seek | SSP | | | 8 | Location | | #34-1 | #4-1 | #5-4 | #1 | #2 | mixed brines | | | Click | | 9 | Field | | CBM | CBM | Bartles | Bartles | Bartles | calculations. | | | | | 10 | Na ⁺ | (mg/l)* | 19,433.00 | 27,381.00 | 26,534.00 | 25689.00 | 24220.00 | 24654.20 | Initial(BH) | Final(WH) | SI/SR | | 11 | K ⁺ (if not known =0) | (mg/l) | | | | | | 0.00 | Saturation Index | values | (Final-Initial) | | | Mg ²⁺ | (mg/l) | 1,096.00 | 872.00 | 1,200.00 | 953.00 | 858.00 | 995.91 | | lcite | | | | Ca ²⁺ | (mg/l) | 1,836.00 | 2,452.00 | 2,044.00 | 1920.00 | 1948.00 | 2040.23 | -0.73 | -0.60 | 0.13 | | | Sr ²⁺ | | 1,050.00 | 2,432.00 | 2,044.00 | 1720.00 | 1740.00 | | | | 0.13 | | | Ba ²⁺ | (mg/l) | | | | | | 0.00 | Da | rite | | | ., | | (mg/l) | | | | | | 0.00 | | | | | | Fe ²⁺ | (mg/l) | 40.00 | 21.00 | 18.00 | 82.00 | 90.00 | 50.21 | | lite | | | | Zn ²⁺ | (mg/l) | | | | | | 0.00 | -1.77 | -1.80 | -0.03 | | 18 | Pb ²⁺ | (mg/l) | | | | | | 0.00 | Gyp | sum | | | 19 | Cl | (mg/l) | 36,299.00 | 48,965.00 | 47,874.00 | 45632.00 | 43147.00 | 44388.44 | -3.19 | -3.18 | 0.00 | | 20 | SO ₄ ²⁻ | (mg/l) | 1.00 | 1.00 | 8.00 | 1.00 | 1.00 | 2.40 | Hemil | ıydrate | | | 21 | F. | (mg/l) | | | | | | 0.00 | -3.96 | -3.90 | 0.06 | | | Br' | (mg/l) | | | | | | 0.00 | | ydrite | | | | SiO2 | (mg/l) SiO2 | | | | | | 0.00 | -3.47 | -3.36 | 0.12 | | _ | HCO3 Alkalinity** | (mg/l as HCO3) | 190.00 | 234.00 | 259.00 | 268.00 | 254.00 | 241.03 | | estite | | | | CO3 Alkalinity | (mg/l as CO3) | 170.00 | 434.00 | 237,00 | 200.00 | 234.00 | 241.03 | Cen | | | | | Carboxylic acids** | (mg/l) | | | | | | 0.00 | Inor 6 | Sulfide | | | 27 | Ammonia | (mg/L) NH3 | | | | | | 0.00 | -0.16 | -0.22 | -0.06 | | _ | | | | | | | | | | | -0.00 | | | Borate | (mg/L) H3BO3 | | | | | | 0.00 | Zinc | Sulfide | | | | TDS (Measured) | (mg/l) | 4.040 | 4.0=4 | | | | 72781 | ~ | | | | | Calc. Density (STP) CO ₂ Gas Analysis | (g/ml) | 1.038
19.97 | 1.051
18.76 | 1.050
22.41 | 1.048
35.53 | 1.045 | 1.047 | Calcium | fluoride | | | | - , | (%) | | 0.0292 | | | 33.79 | 26.16 | I C. | -l | | | | H ₂ S Gas Analysis***
Total H2Saq | (%) | 0.0289 | 1.00 | 0.0296 | 0.0306 | 0.0151
0.50 | 0.0269 | -0.74 | rbonate
-0.51 | 0.23 | | _ | _ | (mgH2S/l) | 1.00
5.67 | 5.76 | 1.00
5.72 | 1.00
5.54 | 5.55 | 5.63 | | eeded (mg/L) | 0.23 | | 34 | pH, measured (STP) | pH
0-CO2%+Alk, | 5.07 | 5./0 | 5.72 | 5.54 | 5.55 | 5.03 | Calcite | NTMP | | | | Choose one option | | | | | | | | Calcite | NIMI | | | 35 | to calculate SI? | 2-CO2%+pH | 0 | 0 | 0 | 0 | 0 | | | | | | 36 | Gas/day(thousand cf/day) | (Mcf/D) | | | | | | 0 | 0.00 | 0.00 | | | | Oil/Day | (B/D) | 0 | 0 | 1 | 1 | 1 | 4 | Barite | BHPMP | | | | Water/Day | (B/D) | 100 | 100 | 100 | 100 | 100 | 500 | 0.00 | 0.00 | | | | For mixed brines, enter val | | | mag in Calle (H | (40 H42) | | | | | | | | - | Initial T | | | ` | | 44.0 | 40.0 | (Enter H40-H43) | | Н | | | | | (F) | 66.0 | 71.0 | 70.0 | 41.0 | 49.0 | 60.0 | 5.69 | 5.60 | 1 | | | Final T | (F)
(F) | 66.0
66.0 | 71.0
71.0 | 70.0
70.0 | 41.0 | 49.0 | 60.0
89.0 | 5.69
Viscosity (| 5.60
CentiPoise) | | | 42 | Final T
Initial P | (F)
(F)
(psia) | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 |
41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0 | 5.69
Viscosity (
1.196 | 5.60
CentiPoise)
0.826 | | | 42
43 | Final T
Initial P
Final P | (F)
(F)
(psia)
(psia) | 66.0
66.0 | 71.0
71.0 | 70.0
70.0 | 41.0 | 49.0 | 60.0
89.0 | 5.69
Viscosity (
1.196
Heat Capaci | 5.60
CentiPoise)
0.826
ty (cal/ml/ ⁰ C) | | | 42
43
44 | Final T Initial P Final P Use TP on Calcite sheet? | (F)
(F)
(psia)
(psia)
I-Yes;0-No | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69
Viscosity (
1.196
Heat Capaci
0.955 | 5.60
CentiPoise)
0.826
ty (cal/ml/ ⁰ C)
0.959 | | | 42
43
44
45 | Final T
Initial P
Final P | (F)
(F)
(psia)
(psia) | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0 | 5.69
Viscosity (
1.196
Heat Capaci
0.955 | 5.60
CentiPoise)
0.826
ty (cal/ml/ ⁰ C) | | | 42
43
44
45
46 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. | (F) (F) (psia) (psia) I-Yes;0-No API grav. | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no | 5.60
CentiPoise)
0.826
ty (cal/ml/ ⁰ C)
0.959
eeded (mg/L) | | | 42
43
44
45
46
47
48 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00 | | | 42
43
44
45
46
47
48
49
50 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG//Day Conc. Multiplier H* (Strong acid) * | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH* (Strong base) † Quality Control Checks at | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH* (Strong base) † Quality Control Checks at H ₂ S Gas | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. API Oil Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH' (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/l) (pH) | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. API Oil Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated ECations= | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH (Strong base) * Quality Control Checks at H ₂ S Gas Total H ₂ Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated SCations= EAnions= | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/l) as HCO3 (equiv./I) (equiv./I) | 66.0
66.0
25.0 | 71.0
71.0
25.0 | 70.0
70.0
25.0 | 41.0
25.0 | 49.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated ECations= ECations= Calc TDS= | (F) (F) (Psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) | 66.0
66.0
25.0
25.0 | 71.0
71.0
25.0
25.0 | 70.0
70.0
25.0
25.0 | 41.0
25.0
25.0 | 49.0
25.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier
H* (Strong acid) † OH* (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated \$\textit{\Sigma}\$ (STP) Exhions= \$\textit{\Sigma}\$ (STD)= Inhibitor Selection | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input | 66.0
66.0
25.0
25.0
0
0 | 71.0
71.0
25.0
25.0 | 70.0
70.0
25.0
25.0 | 41.0
25.0
25.0 | 49.0
25.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated ECations= EAnions= Calc TDS= Inhibitor Selection Protection Time | (F) (F) (Psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) | 66.0
66.0
25.0
25.0 | 71.0
71.0
25.0
25.0 | 70.0
70.0
25.0
25.0 | 41.0
25.0
25.0
Unit Converter | 49.0
25.0
25.0 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
60
61
62
63 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated \$\textstyle \text{Calcite}\$ acid \$\text{Lacite}\$ \$\text | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input 120 | 66.0
66.0
25.0
25.0
0
0 | 71.0
71.0
25.0
25.0
4
1
1
2 | 70.0
70.0
25.0
25.0
25.0
Inhibitor
NTMP
BHPMP | 41.0 25.0 25.0 Unit Converter From Unit | 49.0
25.0
25.0
25.0
(From metric Value 80 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated 2Cations= £Anions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input 120 | 66.0
66.0
25.0
25.0
0
0
0 | # 1 2 3 | Inhibitor NTMP BHPMP PAA | Unit Converter From Unit C m³ | 49.0
25.0
25.0
25.0
(From metric
Value
80
100 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated \$\textstyle \text{Calcite}\$ acid \$\text{Lacite}\$ \$\text | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input 120 | 66.0
66.0
25.0
25.0
0
0 | 71.0
71.0
25.0
25.0
4
1
1
2 | 70.0
70.0
25.0
25.0
25.0
Inhibitor
NTMP
BHPMP | 41.0 25.0 25.0 Unit Converter From Unit | 49.0
25.0
25.0
25.0
(From metric Value 80 | 60.0
89.0
25.0
120.0
30.00
0.60
0 | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H ₂ S Gas Total H ₂ Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated \$\mathbb{\text{Catluated}}\$ Alkalinity Caclulated \$\mathbb{\text{Catluated}}\$ Eanions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input 120 | 66.0
66.0
25.0
25.0
0
0
0 | 71.0
71.0
25.0
25.0
1
1
1
2
3
4 | Inhibitor NTMP BHPMP PAA DTPMP | Unit Converter From Unit °C m³ m³ MPa | 49.0
25.0
25.0
25.0
(From metric
Value
80
100
1,000 | 60.0
89.0
25.0
120.0
30.00
0.60
0
0
To Unit
°F
ft³
bbl(42 US gal)
psia | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 145,074 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated Alkalinity Caclulated Alkalinity Caclulated ECations= ZAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: If you select Mixed, 1st inhibitor # is: | (F) (F) (Psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input 120 1 4 | 0 0 0 Unit min 1-Yes;0-No # | ## 1 2 3 4 5 6 | Inhibitor NTMP BHPMP PAA DTPMP PPCA SPA | Unit Converter From Unit °C m³ m³ MPa Bar | 49.0
25.0
25.0
25.0
 | 60.0
89.0
25.0
120.0
30.00
0.60
0
0
To Unit
"F
ft ³
bbl(42 US gal)
psia | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 145,074 7,194 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
44
45
46
47
48
49
50
51
52
53
54
55
56
60
61
62
63
64
65
66
67
68 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H ₂ S Gas Total H ₂ Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated Alkalinity Caclulated ECations= EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: If you select Mixed, | (F) (F) (Psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/l) as HCO3 (equiv./I) (equiv./I) (mg/l) Input 120 1 4 1 50 | 0 0 0 Unit min 1-Yes;0-No # | ## 1 2 3 4 4 5 6 6 7 | Inhibitor NTMP BHPMP PAA DTPMP PPCA SPA HEDP | Unit Converter From Unit C m³ m³ MPa Bar Torr | 49.0
25.0
25.0
25.0
25.0
Value
80
100
1,000
496
10,000 | 60.0 89.0 25.0 120.0 30.00 0.60 0 0 To Unit °F ft³ bbl(42 US gal) psia psia psia | 5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 145,074 7,194 193 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | | 42
44
45
46
47
48
49
50
51
52
53
54
55
56
60
61
62
63
64
65
66
67
68
69 | Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) * OH* (Strong base) * Ouality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated ECations= EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: If you select Mixed, 1st inhibitor is: % of 1st inhibitor is: | (F) (F) (Psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input 120 1 4 | 0 0 0 0 Unit min 1-Yes;0-No # # % | ## 1 2 3 4 5 6 | Inhibitor NTMP BHPMP PAA DTPMP PPCA SPA | Unit Converter From Unit °C m³ m³ MPa Bar | 49.0
25.0
25.0
25.0
 | 60.0
89.0
25.0
120.0
30.00
0.60
0
0
To Unit
"F
ft ³
bbl(42 US gal)
psia | 5.69
Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 145,074 7,194 | 5.60
CentiPoise)
0.826
ty (cal/ml/°C)
0.959
ceded (mg/L)
HDTMP
0.00
HDTMP | | # **Saturation Index Calculations** Champion Technologies, Inc. (Based on the Tomson-Oddo Model) Brine 1: Ward Feed Yard 34-1 Brine 2: Ward Feed Yard 4-1 Brine 3: Clinesmith 5-4 Brine 4: Clinesmith 1 Brine 5: Clinesmith 2 | | | | Ratio | | | | |--------------------------|---------|---------|---------|---------|---------|-------------| | | 20% | 20% | 20% | 20% | 20 | | | Component (mg/L) | Brine 1 | Brine 2 | Brine 3 | Brine 4 | Brine 5 | Mixed Brine | | Calcium | 1836 | 2452 | 2044 | 1920 | 1948 | 1952 | | Magnesium | 1096 | 872 | 1200 | 953 | 858 | 865 | | Barium | 0 | 0 | 0 | 0 | 0 | 0 | | Strontium | 0 | 0 | 0 | 0 | 0 | 0 | | Bicarbonate | 190 | 234 | 259 | 268 | 254 | 253 | | Sulfate | 1 | 1 | 8 | 1 | 1 | 1 | | Chloride | 36299 | 48965 | 47874 | 45632 | 43147 | 43206 | | CO ₂ in Brine | 246 | 220 | 264 | 422 | 405 | 401 | | Ionic Strength | 1.12 | 1.48 | 1.46 | 1.38 | 1.31 | 1.31 | | Temperature (°F) | 89 | 89 | 89 | 89 | 89 | 89 | | Pressure (psia) | 50 | 50 | 120 | 120 | 120 | 119 | ## **Saturation Index** | Calcite | -1.71 | -1.41 | -1.48 | -1.68 | -1.69 | -1.69 | |-------------|-------|-------|-------|-------|-------|-------| | Gypsum | -3.71 | -3.64 | -2.82 | -3.73 | -3.72 | -3.69 | | Hemihydrate | -3.70 | -3.65 | -2.83 | -3.74 | -3.71 | -3.69 | | Anhydrite | -3.89 | -3.79 | -2.97 | -3.89 | -3.88 | -3.85 | | Barite | N/A | N/A | N/A | N/A | N/A | N/A | | Celestite | N/A | N/A | N/A | N/A | N/A | N/A | # PTB | Calcite | N/A | N/A | N/A | N/A | N/A | N/A | |-------------|-----|-----|-----|-----|-----|-----| | Gypsum | N/A | N/A | N/A | N/A | N/A | N/A | | Hemihydrate | N/A | N/A | N/A | N/A | N/A | N/A | | Anhydrite | N/A | N/A | N/A | N/A | N/A | N/A | | Barite | N/A | N/A | N/A | N/A | N/A | N/A | | Celestite | N/A | N/A | N/A | N/A | N/A | N/A | CONFIDENTIAL KANSAS CORPORATION COMMISSION OIL & GAS CONSERVATION DIVISION # CCCOOOO Form ACO-1 September 1999 Must Be Typed # **WELL COMPLETION FORM WELL HISTORY - DESCRIPTION OF WELL & LEASE** | Operator: License # 33344 | API No. 15 - 133-27093-0000 | |---|---| | | County: Neosho | | Name: Quest Cherokee, LLC Address: 211 W. 14th Street City/State/Zip: Chanute, KS 66720 Purchaser: Bluestem Pipeline, LLC Operator Contact Person: Jennifer R. Ammann | | | City/State/Zip: Chanute, KS 66720 | 1980 feet from S /(N) (circle one) Line of Section | | City/State/Zip: Chanute, KS 66720 Purchaser: Bluestem Pipeline, LLC Operator Contact Person: Jennifer R. Ammann | 660 feet from E (W) (circle one) Line of Section | | Operator Contact Person: Jennifer R. Ammann | Footages Calculated from Nearest Outside Section Corner: | | Phone: (620) 431-9500 | (circle one) NE SE (NW) SW | | Contractor: Name: TXD Drilling | Lease Name: Hines Farms Well #: 23-1 | | License: 33837 | Field Name: Cherokee Basin CBM | | Wellsite Geologist: Ken Recoy | Producing Formation: multiple | | Designate Type of Completion: | Elevation: Ground: 890 Kelly Bushing: n/a | | New Well Re-Entry Workover | Total Depth: 917 Plug Back Total Depth: 906.57 | | OilSIOWTemp. Abd. | Amount of Surface Pipe Set and Cemented at 22 Feet | | ✓ Gas ENHR SIGW | Multiple Stage Cementing Collar Used? | | | If yes, show depth setFeet | | Dry Other (Core, WSW, Expl., Cathodic, etc) | If Alternate II completion, cement circulated from 906.57 | | If Workover/Re-entry: Old Well Info as follows: | 'feet depth to Surface w/ 125 sx cmt. | | Operator: | sx cm. | | Well Name: | Drilling Fluid Management Plan | | Original Comp. Date:Original Total Depth: | (Data must be collected from the Heserve Pit) | | Deepening Re-perf Conv. to Enhr./SWD | Chloride content ppm Fluid volume bbls | | Plug BackPlug Back Total Depth | Dewatering method used | | Commingled Docket No | Location of fluid disposal if hauled offsite: | | Dual Completion Docket No | Operator Name: | | Other (SWD or Enhr.?) Docket No. | Lease Name: License No.: | | 8/28/07 8/29/07 8/30/07 | Quarter Sec TwpS. R East West | | Spud Date or Recompletion Date Date Reached TD Completion Date or Recompletion Date | County: Docket No.: | | | booker No. | | Kansas 67202, within 120 days of the spud date, recompletion, worker | th the Kansas Corporation Commission, 130 S. Market - Room 2078, Wichita, wer or conversion of a well. Rule 82-3-130, 82-3-106 and 82-3-107 apply. 12 months if requested in writing and submitted with the form (see rule 82-3- | | 107 for confidentiality in excess of 12 months). One copy of all wireline log TICKETS MUST BE ATTACHED. Submit CP-4 form with all plugged well | s and geologist well report shall be attached with this form. ALL CEMENTING s. Submit CP-111 form with all temporarily abandoned wells. | | All requirements of the statutes, rules and regulations promulgated to regulate herein are complete and correct to the best of my knowledge. | late the oil and gas industry have been fully complied with and the statements | | Signature: Dennify R. Ammann | KCC Office Use ONLY | | Title: New Well Development Coordinator Date: 12/19/07 | Letter of Confidentiality Received | | Subscribed and sworn to before me this 19th day of | If Denied, Yes Date: | | 20 <u>07</u> | Wireline Log Received KANSAS CORPORATION COMMISSION Geologist Report Received | | Notary Public: Derra Klauman | UIC Distribution DEC 2.6 2007 | | Date Commission Expires: 8-4-3010 Note | PIRES 8-4-000 WICHITA, KS | | Operator Name: Que | est Cherokee, LL | С | Lease | Name: | Hines Farms | | Well #: 23-1 | | |---|---|--|-------------------------------|------------|-------------------------------|---|----------------------------|--| | Sec. 23 Twp. 2 | 8 S. R. 19 | ☑ East ☐ West | County | : Neosl | 10 | | | | | ested, time tool oper
emperature, fluid red | n and closed, flowing covery, and flow rate | and base of formations pg and shut-in pressures if gas to surface test, final geological well site | , whether sh
along with fi | nut-in pr | essure reached | static level, hydr | ostatic pressur | es, bottom hole | | Drill Stem Tests Take
(Attach Additional | | ☐ Yes ☐ No | | Δr | .og; Format | tion (Top), Depth | and Datum | ` Sample | | Samples Sent to Geo | ological Survey | Yes No | | Nam
See | e
attached | | Тор | Datum | | Cores Taken
Electric Log Run
(Submit Copy) | | ☐ Yes ☐ No
☐ Yes ☐ No | | | | | | | | List All E. Logs Run: | | | | | | | | | | Compensated I
Dual Induction
Gamma Ray No | Log | n Log | | | | | | | | | | | RECORD | | ew Used | _4:4 | | | | Purpose of String | Size Hole
Drilled | Report all strings set-
Size Casing
Set (In O.D.) | Weig
Lbs. | ght | Setting Depth | Type of
Cement | # Sacks
Used | Type and Percent
Additives | | Surface | 12-1/4 | 8-5/8" | 22 | | 22 | "A" | 5 | | | Production | 6-3/4 | 4-1/2 | 10.5 | | 906.57 | "A" | 125 | | | , | • | - | | - | | · | | <u> </u> | | | | ADDITIONA | L CEMENTIN | NG / SQ | JEEZE RECOR | D | • | | | Purpose: Perforate Protect Casing Plug Back TD Plug Off Zone | Depth
Top Bottom | Type of Cement | #Sacks | Used | | Type and | Percent Additives | | | Shots Per Foot | | ON RECORD - Bridge Plu
Footage of Each Interval Pe | | Ţ, | | acture, Shot, Cemei
Amount and Kind of M | | d Depth | | 4 | 796-799/745-747/7 | 39-741 | | | 50 0ge l 15%HCLw/ 46 b | bls 2%kcl water, 646bbls wate | 1 w/ 2% KCL, Blocide, 5900 | | | 4 | 589-591/532-534/4 | 98-501/474-478 | | | 400gal 15%HCLw/ 41 b | bls 2%kd water, 546bbls wate | r w/ 2% KCL, Biocide, 4300 | 739-741
20/40 sand 589-591/532-53 | | | | | | | | | | 498-501/474-47 | | 4 | 392-396/379-383 | | | | 300gal 15%HCLw/ 46 b | bla 2%kci water, 646bbls wate | r w/ 2% KCL. Blocide, 6700 | # 20/40 sand 392-396/379-38 | | TUBING RECORD | Size | Set At | Packer A | t | Liner Run | Yes N | 0 | | | Date of First, Resument
waiting on pipelin | | Enhr. Producing Me | ethod | Flowin | g 🕝 Pump | ing Gas L | ift Othe | er (Explain) | | Estimated Production
Per 24 Hours | Oil | Bbls. Gas | Mcf | Wat | er · [| Bbls. | Gas-Oil Ratio | Gravity | | Disposition of Gas | METHOD OF C | COMPLETION | | | Production Inte | rval | | | | Vented Sold | Used on Lease bmit ACO-18.) | Open Hole Other (Spec | ш | | Dually Comp. | Commingled | | | | | | 1 | | | . : | | | | 211 W. 14TH STREET, CHANUTE, KS 66720 620-431-9500 TICKET NUMBER 2383 FIELD TICKET REF # FOREMAN Joe -623020 # TREATMENT REPORT & FIELD TICKET CEMENT | V | · · | WELLT | NAME & NUMBER | } | SECTION | TOWNSHIP | RANGE | COUNTY | |--|-----------------
--|---|--|------------------|--|----------|------------------------------------| | DATE | 11:00 | | | | 23 | 38 | 19 | NO | | 8-30-01
FOREMAN/ | TIME | TIME | LESS | TRUCK | TRAILER
| TRUC | 1 | EMPLOYEE
SIGNATURE | | OPERATOR | IN_ | OUT | LUNCH | # | # | 7 | | Joe Blanche | | Ju-e | 10:00 | 1:00 | | 903427 | | 1 | | Joe Bankon | | Tim . | | | | 903255 | | | | | | Tyler | ν | | | 903600 | | | | 01111 | | MANGRICK | | \top | V | 931585 | 931590 |) | | 1V1/ 401 | | DANIEL | W. | 1 | | 931420 | | 1 1 | 7 | 5. well 5 | | NOINO DEDTU OA | 6.57 DOIL | PIPE | • | HOLE DEPTH9 | 01F | 1EK | | | | | 145 CLUB | DV VOI | • | WATER gal/sk | CEN | MENT LEFT in | CASING_ | _ | | DISPLACEMENT) | 4.45 DISPI | LACEMENT PS | SI | MIX PSI | RAT | E <u>-1pbr</u> | <u> </u> | | | • | | | | sel of 8 hbs | | | <u> </u> | | | | , | | | | | | | IDENTIAL
Z 0 2007 | | | | | | | | | | | | | 900 | 2.57 | f+ 4½ | Cosing | | | | | | · | 901 | 6.57
5 | | Cosing | | | | | | | 901 | | Centrali | · / | | | | | | ACCOUNT | 901
QUANTITY | 5 | Centrali | ze P5 | SERVICES OR PROD | UCT | | | | CODE | QUANTITY | or UNITS | Centrali | zers
at shae | SERVICES OR PROD | UCT | | Z U 2007 | | 903427 | QUANTITY | or UNITS | Centrali
H12 flo | zers
at Shore
DESCRIPTION OF S | SERVICES OR PROD | JUCT | | Z () 2007 | | 903427
903255 | QUANTITY | 5
1
or UNITS
3 hr
3 hr | Central:
H12 (10) | zers
at Shore
DESCRIPTION OF S | SERVICES OR PROD | UCT | | Z () 2007 | | 903427 | QUANTITY | or UNITS hr hr kr kr kr kr kr kr kr kr | Foreman Pickup Cement Pump Tru Bulk Truck Portland Cement | zers
Of Share
DESCRIPTION OF S | | | | Z () 2007 | | 903427
903255
903600 | QUANTITY | or UNITS 3 hr 3 hr 3 hr 15 SK | Foreman Pickup Cement Pump Tru Bulk Truck Portland Cement | ZERS OF Shore DESCRIPTION OF S ICK | os 312 H | | | Z () 2007 | | 903427
903255
903600
1104 | QUANTITY | or UNITS 3 hr 3 hr 3 hr 15 SK | Foreman Pickup Cement Pump Tru Bulk Truck Portland Cement 50/50 POZ Blend OWC - Blend Cement | ZERS OF Shore DESCRIPTION OF S ICK | | | | Z (J 2007
KCC | | 903427
903255
903600
1104 | QUANTITY | or UNITS 3 hr 3 hr 3 hr 15 SK | Foreman Pickup Cement Pump Tru Bulk Truck Portland Cement 50/50 POZ Blend OWC = Blend Cell Gilsonite | ZERS OF Shore DESCRIPTION OF S ICK | os 312 H | | | Z () 2007 | | 903427
903427
903600
1104
1124 | QUANTITY | 5
1
or UNITS
3 hr
3 hr
15 SK
2
1
12 SK
1 SK | Foreman Pickup Cement Pump Tru Bulk Truck Portland Cement 50/50 POZ Blend OWC - Blend Cel Gilsonite Flo-Seal | ZERS OF Shore DESCRIPTION OF S ICK | es 312 H | r3 | DEC | Z U 2007 KCC TOTAL AMOUNT | | CODE 903427 903255 903600 1104 1126 1110 1107 1118 | QUANTITY | 5
1
or UNITS
3 hr
3 hr
15 SK
2
1
12 SK | Foreman Pickup Cement Pump Tru Bulk Truck Portland Cement 50/56 POZ Blend OWC - Blend Cel Gilsonite Flo-Seal Premium Gel | ZERS OF Shore DESCRIPTION OF S ICK | es 312 H | r3 | DEC | Z U 2007 KCC TOTAL AMOUNT | | CODE 903427 903255 903600 1104 1124 1126 1110 1107 1118 1215A | QUANTITY | 5
1
or UNITS
3 hr
3 hr
15 SK
2
1
12 SK
1 SK
1 SK
1 SK
1 SK | Foreman Pickup Cement Pump Tru Bulk Truck Portland Cement 50/50 POZ Blend OWC - Blend Cel Gilsonite Flo-Seal Premium Gel KCL | DESCRIPTION OF S Jok Gement Bally ment L1/2 W | es 312 H | r3 | DEC | Z Ú 2007
KCC
TOTAL
AMOUNT | | CODE 903427 903255 903600 1104 1124 1126 1110 1107 1118 1215A 1111B | QUANTITY | 5
1
or UNITS
3 hr
3 hr
15 SK
2
1
12 SK
1 SK
1 SK
1 SK
1 SK
1 SK
2 SK | Foreman Pickup Cement Pump Tru Bulk Truck Portland Cement 50/50 POZ Blend OWC - Blend Cel Gilsonite Flo-Seal Premium Gel KCL Sedium Silicate | DESCRIPTION OF S JOHN THE LINE WITH LIN | es 312 H | r3 | DEC | Z Ú 2007
KCC
TOTAL
AMOUNT | | CODE 903427 903255 903600 1104 1124 1126 1110 1107 1118 1215A | QUANTITY | 5
1
or UNITS
3 hr
3 hr
15 SK
2
1
12 SK
1 SK
1 SK
1 SK
1 SK
2 SK | Foreman Pickup Cement Pump Tru Bulk Truck Portland Cement 50/56 POZ Blend OWC - Blend Cel Gilsonite Flo-Seal Premium Gel KCL Sedium Silicate City Water | DESCRIPTION OF S Jok Gement Bally ment L1/2 W | es 312 H | RE KANSAS CORF | DEC | TOTAL AMOUNT MMISSION 07 | | CODE 903427 903255 903600 1104 1124 1126 1110 1107 1118 1215A 1111B | QUANTITY | 5
1
or UNITS
3 hr
3 hr
15 SK
2
1
12 SK
1 SK
1 SK
1 SK
1 SK
1 SK
2 SK | Foreman Pickup Cement Pump Tru Bulk Truck Portland Cement 50/50 POZ Blend OWC - Blend Cel Gilsonite Flo-Seal Premium Gel KCL Sedium Silicate | DESCRIPTION OF S JOHN | es 312 H | RE KANSAS CORF | DEC | TOTAL AMOUNT MMISSION 07 | # **KGS STATUS** - → DA/PA - EOR - **⇔** GAS - △ INJ/SWD - OIL - **★** OIL/GAS - OTHER Hines Farms 23-1 23-28S-19E 1" = 1,000' # **POSTROCK** # **Current Completion** WELL : Hines Farms 23-1 FIELD : Cherokee Basin SPUD DATE: 8/28/2007 COMP. Date: 8/30/2007
API:15-133-27093-00-00 STATE: Kansas COUNTY: Neosho PREPARED BY: POSTROCK APPROVED BY: _ **LOCATION: 23-28S-19E (NW,SW)** **ELEVATION: 890'** **DATE**: Sept, 2012 DATE:_ # **POSTROCK** # **LEGEND** # PostRock[®] | FORMATION: | TEBO | (PERFS): | 589 - | 591 | | | | |--|---|---|------------------|--|-------------------|--|-------------------------| | FORMATION: | ROWE | (PERFS): | 739 - | 741 | | | | | FORMATION: | NEUTRAL | (PERFS): | 745 - | 747 | | | | | FORMATION: | RIVERTON | (PERFS): | 796 - | 799 | | | | | FORMATION: | CATTLEMAN | (PERFS): | 566 - | 570 | | | | | FORMATION: | | (PERFS): | - | | | | | | FORMATION: | | (PERFS): | | | | | | | FORMATION: | | (PERFS): | | | | | | | FORMATION: | | (PERFS): | | | | | | | FORMATION: | | (PERFS): | | · | | | | | FORMATION: | | (PERFS): | | · | | | | | | | | | | | | | | FORMATION: | | (PERFS): | | - | | | | | 2 ESTIMATED A | MOUNT OF FLUID PRODUCTION TO BE | COMMINGLED FROM | | | | | | | 2 ESTIMATED A FORMATION: | TEBO | COMMINGLED FROM BOPD: | 0 | MCFPD: | 2.5 | BWPD: | 19.78 | | 2 ESTIMATED A
FORMATION:
FORMATION: | TEBO
ROWE | COMMINGLED FROM BOPD: BOPD: | | MCFPD: | 2.5 | BWPD: | 19.78 | | 2 ESTIMATED A
FORMATION:
FORMATION:
FORMATION: | TEBO
ROWE
NEUTRAL | COMMINGLED FROM BOPD: BOPD: BOPD: | 0 | MCFPD:MCFPD: | 2.5
2.5 | BWPD:
BWPD: | 19.78
19.78 | | 2 ESTIMATED A
FORMATION:
FORMATION: | TEBO
ROWE
NEUTRAL | COMMINGLED FROM BOPD: BOPD: BOPD: BOPD: | 0 | MCFPD: MCFPD: MCFPD: MCFPD: | 2.5 | BWPD:
BWPD:
BWPD: | 19.78 | | 2 ESTIMATED A
FORMATION:
FORMATION:
FORMATION: | TEBO ROWE NEUTRAL RIVERTON | COMMINGLED FROM BOPD: BOPD: BOPD: | 0
0
0 | MCFPD:MCFPD: | 2.5
2.5 | BWPD:
BWPD: | 19.78
19.78 | | 2 ESTIMATED A
FORMATION:
FORMATION:
FORMATION: | TEBO ROWE NEUTRAL RIVERTON | COMMINGLED FROM BOPD: BOPD: BOPD: BOPD: | 0
0
0
0 | MCFPD: MCFPD: MCFPD: MCFPD: | 2.5
2.5
2.5 | BWPD:
BWPD:
BWPD: | 19.78
19.78
19.78 | | 2 ESTIMATED A FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: | TEBO ROWE NEUTRAL RIVERTON CATTLEMAN | COMMINGLED FROM BOPD: BOPD: BOPD: BOPD: BOPD: | 0
0
0
0 | MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: | 2.5
2.5
2.5 | BWPD:
BWPD:
BWPD: | 19.78
19.78
19.78 | | 2 ESTIMATED A FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: | TEBO ROWE NEUTRAL RIVERTON CATTLEMAN 0 | COMMINGLED FROM BOPD: BOPD: BOPD: BOPD: BOPD: BOPD: | 0
0
0
0 | MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: | 2.5
2.5
2.5 | BWPD:
BWPD:
BWPD:
BWPD: | 19.78
19.78
19.78 | | 2 ESTIMATED A FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: | TEBO ROWE NEUTRAL RIVERTON CATTLEMAN 0 | COMMINGLED FROM BOPD: BOPD: BOPD: BOPD: BOPD: BOPD: BOPD: BOPD: | 0
0
0
0 | MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: | 2.5
2.5
2.5 | BWPD:
BWPD:
BWPD:
BWPD:
BWPD: | 19.78
19.78
19.78 | | 2 ESTIMATED A FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: | TEBO ROWE NEUTRAL RIVERTON CATTLEMAN 0 0 | COMMINGLED FROM BOPD: BOPD: BOPD: BOPD: BOPD: BOPD: BOPD: BOPD: BOPD: | 0
0
0
0 | MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: | 2.5
2.5
2.5 | BWPD:
BWPD:
BWPD:
BWPD:
BWPD:
BWPD: | 19.78
19.78
19.78 | | 2 ESTIMATED A FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: | TEBO ROWE NEUTRAL RIVERTON CATTLEMAN 0 0 0 | COMMINGLED FROM BOPD: | 0
0
0
0 | MCFPD: | 2.5
2.5
2.5 | BWPD: BWPD: BWPD: BWPD: BWPD: BWPD: BWPD: | 19.78
19.78
19.78 | | Δffidav | it of Notice Served | Laurence | | |-------------|---|---|-----------------------------------| | Re: | Application for: APPLICATION FOR COMMINGLI | NG OF PRODUCTION OR FLUIDS A | CO-4 | | | Well Name: HINES FARMS 23-1 | Legal Location: NESWSWNW | | | The unde | ersigned hereby certificates that he / she is a duly authorized age | | | | 2012 | , a true and correct copy of the application reference | | | | A4-4 A | | | | | Note: A | copy of this affidavit must be served as a part of the application. | Addrona (Attach additional chapte if non | onegad | | CONI | Name | Address (Attach additional sheets if nec | | | CON | SOLIDATED OIL WELL SERVICE, INC | PO BOX 884, CHANUT | E, NS 00/20 | | | | | | | SEE | ATTACHED | | | | | , | I further a | ttest that notice of the filing of this application was published in th | _e THE CHANUTE TRIBUNE | , the official county publication | | of NE | | county. A copy of the affidavit of this publication | is attached. | | | s 15TH day of OCTOBER | 2012 | | | Signed thi | s 15TH day of OCTOBER , | 2012 | | | | | Applicant or Duly Authorized Agent | | | | Subscribed and sworn to | before methis <u>15TH</u> day of <u>OCTOB</u> | ER 2012 | | | MILITARY STATES | 0 1 0 % | | | | JENNIFER R. BEAL SEAL MY COMMISSION EXPIRES | Notary Public). () | | | | 7-80-2014 | My Commission Expires: | 20, 2016 | | | | | , | | | | | | | | | | | | | | | | NOTES 22-28S-19E tract S of RR in E/2 NE/4 Judith L Moyer 17175 Irving Rd Chanute, KS 66720 our lessor in another tract 22, 23-28S-19E AT&SF & BN&SF Railway Co. Railroad ROW PO Box 961089 Fort Worth, TX 76161 # HINES FARMS 23-1-APPLICATION FOR COMMINGLING OF PRODUCTION OR FLUIDS | | eased Mineral Owners and Landown | ners acreage | | |--|---|--|------| | ach additional sheets | | Legal Description of Leasehold: | | | E ATTACHED | Name: | Legal Description of Leasenoid. | | | EATIACHED | by certify that the st | atements made herein are true and corre | ect to the best of my knowledge and belief. | | | | | Des Mours | , | | | | Annihant and the Authorizant Annih | | | | | Applicant or Duly Authorized Agent | 0040 | | | Subscribed a | and sworn before me this 15TH day of OCTOBER | 2012 | | 100 W. | | 0 1 P R. O. | | | OFFICIAL | JENNIFER R. BEAL MY COMMISSION EXPIRES | Notary Public) | | | SEAL | 7-20-2014 | | 11/2 | | Charles and the second | 100000 | My Commission Expires: | LEGAL LOCATION SPOT CURR_OPERA S22-T28S-R19E NE NE SE SE Consolidated Oil Well Services, Inc. 22-28S-19E tract S of RR in E/2 NE/4 Judith L Moyer 17175 Irving Rd Chanute, KS 66720 22, 23-28S-19E AT&SF & BN&SF Railway Co. Railroad ROW Fort Worth, TX 76161 PO Box 961089 NOTES our lessor in another tract # BEFORE THE STATE CORPORATION COMMISSION OF THE STATE OF KANSAS NOTICE OF FILING APPLICATION RE: In the Matter of Postrock Midcontinent Production, LLC Application for Commingling of Production in the Hines Farms 23-1 located in Neosho County, Kansas. TO: All Oil & Gas Producers, Unleased Mineral Interest Owners, Landowners, and all persons whomever concerned. You, and each of you, are hereby notified that Postrock Midcontinent Production, LLC has filed an application to commingle the Summit, Mulky, Bevier, Croweburg, Fleming, Tebo, Rowe, Neutral, Riverton and Cattleman producing formations at the Hines Farms 23-1, located in the NE SW SW NW, S23-T28S-R19E, Approximately 1983 FNL & 659 FWL, Neosho County, Kansas. Any persons who object to or protest this application shall be required to file their objections or protest with the Conservation Division of the State Corporation Commission of the State of Kansas within fifteen (15) days from the date of this publication. These protests shall be filed pursuant to Commission regulations and must state specific reasons why granting the application may cause waste, violate correlative rights or pollute the natural resources of the State of Kansas. All persons interested or concerned shall take notice of the foregoing and shall govern themselves accordingly. All person and/or companies wishing to protest this application are required to file a written protest with the Conservation Division of the Kansas Oil and Gas Commission. Upon the receipt of any protest, the Commission will convene a hearing and protestants will be expected to enter an appearance either through proper legal counsel or as individuals, appearing on their own behalf. Postrock Midcontinent Production, LLC 210 Park Avenue, Suite 2750 Oklahoma City, Oklahoma 73102 (405) 660-7704 A COPY OF THE AFFIDAVIT OF PUBLICATION MUST ACCOM-PANY ALL APPLICATIONS # Affidavit of Publication 4 STATE OF KANSAS, NEOSHO COUNTY, ss: *Rhonda Howerter*, being first duly sworn, deposes and says: That *she* is *Classified Manager* of *THE CHANUTE TRIBUNE*, a daily newspaper printed in the State of Kansas, and published in and of general circulation in Neosho County, Kansas, with a general paid circulation on a daily basis in Neosho County, Kansas, and that said newspaper is not a trade, religious or fraternal publication. Said newspaper is a daily published at least weekly 50 times a year: has been so published continuously and uninterruptedly in said county and state
for a period of more than five years prior to the first publication of said notice; and has been admitted at the post office of Chanute, in said county as second class matter. | That the attached notice is a true copy thereof and was published in the regular and entire issue of said newspaper for \(\text{consecutive} \) \ | |--| | , 2012, 2012 | | , 2012, 2012 | | Phonda Howert | | Subscribed and sworn to and before me this Only 2012 Notary Public | | My commission expires: January 9, 2015 | | Printer's Fee | | Affidavit, Notary's Fee\$ 3.00 | | Additional Copies\$ | | Total Publication Fees \$ 73.74 | #### **AFFIDAVIT** STATE OF KANSAS - SS. County of Sedgwick Mark Fletchall, of lawful age, being first duly sworn, deposeth and saith: That he is Record Clerk of The Wichita Eagle, a daily newspaper published in the City of Wichita, County of Sedgwick, State of Kansas, and having a general paid circulation on a daily basis in said County, which said newspaper has been continuously and uninterruptedly published in said County for more than one year prior to the first publication of the notice hereinafter mentioned, and which said newspaper has been entered as second class mail matter at the United States Post Office in Wichita, Kansas, and which said newspaper is not a trade, religious or fraternal publication and that a notice of a true copy is hereto attached was published in the regular and entire Morning issue of said The Wichita Eagle for _1_ issues, that the first publication of said notice was made as aforesaid on the 11th of # October A.D. 2012, with subsequent publications being made on the following dates: And affiant further says that he has personal knowledge of the statements above set forth and that they are true. Subscribed and sworn to before me this 11th day of October, 2012 PENNY L, CASE Notary Public-My Appt. Expires Notary Public Sedgwick County, Kansas Printer's Fee: \$132.40 #### LEGAL PUBLICATION PUBLISHED IN THE WICHITA EAGLE OCTOBER 11, 2012 (321)703) BEFORE THE STATE CORPORATION COMMISSION OF THE STATE OF KANSAS NOTICE OF FILING APPLICATION RE in the Malter of Postrock Midcontinent Production, LLC Application for Commingling of Production in the Hines Farms 23-1 located in Neosho County Farms 23-1 located in Neosho County, Kansas. TO: All Oil & Gas Producers, Unleased Mineral Interest Owners, Landowners, and all persons whomever concerned. You, and each of you, are hereby notified that Postrock Midcontinent Production, LLC has illed an application to commingle the Summit, Mulky, Bevier, Croweburg, Flenting, Tebo, Rowe, Neutral, Riverton and Catileman producing formations at the Hines Farms 23-1, located in the NE SW SW NW, \$23-T285-R19E, Approximately 1983 FML & 659 FWL, Neesho Approximately 1983 FNL & 659 FWL, Neosho County, Kansas. County, Kansas. Any persons who object to or protest this application shall be required to file their objections or protest with the Conservation Division of the State Corporation Commission of the State of Kansas within fifteen (15) days from the date of this publication. These protests shall be filled pursuant to Commission regulations and must state specific reasons. regulations and must state specific reasons why granting the application may cause waste, violate correlative rights or pollute the natural resources of the State of Kansas. All persons interested or concerned shall ake notice of the foregoing and shall govern themselves accordingly. All person and/or companies wishing to protest this application are required to file a written protest with the Conservation Division of the Kansas Oil and Gas Commission. Upon the receipt of any protest, the Commission will convene a hearing and protestants will be expected to enter an appearance either through proper legal counsel appearance eliment in tough in open tegal course or as individuals, appearing on their own behalf. Postrock Midcontinent Production, LLC 210 Park Avenue, Suite 2750 Oklahoma City, Oklahoma 73102 (405) 660-7704 Conservation Division Finney State Office Building 130 S. Market, Rm. 2078 Wichita, KS 67202-3802 Phone: 316-337-6200 Fax: 316-337-6211 http://kcc.ks.gov/ Sam Brownback, Governor Mark Sievers, Chairman Thomas E. Wright, Commissioner Shari Feist Albrecht, Commissioner October 30, 2012 Clark Edwards PostRock Midcontinent Production LLC Oklahoma Tower 210 Park Ave, Ste 2750 Oklahoma City, OK 73102 RE: Approved Commingling CO101205 Hines Farms 23-1 Sec. 23-T28S-R19E, Neosho County API No. 15-133-27093-00-00 Dear Mr. Edwards: Your Application for Commingling (ACO-4) for the above described well, received by the KCC on October 16, 2012, has been reviewed and approved by the Kansas Corporation Commission (KCC) per K.A.R. 82-3-123. Notice was examined and found to be proper per K.A.R. 82-3-135a. No protest had been filed within the 15-day protest period. Based upon the depth of the Riverton formation perforations, total oil production shall not exceed 100 BOPD and total gas production shall not exceed 50% of the absolute open flow (AOF). # File form ACO-1 upon re-completion of the well to commingle. Commingling ID number CO101205 has been assigned to this approved application. Use this number for well completion reports (ACO-1) and other correspondence that may concern this approved commingling. Sincerely, Rick Hestermann Production Department