

### KANSAS CORPORATION COMMISSION OIL & GAS CONSERVATION DIVISION

Form ACO-4 Form must be typed March 2009

#### APPLICATION FOR COMMINGLING OF Commingling ID#\_ PRODUCTION (K.A.R. 82-3-123) OR FLUIDS (K.A.R. 82-3-123a)

| OPERAT                              | OR: License #                                                                                                                                                                                                                                        | API No. 15               |                        |                         |  |  |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|-------------------------|--|--|
| Name:                               |                                                                                                                                                                                                                                                      | Spot Description:        |                        |                         |  |  |
| Address                             | 1:                                                                                                                                                                                                                                                   |                          | Sec S. R.              | East West               |  |  |
| Address                             | 2:                                                                                                                                                                                                                                                   |                          | Feet from North /      | South Line of Section   |  |  |
| City:                               |                                                                                                                                                                                                                                                      |                          | Feet from East /       | West Line of Section    |  |  |
| Contact F                           | Person:                                                                                                                                                                                                                                              | County:                  |                        |                         |  |  |
| Phone:                              | ()                                                                                                                                                                                                                                                   | Lease Name:              | Well #:                |                         |  |  |
| 1.                                  | Name and upper and lower limit of each production interval to be cor                                                                                                                                                                                 | nmingled:                |                        |                         |  |  |
|                                     | Formation:                                                                                                                                                                                                                                           | (Perfs): _               |                        |                         |  |  |
|                                     | Formation:                                                                                                                                                                                                                                           | (Perfs): _               |                        |                         |  |  |
|                                     | Formation:                                                                                                                                                                                                                                           | (Perfs):                 |                        |                         |  |  |
|                                     | Formation:                                                                                                                                                                                                                                           | (Perfs): _               |                        |                         |  |  |
|                                     | Formation:                                                                                                                                                                                                                                           | (Perfs): _               |                        |                         |  |  |
|                                     |                                                                                                                                                                                                                                                      |                          |                        |                         |  |  |
| <u> </u>                            | Estimated amount of fluid production to be commingled from each in                                                                                                                                                                                   |                          |                        | 2002                    |  |  |
|                                     | Formation:                                                                                                                                                                                                                                           |                          | MCFPD:                 |                         |  |  |
|                                     | Formation:                                                                                                                                                                                                                                           |                          | MCFPD:                 |                         |  |  |
|                                     | Formation:                                                                                                                                                                                                                                           |                          | MCFPD:                 |                         |  |  |
|                                     | Formation:                                                                                                                                                                                                                                           | BOPD:                    | MCFPD:                 | BWPD:                   |  |  |
|                                     | Formation:                                                                                                                                                                                                                                           | BOPD:                    | MCFPD:                 | BWPD:                   |  |  |
| <ul><li>□ 3.</li><li>□ 4.</li></ul> | Plat map showing the location of the subject well, all other wells on the subject well, and for each well the names and addresses of the less Signed certificate showing service of the application and affidavit of p                               | essee of record or opera | ator.                  | in a 1/2 mile radius of |  |  |
|                                     |                                                                                                                                                                                                                                                      | zaznoanom ao roquiroa r  |                        |                         |  |  |
| For Com                             | mingling of PRODUCTION ONLY, include the following:                                                                                                                                                                                                  | _                        |                        |                         |  |  |
| <u> </u>                            | Wireline log of subject well. Previously Filed with ACO-1:  Yes                                                                                                                                                                                      | No                       |                        |                         |  |  |
| 6.                                  | Complete Form ACO-1 (Well Completion form) for the subject well.                                                                                                                                                                                     |                          |                        |                         |  |  |
| For Com                             | mingling of FLUIDS ONLY, include the following:                                                                                                                                                                                                      |                          |                        |                         |  |  |
| 7.                                  | Well construction diagram of subject well.                                                                                                                                                                                                           |                          |                        |                         |  |  |
| 8.                                  | Any available water chemistry data demonstrating the compatibility of                                                                                                                                                                                | f the fluids to be commi | ingled.                |                         |  |  |
| current in mingling i               | IT: I am the affiant and hereby certify that to the best of my formation, knowledge and personal belief, this request for comstrue and proper and I have no information or knowledge, which stent with the information supplied in this application. | Sub                      | omitted Electronically | ,                       |  |  |

Protests may be filed by any party having a valid interest in the application. Protests must be in writing and comply with K.A.R. 82-3-135b and must be filed wihin 15 days of publication of the notice of application. Denied Approved 15-Day Periods Ends: \_\_

**KCC Office Use Only** 

Approved By:

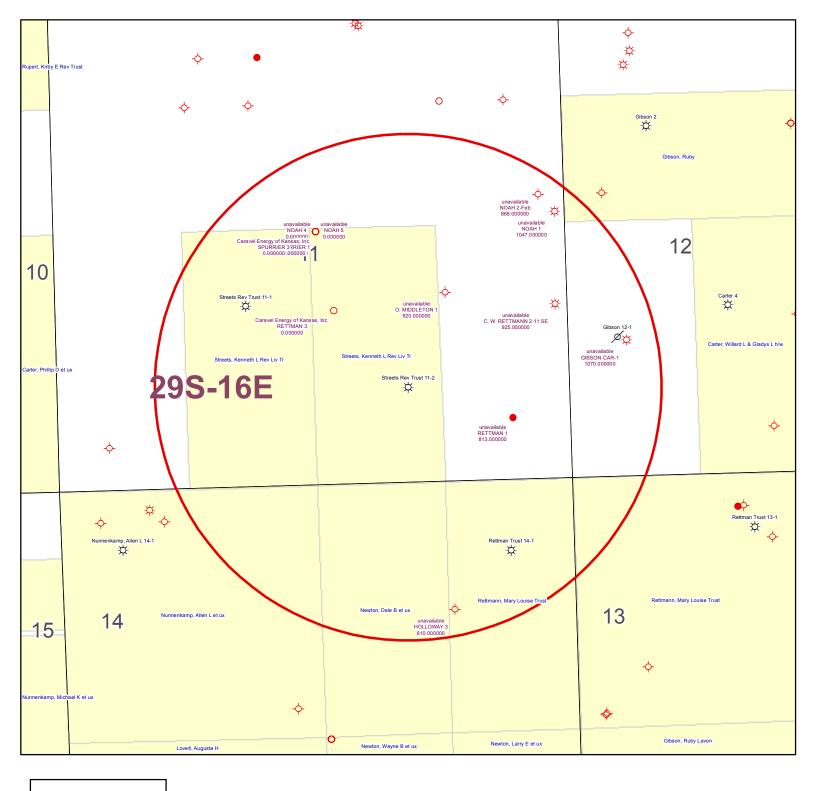
Date: \_

|                                                                                                                                                                | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | В                                                                                                                                                                     | С                                 | D                            | Е                                            | F                                                   | G                                                                                    | Н                                                                                                                      | 1                                                                                                                         | 1                                                                                                 | K               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------|----------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------|
| 1                                                                                                                                                              | Produced Fluids #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Б                                                                                                                                                                     | 1                                 | 2                            | 3                                            | 4                                                   | 5                                                                                    | 11                                                                                                                     |                                                                                                                           | <u> </u>                                                                                          | I IX            |
|                                                                                                                                                                | Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Units                                                                                                                                                                 | Input                             | Input                        | Input                                        | Input                                               | Input                                                                                |                                                                                                                        | Click her                                                                                                                 | re                                                                                                | Click           |
| 3                                                                                                                                                              | Select the brines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Select fluid                                                                                                                                                          | 7                                 | Ī                            |                                              | V                                                   | Ī                                                                                    | Mixed brine:                                                                                                           | to run SS                                                                                                                 | -                                                                                                 |                 |
| 4                                                                                                                                                              | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | by checking                                                                                                                                                           |                                   |                              |                                              |                                                     |                                                                                      | Cell H28 is                                                                                                            | 10 1411 00                                                                                                                | •                                                                                                 | Click           |
| 5                                                                                                                                                              | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | the box(es),                                                                                                                                                          | 3/19/2012                         | 3/4/2012                     | 3/14/2012                                    | 1/20/2012                                           | 1/20/2012                                                                            | STP calc. pH.                                                                                                          |                                                                                                                           |                                                                                                   |                 |
| 6                                                                                                                                                              | Operator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Row 3                                                                                                                                                                 | PostRock                          | PostRock                     | PostRock                                     | PostRock                                            | PostRock                                                                             | Cells H35-38                                                                                                           |                                                                                                                           |                                                                                                   | Click           |
| 7                                                                                                                                                              | Well Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                       | Ward Feed                         | Ward Feed                    | Clinesmith                                   | Clinesmith                                          | Clinesmith                                                                           | are used in                                                                                                            | Goal Seek                                                                                                                 | SSP                                                                                               |                 |
| 8                                                                                                                                                              | Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                       | #34-1                             | #4-1                         | #5-4                                         | #1                                                  | #2                                                                                   | mixed brines                                                                                                           |                                                                                                                           |                                                                                                   | Click           |
| 9                                                                                                                                                              | Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       | CBM                               | CBM                          | Bartles                                      | Bartles                                             | Bartles                                                                              | calculations.                                                                                                          |                                                                                                                           |                                                                                                   |                 |
| 10                                                                                                                                                             | Na <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (mg/l)*                                                                                                                                                               | 19,433.00                         | 27,381.00                    | 26,534.00                                    | 25689.00                                            | 24220.00                                                                             | 24654.20                                                                                                               | Initial(BH)                                                                                                               | Final(WH)                                                                                         | SI/SR           |
| 11                                                                                                                                                             | K <sup>+</sup> (if not known =0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (mg/l)                                                                                                                                                                |                                   |                              |                                              |                                                     |                                                                                      | 0.00                                                                                                                   | Saturation Index                                                                                                          | values                                                                                            | (Final-Initial) |
|                                                                                                                                                                | Mg <sup>2+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (mg/l)                                                                                                                                                                | 1,096.00                          | 872.00                       | 1,200.00                                     | 953.00                                              | 858.00                                                                               | 995.91                                                                                                                 |                                                                                                                           | lcite                                                                                             |                 |
|                                                                                                                                                                | Ca <sup>2+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (mg/l)                                                                                                                                                                | 1,836.00                          | 2,452.00                     | 2,044.00                                     | 1920.00                                             | 1948.00                                                                              | 2040.23                                                                                                                | -0.73                                                                                                                     | -0.60                                                                                             | 0.13            |
|                                                                                                                                                                | Sr <sup>2+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                       | 1,050.00                          | 2,432.00                     | 2,044.00                                     | 1720.00                                             | 1740.00                                                                              |                                                                                                                        |                                                                                                                           |                                                                                                   | 0.13            |
|                                                                                                                                                                | Ba <sup>2+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (mg/l)                                                                                                                                                                |                                   |                              |                                              |                                                     |                                                                                      | 0.00                                                                                                                   | Ба                                                                                                                        | rite                                                                                              |                 |
| .,                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (mg/l)                                                                                                                                                                |                                   |                              |                                              |                                                     |                                                                                      | 0.00                                                                                                                   |                                                                                                                           |                                                                                                   |                 |
|                                                                                                                                                                | Fe <sup>2+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (mg/l)                                                                                                                                                                | 40.00                             | 21.00                        | 18.00                                        | 82.00                                               | 90.00                                                                                | 50.21                                                                                                                  |                                                                                                                           | lite                                                                                              |                 |
|                                                                                                                                                                | Zn <sup>2+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (mg/l)                                                                                                                                                                |                                   |                              |                                              |                                                     |                                                                                      | 0.00                                                                                                                   | -1.77                                                                                                                     | -1.80                                                                                             | -0.03           |
| 18                                                                                                                                                             | Pb <sup>2+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (mg/l)                                                                                                                                                                |                                   |                              |                                              |                                                     |                                                                                      | 0.00                                                                                                                   | Gyp                                                                                                                       | osum                                                                                              |                 |
| 19                                                                                                                                                             | Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (mg/l)                                                                                                                                                                | 36,299.00                         | 48,965.00                    | 47,874.00                                    | 45632.00                                            | 43147.00                                                                             | 44388.44                                                                                                               | -3.19                                                                                                                     | -3.18                                                                                             | 0.00            |
| 20                                                                                                                                                             | SO <sub>4</sub> <sup>2-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (mg/l)                                                                                                                                                                | 1.00                              | 1.00                         | 8.00                                         | 1.00                                                | 1.00                                                                                 | 2.40                                                                                                                   | Hemil                                                                                                                     | ıydrate                                                                                           |                 |
|                                                                                                                                                                | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (mg/l)                                                                                                                                                                |                                   |                              |                                              |                                                     |                                                                                      | 0.00                                                                                                                   | -3.96                                                                                                                     | -3.90                                                                                             | 0.06            |
|                                                                                                                                                                | Br'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (mg/l)                                                                                                                                                                |                                   |                              |                                              |                                                     |                                                                                      | 0.00                                                                                                                   |                                                                                                                           | ydrite                                                                                            | 3.00            |
|                                                                                                                                                                | SiO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (mg/l) SiO2                                                                                                                                                           |                                   |                              |                                              |                                                     |                                                                                      | 0.00                                                                                                                   | -3.47                                                                                                                     | -3.36                                                                                             | 0.12            |
| _                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       | 100.00                            | 224.00                       | 250.00                                       | 200 00                                              | 254.00                                                                               |                                                                                                                        |                                                                                                                           |                                                                                                   | 0.12            |
|                                                                                                                                                                | HCO3 Alkalinity**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (mg/l as HCO3)                                                                                                                                                        | 190.00                            | 234.00                       | 259.00                                       | 268.00                                              | 254.00                                                                               | 241.03                                                                                                                 | Cele                                                                                                                      | estite                                                                                            |                 |
| _                                                                                                                                                              | CO3 Alkalinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (mg/l as CO3)                                                                                                                                                         |                                   |                              |                                              |                                                     |                                                                                      | _                                                                                                                      |                                                                                                                           |                                                                                                   |                 |
|                                                                                                                                                                | Carboxylic acids**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (mg/l)                                                                                                                                                                |                                   |                              |                                              |                                                     |                                                                                      | 0.00                                                                                                                   |                                                                                                                           | Sulfide                                                                                           |                 |
| 27                                                                                                                                                             | Ammonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (mg/L) NH3                                                                                                                                                            |                                   |                              |                                              |                                                     |                                                                                      | 0.00                                                                                                                   | -0.16                                                                                                                     | -0.22                                                                                             | -0.06           |
| 28                                                                                                                                                             | Borate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (mg/L) H3BO3                                                                                                                                                          |                                   |                              |                                              |                                                     |                                                                                      | 0.00                                                                                                                   | Zinc S                                                                                                                    | Sulfide                                                                                           |                 |
| 29                                                                                                                                                             | TDS (Measured)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (mg/l)                                                                                                                                                                |                                   |                              |                                              |                                                     |                                                                                      | 72781                                                                                                                  |                                                                                                                           |                                                                                                   |                 |
| 30                                                                                                                                                             | Calc. Density (STP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (g/ml)                                                                                                                                                                | 1.038                             | 1.051                        | 1.050                                        | 1.048                                               | 1.045                                                                                | 1.047                                                                                                                  | Calcium                                                                                                                   | fluoride                                                                                          |                 |
| 31                                                                                                                                                             | CO <sub>2</sub> Gas Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (%)                                                                                                                                                                   | 19.97                             | 18.76                        | 22.41                                        | 35.53                                               | 33.79                                                                                | 26.16                                                                                                                  |                                                                                                                           |                                                                                                   |                 |
|                                                                                                                                                                | H <sub>2</sub> S Gas Analysis***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (%)                                                                                                                                                                   | 0.0289                            | 0.0292                       | 0.0296                                       | 0.0306                                              | 0.0151                                                                               | 0.0269                                                                                                                 |                                                                                                                           | rbonate                                                                                           |                 |
| 33                                                                                                                                                             | Total H2Saq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (mgH2S/l)                                                                                                                                                             | 1.00                              | 1.00                         | 1.00                                         | 1.00                                                | 0.50                                                                                 | 0.90                                                                                                                   | -0.74                                                                                                                     | -0.51                                                                                             | 0.23            |
| 34                                                                                                                                                             | pH, measured (STP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pН                                                                                                                                                                    | 5.67                              | 5.76                         | 5.72                                         | 5.54                                                | 5.55                                                                                 | 5.63                                                                                                                   | Inhibitor ne                                                                                                              | eeded (mg/L)                                                                                      |                 |
|                                                                                                                                                                | Chasse one ention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0-CO2%+Alk,                                                                                                                                                           |                                   |                              |                                              |                                                     |                                                                                      |                                                                                                                        | Calcite                                                                                                                   | NTMP                                                                                              |                 |
| 35                                                                                                                                                             | Choose one option to calculate SI?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                       | 0                                 | 0                            | 0                                            | 0                                                   |                                                                                      |                                                                                                                        |                                                                                                                           |                                                                                                   |                 |
|                                                                                                                                                                | Gas/day(thousand cf/day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (Mcf/D)                                                                                                                                                               | •                                 |                              | 0                                            | U                                                   |                                                                                      | 0                                                                                                                      | 0.00                                                                                                                      | 0.00                                                                                              |                 |
|                                                                                                                                                                | Oil/Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (B/D)                                                                                                                                                                 | 0                                 | 0                            | 1                                            | 1                                                   | 1                                                                                    | 4                                                                                                                      | Barite                                                                                                                    | BHPMP                                                                                             | 1               |
|                                                                                                                                                                | Water/Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (B/D)                                                                                                                                                                 | 100                               | 100                          | 100                                          | 100                                                 | 100                                                                                  | 500                                                                                                                    | 0.00                                                                                                                      | 0.00                                                                                              |                 |
| 39                                                                                                                                                             | For mixed brines, enter val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ues for temperat                                                                                                                                                      | tures and pressi                  | res in Cells (H              | (40-H43)                                     |                                                     |                                                                                      | (Enter H40-H43)                                                                                                        |                                                                                                                           | Н                                                                                                 |                 |
| 40                                                                                                                                                             | Initial T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | iucs for tempera                                                                                                                                                      |                                   |                              |                                              |                                                     |                                                                                      | (Lince 1140-1143)                                                                                                      | р                                                                                                                         | п                                                                                                 |                 |
| 41                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (F)                                                                                                                                                                   | 66.0                              | 71.0                         | 70.0                                         | 41.0                                                | 49.0                                                                                 | 60.0                                                                                                                   | 5.69                                                                                                                      | 5.60                                                                                              | 1               |
|                                                                                                                                                                | Final T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                       | 66.0                              | 71.0                         | 70.0                                         | 41.0                                                | 49.0                                                                                 | 60.0<br>89.0                                                                                                           | 5.69<br>Viscosity (                                                                                                       | 5.60<br>CentiPoise)                                                                               |                 |
|                                                                                                                                                                | Final T<br>Initial P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (F)                                                                                                                                                                   | 66.0<br>25.0                      | 71.0<br>25.0                 | 70.0<br>25.0                                 | 41.0<br>25.0                                        | 49.0<br>25.0                                                                         | 60.0<br>89.0<br>25.0                                                                                                   | 5.69<br>Viscosity (<br>1.196                                                                                              | 5.60<br>CentiPoise)<br>0.826                                                                      |                 |
| 42<br>43                                                                                                                                                       | Initial P<br>Final P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (F)<br>(F)<br>(psia)<br>(psia)                                                                                                                                        | 66.0                              | 71.0                         | 70.0                                         | 41.0                                                | 49.0                                                                                 | 60.0<br>89.0                                                                                                           | 5.69<br>Viscosity (<br>1.196<br>Heat Capaci                                                                               | 5.60<br>CentiPoise)<br>0.826<br>ty (cal/ml/ <sup>0</sup> C)                                       |                 |
| 42<br>43<br>44                                                                                                                                                 | Initial P Final P Use TP on Calcite sheet?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (F)<br>(F)<br>(psia)<br>(psia)<br>1-Yes;0-No                                                                                                                          | 66.0<br>25.0                      | 71.0<br>25.0                 | 70.0<br>25.0                                 | 41.0<br>25.0                                        | 49.0<br>25.0                                                                         | 60.0<br>89.0<br>25.0<br>120.0                                                                                          | 5.69<br>Viscosity (<br>1.196<br>Heat Capaci<br>0.955                                                                      | 5.60<br>CentiPoise)<br>0.826<br>ty (cal/ml/ <sup>0</sup> C)<br>0.959                              |                 |
| 42<br>43<br>44<br>45                                                                                                                                           | Initial P Final P Use TP on Calcite sheet? API Oil Grav.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (F)<br>(F)<br>(psia)<br>(psia)<br>1-Yes;0-No<br>API grav.                                                                                                             | 66.0<br>25.0                      | 71.0<br>25.0                 | 70.0<br>25.0                                 | 41.0<br>25.0                                        | 49.0<br>25.0                                                                         | 60.0<br>89.0<br>25.0<br>120.0                                                                                          | 5.69 Viscosity ( 1.196 Heat Capaci 0.955 Inhibitor ne                                                                     | 5.60<br>CentiPoise)<br>0.826<br>ty (cal/ml/ <sup>0</sup> C)<br>0.959<br>eeded (mg/L)              |                 |
| 42<br>43<br>44<br>45<br>46                                                                                                                                     | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav.                                                                                                                       | 66.0<br>25.0                      | 71.0<br>25.0                 | 70.0<br>25.0                                 | 41.0<br>25.0                                        | 49.0<br>25.0                                                                         | 60.0<br>89.0<br>25.0<br>120.0<br>30.00<br>0.60                                                                         | 5.69 Viscosity ( 1.196 Heat Capaci 0.955 Inhibitor ne                                                                     | 5.60<br>CentiPoise)<br>0.826<br>ty (cal/ml/ <sup>0</sup> C)<br>0.959<br>eded (mg/L)<br>HDTMP      |                 |
| 42<br>43<br>44<br>45<br>46<br>47                                                                                                                               | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D)                                                                                                                 | 66.0<br>25.0                      | 71.0<br>25.0                 | 70.0<br>25.0                                 | 41.0<br>25.0                                        | 49.0<br>25.0                                                                         | 60.0<br>89.0<br>25.0<br>120.0<br>30.00<br>0.60                                                                         | 5.69 Viscosity ( 1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00                                                         | 5.60<br>CentiPoise)<br>0.826<br>ty (cal/ml/°C)<br>0.959<br>ceded (mg/L)<br>HDTMP<br>0.00          |                 |
| 42<br>43<br>44<br>45<br>46<br>47<br>48                                                                                                                         | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav.                                                                                                                       | 66.0<br>25.0                      | 71.0<br>25.0                 | 70.0<br>25.0                                 | 41.0<br>25.0                                        | 49.0<br>25.0                                                                         | 60.0<br>89.0<br>25.0<br>120.0<br>30.00<br>0.60                                                                         | 5.69 Viscosity ( 1.196 Heat Capaci 0.955 Inhibitor ne                                                                     | 5.60<br>CentiPoise)<br>0.826<br>ty (cal/ml/ <sup>0</sup> C)<br>0.959<br>eded (mg/L)<br>HDTMP      |                 |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49                                                                                                                   | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D)                                                                                                       | 66.0<br>25.0                      | 71.0<br>25.0                 | 70.0<br>25.0                                 | 41.0<br>25.0                                        | 49.0<br>25.0                                                                         | 60.0<br>89.0<br>25.0<br>120.0<br>30.00<br>0.60                                                                         | 5.69 Viscosity ( 1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite                                               | 5.60<br>CentiPoise)<br>0.826<br>ty (cal/ml/°C)<br>0.959<br>ceded (mg/L)<br>HDTMP<br>0.00<br>HDTMP |                 |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50                                                                                                             | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (F)<br>(F)<br>(psia)<br>(psia)<br>1-Yes;0-No<br>API grav.<br>Sp.Grav.<br>(B/D)<br>(B/D)                                                                               | 66.0<br>25.0                      | 71.0<br>25.0                 | 70.0<br>25.0                                 | 41.0<br>25.0                                        | 49.0<br>25.0                                                                         | 60.0<br>89.0<br>25.0<br>120.0<br>30.00<br>0.60                                                                         | 5.69 Viscosity ( 1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite                                               | 5.60<br>CentiPoise)<br>0.826<br>ty (cal/ml/°C)<br>0.959<br>ceded (mg/L)<br>HDTMP<br>0.00<br>HDTMP |                 |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51                                                                                                       | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) †                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N)                                                                                                   | 66.0<br>25.0                      | 71.0<br>25.0                 | 70.0<br>25.0                                 | 41.0<br>25.0                                        | 49.0<br>25.0                                                                         | 60.0<br>89.0<br>25.0<br>120.0<br>30.00<br>0.60                                                                         | 5.69 Viscosity ( 1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite                                               | 5.60<br>CentiPoise)<br>0.826<br>ty (cal/ml/°C)<br>0.959<br>ceded (mg/L)<br>HDTMP<br>0.00<br>HDTMP |                 |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51                                                                                                       | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH* (Strong base) † Quality Control Checks at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP:                                                                                          | 66.0<br>25.0                      | 71.0<br>25.0                 | 70.0<br>25.0                                 | 41.0<br>25.0                                        | 49.0<br>25.0                                                                         | 60.0<br>89.0<br>25.0<br>120.0<br>30.00<br>0.60                                                                         | 5.69 Viscosity ( 1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite                                               | 5.60<br>CentiPoise)<br>0.826<br>ty (cal/ml/°C)<br>0.959<br>ceded (mg/L)<br>HDTMP<br>0.00<br>HDTMP |                 |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53                                                                                           | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH (Strong base) † Quality Control Checks at H <sub>2</sub> S Gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N)                                                                                                   | 66.0<br>25.0                      | 71.0<br>25.0                 | 70.0<br>25.0                                 | 41.0<br>25.0                                        | 49.0<br>25.0                                                                         | 60.0<br>89.0<br>25.0<br>120.0<br>30.00<br>0.60                                                                         | 5.69 Viscosity ( 1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite                                               | 5.60<br>CentiPoise)<br>0.826<br>ty (cal/ml/°C)<br>0.959<br>ceded (mg/L)<br>HDTMP<br>0.00<br>HDTMP |                 |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55                                                                               | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH' (Strong base) * Quality Control Checks at H <sub>2</sub> S Gas Total H2Saq (STP) pH Calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/l) (pH)                                                                       | 66.0<br>25.0                      | 71.0<br>25.0                 | 70.0<br>25.0                                 | 41.0<br>25.0                                        | 49.0<br>25.0                                                                         | 60.0<br>89.0<br>25.0<br>120.0<br>30.00<br>0.60                                                                         | 5.69 Viscosity ( 1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite                                               | 5.60<br>CentiPoise)<br>0.826<br>ty (cal/ml/°C)<br>0.959<br>ceded (mg/L)<br>HDTMP<br>0.00<br>HDTMP |                 |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56                                                                         | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH* (Strong base) † Quality Control Checks at H <sub>2</sub> S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) (N) STP: (%) (mgH2S/I) (pH) (%)                                                                     | 66.0<br>25.0                      | 71.0<br>25.0                 | 70.0<br>25.0                                 | 41.0<br>25.0                                        | 49.0<br>25.0                                                                         | 60.0<br>89.0<br>25.0<br>120.0<br>30.00<br>0.60                                                                         | 5.69 Viscosity ( 1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite                                               | 5.60<br>CentiPoise)<br>0.826<br>ty (cal/ml/°C)<br>0.959<br>ceded (mg/L)<br>HDTMP<br>0.00<br>HDTMP |                 |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57                                                                   | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H <sub>2</sub> S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (F) (F) (psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3                                                   | 66.0<br>25.0                      | 71.0<br>25.0                 | 70.0<br>25.0                                 | 41.0<br>25.0                                        | 49.0<br>25.0                                                                         | 60.0<br>89.0<br>25.0<br>120.0<br>30.00<br>0.60                                                                         | 5.69 Viscosity ( 1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite                                               | 5.60<br>CentiPoise)<br>0.826<br>ty (cal/ml/°C)<br>0.959<br>ceded (mg/L)<br>HDTMP<br>0.00<br>HDTMP |                 |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58                                                             | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H <sub>2</sub> S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated \$\textstyle{\textstyle{2}}\$\text{Control}\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (F) (F) (psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I)                                  | 66.0<br>25.0                      | 71.0<br>25.0                 | 70.0<br>25.0                                 | 41.0<br>25.0                                        | 49.0<br>25.0                                                                         | 60.0<br>89.0<br>25.0<br>120.0<br>30.00<br>0.60                                                                         | 5.69 Viscosity ( 1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite                                               | 5.60<br>CentiPoise)<br>0.826<br>ty (cal/ml/°C)<br>0.959<br>ceded (mg/L)<br>HDTMP<br>0.00<br>HDTMP |                 |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59                                                       | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H <sub>2</sub> S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (F) (F) (psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3                                                   | 66.0<br>25.0                      | 71.0<br>25.0                 | 70.0<br>25.0                                 | 41.0<br>25.0                                        | 49.0<br>25.0                                                                         | 60.0<br>89.0<br>25.0<br>120.0<br>30.00<br>0.60                                                                         | 5.69 Viscosity ( 1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite                                               | 5.60<br>CentiPoise)<br>0.826<br>ty (cal/ml/°C)<br>0.959<br>ceded (mg/L)<br>HDTMP<br>0.00<br>HDTMP |                 |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60                                                 | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH (Strong base) * Quality Control Checks at H <sub>2</sub> S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated SCations= EAnions=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/l) as HCO3 (equiv./l) (equiv./l)                              | 66.0<br>25.0                      | 71.0<br>25.0                 | 70.0<br>25.0                                 | 41.0<br>25.0<br>25.0                                | 49.0<br>25.0                                                                         | 60.0<br>89.0<br>25.0<br>120.0<br>30.00<br>0.60<br>0                                                                    | 5.69 Viscosity ( 1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite                                               | 5.60<br>CentiPoise)<br>0.826<br>ty (cal/ml/°C)<br>0.959<br>ceded (mg/L)<br>HDTMP<br>0.00<br>HDTMP |                 |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60<br>61                                           | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH (Strong base) * Quality Control Checks at H <sub>2</sub> S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated ECations= ECations= Calc TDS=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (F) (F) (psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I)                | 66.0<br>25.0<br>25.0<br>0<br>0    | 71.0<br>25.0<br>25.0         | 70.0<br>25.0<br>25.0<br>1nhibitor<br>NTMP    | 41.0<br>25.0<br>25.0<br>Unit Converter              | 49.0<br>25.0<br>25.0<br>25.0                                                         | 60.0<br>89.0<br>25.0<br>120.0<br>30.00<br>0.60<br>0                                                                    | 5.69 Viscosity ( 1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00                                          | 5.60<br>CentiPoise)<br>0.826<br>ty (cal/ml/°C)<br>0.959<br>ceded (mg/L)<br>HDTMP<br>0.00<br>HDTMP |                 |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60<br>61<br>62                                     | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH* (Strong base) † Quality Control Checks at H <sub>2</sub> S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated \$\textstyle{\textstyle{2}}\text{Collections=} \text{\$\textstyle{2}}\text{\$\text{Anions=}} \text{\$\text{Calc}\$ Calc TDS=} Inhibitor Selection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input                       | 66.0<br>25.0<br>25.0<br>0<br>0    | 71.0<br>25.0<br>25.0         | 70.0<br>25.0<br>25.0                         | 41.0 25.0 25.0 Unit Converter From Unit             | 49.0<br>25.0<br>25.0                                                                 | 60.0<br>89.0<br>25.0<br>120.0<br>30.00<br>0.60<br>0                                                                    | 5.69 Viscosity ( 1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00                                          | 5.60<br>CentiPoise)<br>0.826<br>ty (cal/ml/°C)<br>0.959<br>ceded (mg/L)<br>HDTMP<br>0.00<br>HDTMP |                 |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60<br>61<br>62                                     | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH (Strong base) † Quality Control Checks at H,S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated E\(\text{Calculated}\) Alkalinity Caclulated E\(\text{Calculated}\) E\(\tex | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input                       | 66.0<br>25.0<br>25.0<br>0<br>0    | 71.0<br>25.0<br>25.0         | 70.0<br>25.0<br>25.0<br>1nhibitor<br>NTMP    | 41.0<br>25.0<br>25.0<br>Unit Converter              | 49.0<br>25.0<br>25.0<br>25.0                                                         | 60.0<br>89.0<br>25.0<br>120.0<br>30.00<br>0.60<br>0                                                                    | 5.69 Viscosity ( 1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00                                          | 5.60<br>CentiPoise)<br>0.826<br>ty (cal/ml/°C)<br>0.959<br>ceded (mg/L)<br>HDTMP<br>0.00<br>HDTMP |                 |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>60<br>61<br>62<br>63                                     | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH (Strong base) * Quality Control Checks at H <sub>2</sub> S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated ECations= EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (F) (F) (psia) (psia) (psia) 1-Yes:0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (equiv./I) Input 120        | 66.0<br>25.0<br>25.0<br>0<br>0    | 71.0<br>25.0<br>25.0<br>25.0 | Inhibitor NTMP BHPMP                         | 41.0 25.0 25.0 Unit Converter From Unit             | 49.0<br>25.0<br>25.0<br>25.0<br>(From metric Value 80                                | 60.0<br>89.0<br>25.0<br>120.0<br>30.00<br>0.60<br>0                                                                    | 5.69 Viscosity ( 1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00                                          | 5.60<br>CentiPoise)<br>0.826<br>ty (cal/ml/°C)<br>0.959<br>ceded (mg/L)<br>HDTMP<br>0.00<br>HDTMP |                 |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60<br>61<br>62<br>63<br>64<br>65                   | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH (Strong base) * Quality Control Checks at H <sub>2</sub> S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated 2Cations= 2Anions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (F) (F) (psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (equiv./I) (mg/I) Input 120 | 0<br>0<br>0<br>0<br>Unit<br>min   | # 1 2 3                      | Inhibitor NTMP BHPMP PAA                     | Unit Converter From Unit C m³                       | 49.0<br>25.0<br>25.0<br>25.0<br>(From metric<br>Value<br>80<br>100                   | 60.0<br>89.0<br>25.0<br>120.0<br>30.00<br>0.60<br>0                                                                    | 5.69 Viscosity ( 1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00                                          | 5.60<br>CentiPoise)<br>0.826<br>ty (cal/ml/°C)<br>0.959<br>ceded (mg/L)<br>HDTMP<br>0.00<br>HDTMP |                 |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60<br>61<br>62<br>63<br>64<br>65                   | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH (Strong base) * Quality Control Checks at H <sub>2</sub> S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated SCations= EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (F) (F) (psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (equiv./I) (mg/I) Input 120 | 0<br>0<br>0<br>0<br>Unit<br>min   | # 1 2 3 4                    | Inhibitor NTMP BHPMP PAA DTPMP               | Unit Converter From Unit °C m³ m³                   | 49.0<br>25.0<br>25.0<br>25.0<br>(From metric<br>Value<br>80<br>100<br>100            | 60.0<br>89.0<br>25.0<br>120.0<br>30.00<br>0.60<br>0                                                                    | 5.69 Viscosity ( 1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00  Value 176 3,531 629                     | 5.60<br>CentiPoise)<br>0.826<br>ty (cal/ml/°C)<br>0.959<br>ceded (mg/L)<br>HDTMP<br>0.00<br>HDTMP |                 |
| 42<br>43<br>44<br>45<br>46<br>47<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60<br>61<br>62<br>63<br>64<br>65<br>66                         | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH (Strong base) * Quality Control Checks at H <sub>2</sub> S Gas Total H2Saq (STP) pH Calculated Alkalinity Caclulated Alkalinity Caclulated SCations= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: If you select Mixed,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (mg/I) Input 120  1 4                         | 0 0 0 0 Unit min 1-Yes;0-No #     | ## 1 2 3 4 5 5               | Inhibitor NTMP BHPMP PAA DTPMP PPCA          | Unit Converter From Unit °C m³ m³ MPa               | 49.0<br>25.0<br>25.0<br>25.0<br>(From metric<br>Value<br>80<br>100<br>1,000          | 60.0<br>89.0<br>25.0<br>120.0<br>30.00<br>0.60<br>0<br>0<br>To Unit<br>°F<br>ft³<br>bbl(42 US gal)<br>psia             | 5.69 Viscosity ( 1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00  Value 176 3,531 629 145,074             | 5.60<br>CentiPoise)<br>0.826<br>ty (cal/ml/°C)<br>0.959<br>ceded (mg/L)<br>HDTMP<br>0.00<br>HDTMP |                 |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>55<br>56<br>57<br>58<br>59<br>60<br>61<br>62<br>63<br>64<br>65<br>66<br>67             | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) † Quality Control Checks at H <sub>2</sub> S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated ECations= EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: If you select Mixed,  1st inhibitor # is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (mg/I) Input 120  1 4                         | 0 0 0 0 Unit min 1-Yes;0-No #     | # 1 2 3 4 5 5 6              | Inhibitor NTMP BHPMP PAA DTPMP PPCA SPA      | Unit Converter From Unit  °C  m³  m³  MPa  Bar      | 49.0<br>25.0<br>25.0<br>25.0<br>                                                     | 60.0<br>89.0<br>25.0<br>120.0<br>30.00<br>0.60<br>0<br>0<br>To Unit<br>"F<br>ft <sup>3</sup><br>bbl(42 US gal)<br>psia | 5.69 Viscosity ( 1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00  Value 176 3,531 629 145,074 7,194       | 5.60<br>CentiPoise)<br>0.826<br>ty (cal/ml/°C)<br>0.959<br>ceded (mg/L)<br>HDTMP<br>0.00<br>HDTMP |                 |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>55<br>56<br>57<br>58<br>59<br>60<br>61<br>62<br>63<br>64<br>65<br>66<br>67<br>68<br>69 | Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) * Quality Control Checks at H <sub>2</sub> S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated ECAtions= EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor # is: If you select Mixed,  1st inhibitor # is: % of 1st inhibitor is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (F) (F) (psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/l) as HCO3 (equiv./l) (equiv./l) (mg/l) Input 120  1 4 1 50  | 0 0 0 0 Unit min 1-Yes;0-No # # % | ## 1 2 3 4 4 5 5 6 7 7       | Inhibitor NTMP BHPMP PAA DTPMP PPCA SPA HEDP | Unit Converter From Unit  C  m³  m³  MPa  Bar  Torr | 49.0<br>25.0<br>25.0<br>25.0<br>25.0<br>Value<br>80<br>100<br>1,000<br>496<br>10,000 | 60.0<br>89.0<br>25.0<br>120.0<br>30.00<br>0.60<br>0<br>0<br>To Unit<br>°F<br>ft³<br>bbl(42 US gal)<br>psia<br>psia     | 5.69 Viscosity ( 1.196  Heat Capaci 0.955 Inhibitor ne Gypsum 0.00  Anhydrite 0.00  Value 176 3,531 629 145,074 7,194 193 | 5.60<br>CentiPoise)<br>0.826<br>ty (cal/ml/°C)<br>0.959<br>ceded (mg/L)<br>HDTMP<br>0.00<br>HDTMP |                 |

## **Saturation Index Calculations**

Champion Technologies, Inc. (Based on the Tomson-Oddo Model)

Brine 1: Ward Feed Yard 34-1
Brine 2: Ward Feed Yard 4-1
Brine 3: Clinesmith 5-4
Brine 4: Clinesmith 1
Brine 5: Clinesmith 2


|                          | 20%     | 20%     | 20%     | 20%     | 20      |             |
|--------------------------|---------|---------|---------|---------|---------|-------------|
| Component (mg/L)         | Brine 1 | Brine 2 | Brine 3 | Brine 4 | Brine 5 | Mixed Brine |
| Calcium                  | 1836    | 2452    | 2044    | 1920    | 1948    | 1952        |
| Magnesium                | 1096    | 872     | 1200    | 953     | 858     | 865         |
| Barium                   | 0       | 0       | 0       | 0       | 0       | 0           |
| Strontium                | 0       | 0       | 0       | 0       | 0       | 0           |
| Bicarbonate              | 190     | 234     | 259     | 268     | 254     | 253         |
| Sulfate                  | 1       | 1       | 8       | 1       | 1       | 1           |
| Chloride                 | 36299   | 48965   | 47874   | 45632   | 43147   | 43206       |
| CO <sub>2</sub> in Brine | 246     | 220     | 264     | 422     | 405     | 401         |
| Ionic Strength           | 1.12    | 1.48    | 1.46    | 1.38    | 1.31    | 1.31        |
| Temperature (°F)         | 89      | 89      | 89      | 89      | 89      | 89          |
| Pressure (psia)          | 50      | 50      | 120     | 120     | 120     | 119         |

#### **Saturation Index**

| Calcite     | -1.71 | -1.41 | -1.48 | -1.68 | -1.69 | -1.69 |
|-------------|-------|-------|-------|-------|-------|-------|
| Gypsum      | -3.71 | -3.64 | -2.82 | -3.73 | -3.72 | -3.69 |
| Hemihydrate | -3.70 | -3.65 | -2.83 | -3.74 | -3.71 | -3.69 |
| Anhydrite   | -3.89 | -3.79 | -2.97 | -3.89 | -3.88 | -3.85 |
| Barite      | N/A   | N/A   | N/A   | N/A   | N/A   | N/A   |
| Celestite   | N/A   | N/A   | N/A   | N/A   | N/A   | N/A   |

### PTB

| Calcite     | N/A | N/A | N/A | N/A | N/A | N/A |
|-------------|-----|-----|-----|-----|-----|-----|
| Gypsum      | N/A | N/A | N/A | N/A | N/A | N/A |
| Hemihydrate | N/A | N/A | N/A | N/A | N/A | N/A |
| Anhydrite   | N/A | N/A | N/A | N/A | N/A | N/A |
| Barite      | N/A | N/A | N/A | N/A | N/A | N/A |
| Celestite   | N/A | N/A | N/A | N/A | N/A | N/A |



# **KGS STATUS**

- → DA/PA
- EOR
- △ INJ/SWD
- OIL
- **♦** OIL/GAS
- OTHER

Streets Rev Trust 11-2 11-29S-16E 1" = 1,000'

KANSAS CORPORATION COMMISSION ORIGINAL September 1999
OIL & GAS CONSERVATION DIVISION ORIGINAL Form Must Be Typed

### **WELL HISTORY - DESCRIPTION OF WELL & LEASE**

| Operator: License # 33344                                                                                                                              | API No. 15 - 205-27037 -00-00                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name: Quest Cherokee, LLC                                                                                                                              | County: Wilson                                                                                                                                                                                                                                                                                                                                                         |
| Address: 211 W. 14th Street                                                                                                                            | swseSec. 11 Twp. 29 S. R. 16 7 East West                                                                                                                                                                                                                                                                                                                               |
| City/State/Zip: Chanute, KS 66720                                                                                                                      | 990 feet from (S) N (circle one) Line of Section                                                                                                                                                                                                                                                                                                                       |
| Purchaser: Bluestem Pipeline, LLC                                                                                                                      | 1680 feet from (E) W (circle one) Line of Section                                                                                                                                                                                                                                                                                                                      |
| Operator Contact Person: Jennifer R. Ammann                                                                                                            | Footages Calculated from Nearest Outside Section Corner:                                                                                                                                                                                                                                                                                                               |
| Phone: ( 620 ) 431-9500                                                                                                                                | (circle one) NE (SE) NW SW                                                                                                                                                                                                                                                                                                                                             |
| Contractor: Name: TXD Services LP                                                                                                                      | Lease Name: Streets Rev. Trust Well #: 11-2                                                                                                                                                                                                                                                                                                                            |
| License: 33837                                                                                                                                         | Field Name: Cherokee Basin CBM                                                                                                                                                                                                                                                                                                                                         |
| Wellsite Geologist: Ken Recoy                                                                                                                          | Producing Formation: Multiple                                                                                                                                                                                                                                                                                                                                          |
| Designate Type of Completion:                                                                                                                          | Elevation: Ground: 860 Kelly Bushing: n/a                                                                                                                                                                                                                                                                                                                              |
| New Well Re-Entry Workover                                                                                                                             | Total Depth: 1161 Plug Back Total Depth: 1123.54                                                                                                                                                                                                                                                                                                                       |
| Oil SWD SIOW Temp. Abd.                                                                                                                                | Amount of Surface Pipe Set and Cemented at 20 Feet                                                                                                                                                                                                                                                                                                                     |
| Gas ENHR SIGW                                                                                                                                          | Multiple Stage Cementing Collar Used? Yes ✓No                                                                                                                                                                                                                                                                                                                          |
| Dry Other (Core, WSW, Expl., Cathodic, etc)                                                                                                            | If yes, show depth setFeet                                                                                                                                                                                                                                                                                                                                             |
| If Workover/Re-entry: Old Well Info as follows:                                                                                                        | If Alternate II completion, cement circulated from 1123.54                                                                                                                                                                                                                                                                                                             |
| Operator:                                                                                                                                              | feet depth to_surface w/_ 135 sx cmt.                                                                                                                                                                                                                                                                                                                                  |
| Well Name:                                                                                                                                             | 1/17 1/1/0 0 0 0                                                                                                                                                                                                                                                                                                                                                       |
| Original Comp. Date: Original Total Depth:                                                                                                             | Drilling Fluid Management Plan AHTI NH 7-8-08 (Data must be collected from the Reserve Pit)                                                                                                                                                                                                                                                                            |
| Deepening Re-perf Conv. to Enhr./SWD                                                                                                                   | Chloride content ppm Fluid volume bbls                                                                                                                                                                                                                                                                                                                                 |
| Plug BackPlug Back Total Depth                                                                                                                         | Dewatering method used                                                                                                                                                                                                                                                                                                                                                 |
| Commingled Docket No                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                        |
| Dual Completion Docket No                                                                                                                              | Location of fluid disposal if hauled offsite:  RECEIVED                                                                                                                                                                                                                                                                                                                |
| Other (SWD or Enhr.?) Docket No                                                                                                                        | Operator Name: KANSAS CORPORATION COMMISSION                                                                                                                                                                                                                                                                                                                           |
| 12/15/06 12/17/06 12/18/06                                                                                                                             | Lease Name: Alphanse No. 2007                                                                                                                                                                                                                                                                                                                                          |
| Spud Date or Date Reached TD Completion Date or Recompletion Date                                                                                      | Quarter Sec TwpS. R East West                                                                                                                                                                                                                                                                                                                                          |
| necompletion Date necompletion Date                                                                                                                    | County: DONS STRVATION DIVISION WICHITA, KS                                                                                                                                                                                                                                                                                                                            |
| Kansas 67202, within 120 days of the spud date, recompletion, workov<br>Information of side two of this form will be held confidential for a period of | h the Kansas Corporation Commission, 130 S. Market - Room 2078, Wichita, ver or conversion of a well. Rule 82-3-130, 82-3-106 and 82-3-107 apply. 12 months if requested in writing and submitted with the form (see rule 82-3-s and geologist well report shall be attached with this form. ALL CEMENTING s. Submit CP-111 form with all temporarily abandoned wells. |
| All requirements of the statutes, rules and regulations promulgated to regul herein are complete and correct to the best of my knowledge.              | ate the oil and gas industry have been fully complied with and the statements                                                                                                                                                                                                                                                                                          |
| Signature: Gunnife B. Ammann                                                                                                                           | KCC Office Use ONLY                                                                                                                                                                                                                                                                                                                                                    |
| Title: New Well Development Coordinator Date: 4/23/07                                                                                                  | Letter of Confidentiality Received                                                                                                                                                                                                                                                                                                                                     |
| Subscribed and sworn to before me this $23^{cl}$ day of $4000$                                                                                         | If Denied, Yes Date:                                                                                                                                                                                                                                                                                                                                                   |
| 20_17.                                                                                                                                                 | Wireline Log Received                                                                                                                                                                                                                                                                                                                                                  |
| Daniel Stranger                                                                                                                                        | Geologist Report Received                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                        | UIC Distribution                                                                                                                                                                                                                                                                                                                                                       |
| Date Commission Expires: 8-4-2010                                                                                                                      | TERRA KIAUMAN                                                                                                                                                                                                                                                                                                                                                          |
| j <del></del> - ///                                                                                                                                    | otary Public - State of Kansas<br>Expires - U - 200                                                                                                                                                                                                                                                                                                                    |

| Operator Name: Que                                                   | est Cherokee, LL                                                    | C .                                                                                                                   | Lease Name:                                                         | Streets Rev. Tr                   | rust                            | Well #: _ <del>11-2</del>  | .,•                           |
|----------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------|---------------------------------|----------------------------|-------------------------------|
| Sec. 11 Twp. 2                                                       |                                                                     | ✓ East                                                                                                                | County: Wilson                                                      |                                   |                                 | <del></del>                |                               |
| INSTRUCTIONS: SI<br>tested, time tool oper<br>temperature, fluid rec | now important tops<br>n and closed, flowin<br>covery, and flow rate | and base of formations p<br>og and shut-in pressures,<br>es if gas to surface test, a<br>final geological well site i | enetrated. Detail a<br>whether shut-in pre<br>along with final char | II cores. Repor<br>essure reached | static level, hydro             | ostatic pressure           | es, bottom hole               |
| Drill Stem Tests Take                                                | 1                                                                   | ☐ Yes   ✓ No                                                                                                          | <b></b> ✓L                                                          | .og Format                        | ion (Top), Depth                |                            | Sample                        |
| Samples Sent to Geo                                                  | ological Survey                                                     | ☐ Yes 🗸 No                                                                                                            | Nam<br>See                                                          | e<br>attached                     |                                 | Тор                        | Datum                         |
| Cores Taken Electric Log Run (Submit Copy) List All E. Logs Run:     |                                                                     | ☐ Yes ☑ No<br>☐ Yes ☐ No                                                                                              |                                                                     |                                   |                                 |                            |                               |
| Compensated Dual Induction                                           | · -                                                                 | tron Log                                                                                                              |                                                                     |                                   |                                 |                            |                               |
|                                                                      |                                                                     | CASING<br>Report all strings set-                                                                                     |                                                                     | ew Used<br>ermediate. produc      | ction, etc.                     |                            |                               |
| Purpose of String                                                    | Size Hole<br>Drilled                                                | Size Casing<br>Set (In O.D.)                                                                                          | Weight<br>Lbs. / Ft.                                                | Setting<br>Depth                  | Type of<br>Cement               | # Sacks<br>Used            | Type and Percent<br>Additives |
| Surface                                                              | 12-1/4                                                              | 8-5/8"                                                                                                                | 20                                                                  | 20                                | "A"                             | 5                          |                               |
| Production                                                           | 6-3/4                                                               | 4-1/2                                                                                                                 | 10.5                                                                | 1123.54                           | "A"                             | 135                        |                               |
|                                                                      |                                                                     | ADDITIONAL                                                                                                            | L CEMENTING / SQ                                                    | UEEZE RECOR                       | D                               |                            |                               |
| Purpose:                                                             | Depth<br>Top Bottom                                                 | Type of Cement                                                                                                        | #Sacks Used                                                         |                                   |                                 |                            |                               |
| Protect Casing Plug Back TD Plug Off Zone                            | ; ; ;                                                               |                                                                                                                       |                                                                     |                                   |                                 |                            |                               |
| Shots Per Foot                                                       |                                                                     | FION RECORD - Bridge Pluy<br>Footage of Each Interval Pe                                                              |                                                                     |                                   | acture, Shot, Cemer             |                            | rd Depth                      |
| 4                                                                    | 1050-1052                                                           |                                                                                                                       |                                                                     | 100gal 15%HCLw/ 31 b              | obls 2%kc/ water, 348bbls water | r w/ 2% KCL, Biocide, 1300 | # 30/70 send 1050-1052        |
| 4                                                                    | 880-882                                                             |                                                                                                                       |                                                                     | 100gal 15%HCLw/ 40 b              | obls 2%kd water, 253bbls wate   | r w/ 2% KCL, Biocide, 1200 | # 30/70 send 880-882          |
|                                                                      |                                                                     |                                                                                                                       |                                                                     |                                   |                                 |                            | 000 040 705 500               |
| TUBING RECORD                                                        | 638-642/625-629<br>Size                                             | Set At                                                                                                                | Packer At                                                           | Liner Run                         | obls 2%kcl water, 591bbls water | r Wi 2% KCL, Biocide, 1300 | 0# 30/70 sand 638-642/625-629 |
|                                                                      | 3/8"                                                                |                                                                                                                       | n/a                                                                 | 20. 11011                         | Yes V N                         | 0                          |                               |
| Date of First, Resumer 2/26/07                                       | rd Production, SWD or                                               | Enhr. Producing Me                                                                                                    | thod                                                                | ng 🗸 Pump                         | oing Gas L                      | .ift ' Oth                 | er (Explain)                  |
| Estimated Production<br>Per 24 Hours                                 | Oil<br>n/a                                                          | Bbls. Gas<br>57.4mcf                                                                                                  | Mcf Wat                                                             |                                   | Bbls.                           | Gas-Oil Ratio              | Gravity                       |
| Disposition of Gas                                                   | METHOD OF                                                           | COMPLETION                                                                                                            |                                                                     | Production Inte                   | erval ·                         |                            |                               |
| Vented ✓ Sold (If vented, St                                         | Used on Lease<br>ubmit ACO-18.)                                     | Open Hole Other (Spec                                                                                                 |                                                                     | Dually Comp.                      | Commingled                      |                            |                               |



# TXD SERVICES LP DRILLERS LOG

# TXD SERVICES LP

| RIG#                   | 101         |              | S. 11         | T. 29                                    | R. 16     | 0.000 |                                       |      |
|------------------------|-------------|--------------|---------------|------------------------------------------|-----------|-------|---------------------------------------|------|
| API#                   | 205-27037   |              | County:       | Wilson                                   |           | 470'  | 0 - 1/4"                              |      |
|                        | Elev:       | 860'         | Location      | Kansas                                   |           | 567'  | 5 - 1/4"                              | 3.71 |
|                        |             |              |               |                                          | ~ ·       | 626'  | 6 - 1/2"                              | 15.4 |
| Operator:              | Quest Cherr | okee, LLC    |               |                                          |           | 659'  | 8 - 1"                                | 73.1 |
| Address:               | 9520 N. May | Ave, Suite   | 300           |                                          |           | 815'  | 6 - 1 1/4"                            | 107  |
|                        | Oklahoma C  | ity, OK. 731 | 20            |                                          |           | 845'  | 6 - 1 1/4"                            | 107  |
| Well#                  | 11-2        |              | Lease Name    | e Streets F                              | Rev Trust | 908,  | 6 - 1 1/4"                            | 107  |
| Footage Locat          | ion         | 990          | ft from the   | S                                        | Line      | 1001  | 9 - 1 1/4"                            | 132  |
|                        |             | 1680         | ft from the   | E                                        | Line      | 1032' | 9 - 1 1/4'                            | 132  |
| <b>Drilling Contra</b> | ctor.       | TXD S        | ERVICES       | LP                                       |           | 1063' | 10 - 1 1/4"                           | 138  |
| Spud Date;             | 12/15/2006  |              | Geologist:    |                                          |           | 1161' | 10 - 1 1/4"                           | 138  |
| Date Comp:             | 12/17/2006  |              | Total Depth   | 1161'                                    |           |       |                                       |      |
| Exact spot Loc         | ation,      | NE SW SE     | <del>-1</del> | •                                        | ş:        |       |                                       |      |
|                        |             |              |               | 25 W 7 W 7 W 7 W 7 W 7 W 7 W 7 W 7 W 7 W |           |       |                                       |      |
|                        | Surface     | Production   |               |                                          |           |       | · · · · · · · · · · · · · · · · · · · |      |
| Size Hole              | 12-1/4"     | 6-3/4"       |               |                                          |           |       |                                       |      |
| Size Casing            | 8-5/8"      | 4-1/2"       |               |                                          |           | 1     |                                       |      |
| Weight                 | 24#         |              |               |                                          |           |       |                                       |      |
| Setting Depth          | 20'         |              |               |                                          |           |       |                                       |      |
| Type Cement            | portland    |              |               |                                          |           |       |                                       |      |
| Sacks                  |             |              |               |                                          |           |       |                                       |      |

| Formation | Тор | Btm. | Formation | Т <b>о</b> р | Btm. | Formation  | Top      | Btm.                                  |
|-----------|-----|------|-----------|--------------|------|------------|----------|---------------------------------------|
| top soil  | 0   | 3    | shale     | 410          | 429  | shale      | 645      | 647                                   |
| shale     | 3   | 48   | lime      | 429          | 434  | lime       | 647      | 648                                   |
| coal      | 48  | 49   | shale     | 434          | 467  | shale      | 648      | 763                                   |
| shale     | 49  | 63   | coal      | 467          | 469  | sand       | 763      | 823                                   |
| coal      | 63  | 65   | shale     | 469          | 520  | shale      | 823      | 840                                   |
| shale     | 65  | 87   | lime      | 520          | 523  | coaf       | 840      | 841                                   |
| lime      | 87  | 92   | shale     | 523          | 525  | sand       | 841      | 850                                   |
| shale     | 92  | 101  | coal      | 525          | 527  | shale      | 850      | 860                                   |
| lime      | 101 | 207  | shale     | 527          | 531  | coal       | 860      | 861                                   |
| shale     | 207 | 240  | lime      | 531          | 562  | shale      | 861      | 905                                   |
| coal      | 240 | 241  | shale     | 562          | 564  | sand       | 905      | 925                                   |
| shale     | 241 |      | b.shale   | 564          | 566  | shale      | 925      | 930                                   |
| lime      | 245 |      | shale     | 566          | 594  | sand       | 930      | 978                                   |
| shale     | 256 |      | coai      | 594          | 595  | shale      | 978      | 985                                   |
| lime      | 260 | 278  | shale     | 595          | 600  | coal       | 985      | 986                                   |
| shale     | 278 | 281  | lime      | 600          | 620  | shale      | 986      | 1012                                  |
| lime      | 281 | 310  | shale     | 620          | 622  | sand       | 1012     | 1023                                  |
| shale     | 310 |      | b.shale   | 622          | 625  | sand/shale | 1023     | 1047                                  |
| lime      | 313 | 333  | shale     | 625          | 627  | coal       | 1047     | 1049                                  |
| shale     | 333 | 364  | lime      | 627          | 637  | shale      | 1049     | 1060                                  |
| coal      | 364 | 365  | shale     | 637          | 640  | lime .     | 1060     | · · · · · · · · · · · · · · · · · · · |
| shale     | 365 | 394  | b.shale   | 640          | 643  |            |          |                                       |
| lime      | 394 | 410  | coal      | 643          |      |            | <u> </u> |                                       |

RECEIVED
KANSAS CORPORATION COMMISSION

APR 2 4 2007



12-18-06

211 W. 14TH STREET, CHANUTE, KS 66720 620-431-9500 TICKET NUMBER 1956

FIELD TICKET REF #

TOWNSHIP

29

SECTION

11

FOREMAN \_\_\_\_

RANGE

16

COUNTY

UJL

619380

STREETS

# TREATMENT REPORT & FIELD TICKET CEMENT

11-2

WELL NAME & NUMBER

Rey trust

| FOREMAN /<br>OPERATOR | TIME          | TIME<br>OUT    | LESS<br>LUNCH     | TRUCK #             | TRAILER<br>#                          | TRUCK<br>HOURS   | EMPLOYEE<br>SIGNATURE |    |
|-----------------------|---------------|----------------|-------------------|---------------------|---------------------------------------|------------------|-----------------------|----|
| Joe B                 | 7:45          | 10:00          |                   | 903427              |                                       | 2.25             | you Blanch            | 0  |
| Tim . A               | U 30          |                |                   | 903255              |                                       | 3.5              | Lin asks              |    |
| Russell-A             | 6:45          |                |                   | 903206              |                                       | 3. 25            | 1-1                   |    |
| Brondon. M            |               |                |                   | 9034100             | 932765                                | 3                | BALS                  | -  |
| TROY. W               | 6:45          | 1              |                   | 93121200            |                                       | 3.25             | TROUTHIM              |    |
|                       |               |                | ,                 |                     |                                       |                  | 100-                  |    |
| JOB TYPE Longs        | Tring HOLES   | SIZE <u>63</u> | <u>/4</u> +       | IOLE DEPTH //6      | CASII                                 | NG SIZE & WEIGHT | 4/2 /0.5              |    |
| CASING DEPTH 11       |               |                |                   |                     |                                       |                  |                       |    |
| SLURRY WEIGHT_        |               |                |                   |                     |                                       |                  |                       |    |
| DISPLACEMENT_1        | 7.91 DISPLA   | CEMENT F       | PSI N             | IIX PSI             | RATE                                  | H bpm            |                       |    |
| REMARKS:              |               |                |                   |                     |                                       | _ %              | _                     |    |
| INSTAILED             | Cement h      | ech F          | AN 25KS           | gel 4 12            | bbl due of                            | 135 SKS          | of cement             | 70 |
| got due.              | to surface.   | Flushp         | ump. Pump         | wiper plus -        | to bottom s                           | + sed float      | s of cement           |    |
| ,                     |               |                |                   |                     | ÷                                     |                  |                       |    |
|                       |               |                |                   |                     |                                       | .,               |                       |    |
|                       |               |                |                   |                     | MA.                                   | RECEIV           | ED                    |    |
|                       |               |                |                   |                     | 704                                   | NSAS CORPORATION | COMMISSION            |    |
|                       |               |                |                   |                     |                                       | APR 2 4 2        |                       |    |
|                       |               |                |                   |                     |                                       |                  |                       |    |
| j                     | 1123.5        | 54             | F+ 41/2           | Casina              |                                       | CONSERVATION DI  | VISION                |    |
|                       |               | 6              | Controliz         |                     |                                       | WICHITA, KS      |                       |    |
|                       |               |                | 41/2 flor-        |                     |                                       |                  |                       |    |
|                       |               |                | 7 10              | 1.311000            | · · · · · · · · · · · · · · · · · · · |                  |                       | 1  |
| ACCOUNT<br>CODE       | QUANTITY or U | STINU          |                   | DESCRIPTION OF SE   | ERVICES OR PRODUC                     | т                | TOTAL<br>AMOUNT       |    |
| 903427                | 2.25          | ha             | Foreman Pickup    |                     |                                       |                  |                       |    |
| 903255                | 3.5           | hv             | Cement Pump Truck | (                   |                                       |                  |                       |    |
| 503206                | 3.25          | hr             | Bulk Truck        |                     |                                       |                  |                       | 1  |
| 1104                  | 128           | ' 5 k          | Portland Cement   |                     |                                       |                  | <u> </u>              | 4  |
| 1124                  |               | _ స            | 50/50 POZ Blend C |                     | $3'/_2 + 3$                           |                  |                       | -  |
| 1126                  |               | )              | OWC - Blend Ceme  | in 4/2 wi           | per plus                              |                  |                       | 4  |
| 1110                  | /3            | 516            | Gilsonite         |                     | 1                                     |                  |                       | -  |
| 1107                  | 1.5           | 5K             | Flo-Seal          |                     |                                       |                  |                       | -  |
| 1118                  |               | SK             | Premium Gel       |                     |                                       |                  |                       | -  |
| 1215A                 | 130 (         | - 10           | KCL               | <u> </u>            |                                       |                  |                       | -  |
| 1111B                 |               | <u>51</u>      |                   | Colchlorid          | <u>e</u>                              |                  |                       | -  |
| 1123                  | 70000         | 4              | City Water        |                     |                                       |                  | <del> </del>          | 1  |
| 9031100               | 3             | - >v           | Transport Trailer | water to the second |                                       |                  |                       | 1  |
| 932705                | 3 2 2 2       | - hr           | Transport Trailer |                     | ···                                   |                  | +                     | 1  |
| 931422                | 7, 25         | $\frac{1}{2}$  | 80 Vac            |                     |                                       |                  |                       | اـ |
| Ravin 4513            |               |                |                   |                     |                                       |                  |                       |    |

# **POSTROCK**



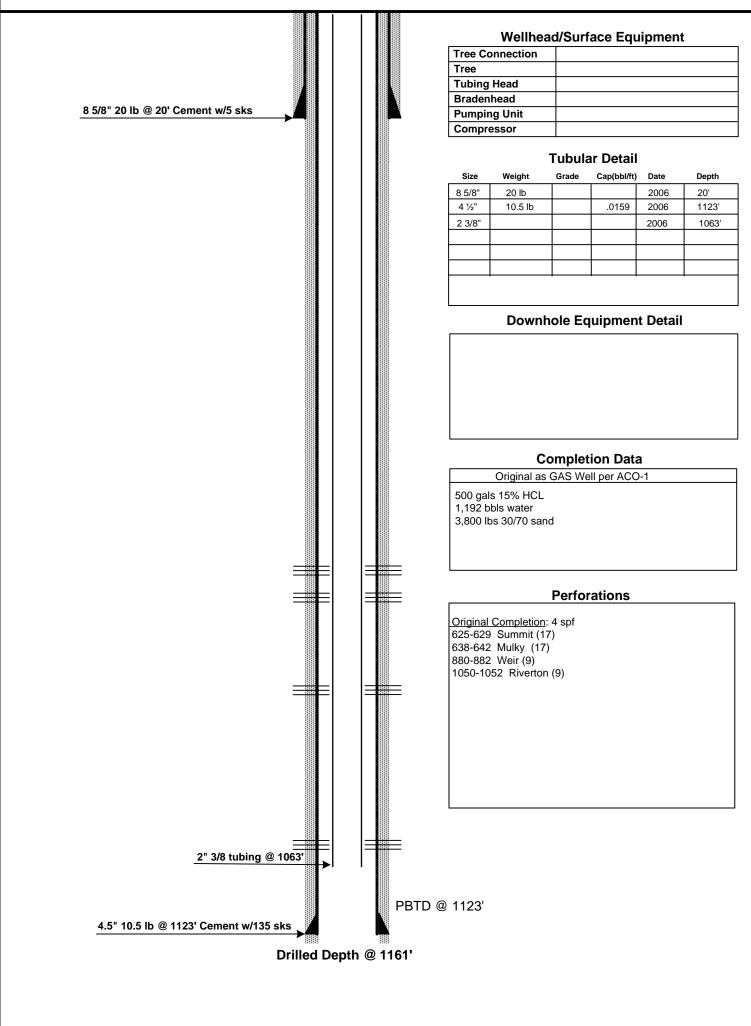
# **Current Completion**

SPUD DATE : 12-15-2006 COMP. Date : 12-18-2006

API: 15-205-27037-00-00

WELL : Streets Rev Trust 11-2

FIELD : Cherokee Basin


STATE : Kansas COUNTY : Wilson

PREPARED BY: POSTROCK

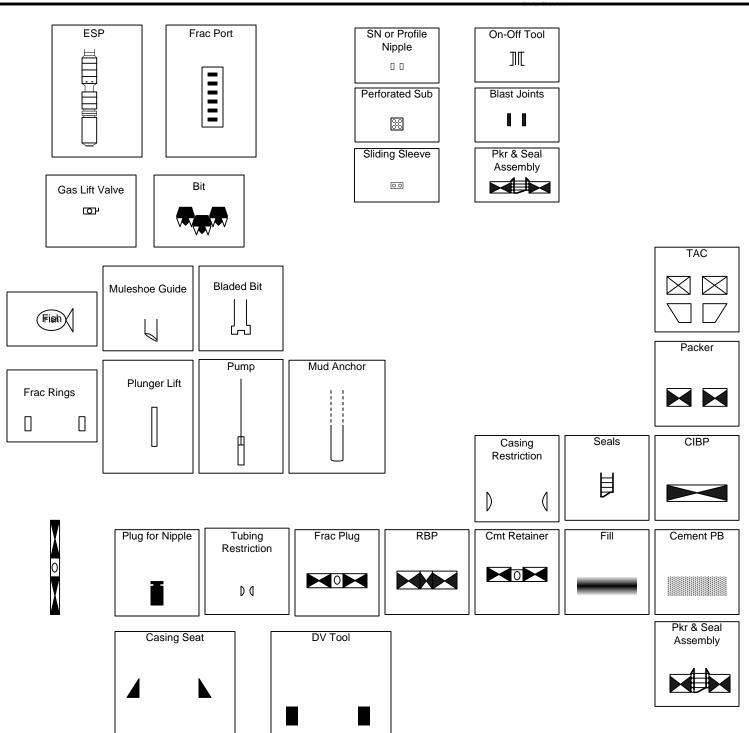
APPROVED BY: \_

LOCATION: 11-29S-16E (SW,SE)

**ELEVATION: 860'** 



**DATE**: Dec, 2012


DATE:\_

# **POSTROCK**



**LEGEND** 

# PostRock<sup>®</sup>



#### AFFIDAVIT

STATE OF KANSAS

SS.

County of Sedgwick

Mark Fletchall, of lawful age, being first duly sworn, deposeth and saith: That he is Record Clerk of The Wichita Eagle, a daily newspaper published in the City of Wichita, County of Sedgwick, State of Kansas, and having a general paid circulation on a daily basis in said County, which said newspaper has been continuously and uninterruptedly published in said County for more than one year prior to the first publication of the notice hereinafter mentioned, and which said newspaper has been entered as second class mail matter at the United States Post Office in Wichita, Kansas, and which said newspaper is not a trade, religious or fraternal publication and that a notice of a true copy is hereto attached was published in the regular and entire Morning issue of said The Wichita Eagle for 1 issues, that the first publication of said notice was

made as aforesaid on the 17th of

January A.D. 2013, with

subsequent publications being made on the following dates:

And affiant further says that he has personal knowledge of the statements above set forth and that they are true.

Subscribed and sworn to before me this

17th day of January, 2013

PENNY L. CASE Motary Public - State My Appt. Expires

Notary Public Sedgwick County, Kansas

Printer's Fee: \$132.40

PUBLISHED IN THE WICHITA EAGLE
JANUARY 17, 2013 (3227054)
BEFORE THE STATE CORPORATION
COMMISSION OF THE STATE OF KANSAS

MMISSION OF THE STATE OF KANSAS NOTICE OF FILING APPLICATION

In the Maller of Postrock Midcontinent Production, LLC Application for Commingling of Production in the Streets Revocable Trust 11-2 located in Wilson County,

TO: All Oil & Gas Producers, Unleased Mineral Injerest Owners

TO: All Oil & Gas Producers, Unleased Mineral Interest Owners, Landowners, and all persons whomever concerned.

You, and each of you, are hereby notified that Postrock Midcontinent Production, LLC has filed an application to committee the Summit, Mulky, Wetr, Riverton and Bartlesville producing formations at the Streets Revocable Trust 11-2, located in the NE SW SE, S11-7255-R16E, Approximately 996 FSL & 1680 FEL, Wilson County, Kenasa.

Any persons who object to or protest lihis application shall be required to file Interoblections or protest with the Conservation Division of the State Gropporation Commission of the State of Kansas within fifteen (15) days from the date of this publication. These protests shall be filed pursuant to Commission regulations and must state specific reasons why granting the application may cause waste, violate correlative rights or politule the natural resources of the State of Kansas.

All persons interested or concerned shall take notice of the foregoing and shall govern themselves accordingly. All person and/or companies wishing to protest this application are required to file a written protest, the Conservation Division of the Kansas Oil and Gas Commission.

Commission.

Upon the receipt of any protest, the Commission will convene a hearing and protestants will be expected to enter an appearance either through proper legal counsel or as individuals, appearing on their own behalf.

Own benal, Postrock Midcontinent Production, LLC 210 Park Avenue, Suite 2750 Oklahoma City, Oklahoma 73102 (405) 660-7704

### PROOF OF PUBLICATION

# STATE OF KANSAS Wilson County - SS

JOSEPH S. and RITA M. RELPH, of lawful age, being duly sworn upon oath that they are the Owners and Publishers of the WILSON COUNTY CITIZEN:

THAT said newspaper has been published at least weekly fifty (50) times a year and has been so published for at least five years prior to the first publication of the attached notice:

THAT said newspaper is a general circulation on a daily, or weekly, or monthly, or yearly basis in;

WILSON COUNTY, KANSAS and is NOT a trade, religious or fraternal publication and has been PRINTED and PUBLISHED in Wilson County, Kansas.

THE ATTACHED was published on the following dates in a regular issue of said newspaper:

17.4

| 1st publication was made on the              | //Th/ day                        |
|----------------------------------------------|----------------------------------|
| - Janu                                       | nry 20 13                        |
| / /                                          | day o                            |
|                                              | . 20                             |
| 3rd publication was made on the              | day o                            |
|                                              | . 20                             |
| 4th publication was made on the              | day o                            |
|                                              | 20                               |
| 5th publication was made on the              | day of                           |
|                                              | . 20                             |
| 6th publication was made on the              | day of                           |
|                                              | . 20                             |
| TOTAL PUBLICATION FEE:                       | 37.72                            |
| TOTAL PUBLICATION FEE: \$ (Signed) Joseph S. | Col                              |
| Subscribed and sworn to before me, this      | 18th day of                      |
| 1 1                                          |                                  |
| // _ // _                                    | , 20 <u>/3</u>                   |
| Arta M. Te                                   | lph (Notary Public<br>, 30, 2014 |
| My commission expires aug                    | . 30,2014                        |

(Published in the Wilson County Citizen on Thursday, January 17, 2013.

BEFORE THE STATE CORPORATION COMMISSION OF THE STATE OF KANSAS

#### NOTICE OF FILING APPLICATION

RE: In the Matter of Postrock Midcontinent Production, LLC Application for Commingling of Production in the Streets Revocable Trust 11-2 located in Wilson County, Kansas.

TO: All Oil & Gas Producers, Unleased Mineral Interest Owners, Landowners, and all persons whomever concerned.

You, and each of you, are hereby notified that Postrock Midcontinent Production, LLC has filed an application to commingle the Summit, Mulky, Weir, Riverton and Bartlesville producing formations at the Streets Revocable Trust 11-2, located in the NESW SE, S11-T29S-R16E, Approximately 990 FSL & 1680 FEL, Wilson County, Kansas

Any persons who object to or protest this application shall be required to file their objections or protest with the Conservation Division of the State Corporation Commission of the State of Kansas within fifteen (15) days from the date of this publication. These protests shall be filed pursuant to Commission regulations and must state specific reasons why granting the application may cause waste, violate correlative rights or pollute the natural resources of the State of Kansas.

All persons interested or concerned shall take notice of the foregoing and shall govern themselves accordingly. All person and/or companies wishing to protest this application are required to file a written protest with the Conservation Division of the Kansas Oil and Gas Commission.

Upon the receipt of any protest, the Commission will convene a hearing and protestants will be expected to enter an appearance either through proper legal counsel or as individuals, appearing on their own behalf.

Postrock Midcontinent Production, LLC 210 Park Avenue, Suite 2750 Oklahoma City, Oklahoma 73102 (405) 660-7704 96 1 cpy.



| Affidavit of Notice Served                                                      |                                                                    |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------|
| •••                                                                             | GLING OF PRODUCTION OR FLUIDS ACO-4                                |
| Well Name: STREETS REV TRUST 11-2                                               | Legal Location: NESWSE S11-T29S-R16E                               |
| The undersigned hereby certificates that he / she is a duly authorized          | agent for the applicant, and that on the day 8th of FEBRUARY       |
| , a true and correct copy of the application refere                             | enced above was delivered or mailed to the following parties:      |
| Note: A copy of this affidavit must be served as a part of the application      | ion.                                                               |
| Name                                                                            | Address (Attach additional sheets if necessary)                    |
| SEE ATTACHED                                                                    |                                                                    |
|                                                                                 |                                                                    |
| •                                                                               |                                                                    |
|                                                                                 |                                                                    |
|                                                                                 |                                                                    |
|                                                                                 |                                                                    |
|                                                                                 |                                                                    |
|                                                                                 |                                                                    |
|                                                                                 |                                                                    |
|                                                                                 |                                                                    |
|                                                                                 |                                                                    |
|                                                                                 |                                                                    |
|                                                                                 |                                                                    |
|                                                                                 |                                                                    |
|                                                                                 |                                                                    |
| I further attest that notice of the filing of this application was published in | in the THE WILSON COUNTY CITIZEN , the official county publication |
| of WILSON                                                                       | county. A copy of the affidavit of this publication is attached.   |
| Signed this Standard february                                                   | 2013                                                               |
| Signed this day or                                                              | 11.11 1                                                            |
|                                                                                 | Applicant or Duly Authorized Agent                                 |
| Subscribed and swo                                                              | ath                                                                |
|                                                                                 |                                                                    |
| JENNIFER R. BEAL MY COMMISSION EXPIRES                                          | My Commission Expires: Auly 20, 2016                               |
| 7-20-2014                                                                       | My Commission Expires: Auly 20, 2016                               |
|                                                                                 |                                                                    |
|                                                                                 |                                                                    |
|                                                                                 |                                                                    |
|                                                                                 |                                                                    |

**LEGAL LOCATION** 

**SPOT** 

CURR\_OPERA

**ADDRESS** 

S11-T29S-R16E S11-T29S-R16E

NW SW NW SE Caravel Energy of Kansas, Inc.

Caravel Energy of Kansas, Inc.

PO BOX 44308 DENVER, CO 80201

PO BOX 44308 DENVER, CO 80201

## 11-29S-16E

W2 SW4 less tract

Harold Fawl 17428 Udall Rd Altoona, KS 66710

### NW4

Larry G Spurrier Jr. 2020 Brentwood Wichita, KS 67218

#### NE4

Barbara Noah, Leanne Howard, & Joanne Howard 211 N 11th Fredonia, KS 66736

#### E2 SE4 less

Mary Louise Rettman Trust 11234 Thomas Rd Altoona, KS 66710

## 12-29S-16E

#### **W2 SW4**

Dee Anna & Jimmie L. Corns (1/2) 23099 E. Mockingbird Dr. Golden, MO 65658

Lee Donna Cranor-Bryan (1/2) 1300 CR 152 Georgetown, TX 78626

# STREETS REV TRUST 11-2-APPLICATION FOR COMMINGLING OF PRODUCTION OR FLUIDS

| t Operators, Unleased Mineral Owners a<br>h addilional sheets if necessary) | and Eundowners acreage                                   |                              |              |
|-----------------------------------------------------------------------------|----------------------------------------------------------|------------------------------|--------------|
| Name:                                                                       |                                                          | Logal Department             | fl aanahatdi |
| ATTACHED                                                                    |                                                          | Legal Description o          | r Leasenoid: |
|                                                                             |                                                          |                              |              |
|                                                                             |                                                          | ·                            |              |
|                                                                             |                                                          |                              |              |
|                                                                             |                                                          |                              |              |
|                                                                             |                                                          |                              |              |
|                                                                             |                                                          |                              |              |
|                                                                             |                                                          |                              |              |
|                                                                             |                                                          |                              |              |
|                                                                             |                                                          |                              |              |
|                                                                             |                                                          | •                            |              |
|                                                                             |                                                          |                              |              |
|                                                                             |                                                          |                              |              |
|                                                                             |                                                          |                              |              |
|                                                                             |                                                          |                              |              |
|                                                                             |                                                          |                              |              |
|                                                                             |                                                          |                              |              |
| certify that the statements made herein are                                 | trile and correct to the best of my knowledge            | a and holiaf                 |              |
|                                                                             | Applicant or Duly Au Subscribed and sworn before me this | RH day of FEBRUARY           | ,2013        |
| JENNIFER R. BEAL OFFICIAL MY COMMISSION EXPIRES 7-20-20/4                   | Subscribed and sworn before me this                      | gt R. Beal                   |              |
| OFFICIAL MY COMMISSION EXPIRES                                              | Subscribed and sworn before me this                      | RH day of FEBRUARY           |              |
| OFFICIAL MY COMMISSION EXPIRES                                              | Subscribed and sworn before me this                      | RH day of FEBRUARY           |              |
| OFFICIAL MY COMMISSION EXPIRES                                              | Subscribed and sworn before me this                      | RH day of FEBRUARY           | 2016         |
| OFFICIAL MY COMMISSION EXPIRES                                              | Subscribed and sworn before me this                      | RH day of FEBRUARY           | 2016         |
| OFFICIAL MY COMMISSION EXPIRES                                              | Subscribed and sworn before me this                      | RH day of FEBRUARY           | 2016         |
| OFFICIAL MY COMMISSION EXPIRES                                              | Subscribed and sworn before me this                      | RH day of FEBRUARY           | 2016         |
| OFFICIAL MY COMMISSION EXPIRES                                              | Subscribed and sworn before me this                      | RH day of FEBRUARY           | 2016         |
| OFFICIAL MY COMMISSION EXPIRES                                              | Subscribed and sworn before me this                      | Beal grees: April 20,        | 2016         |
| OFFICIAL MY COMMISSION EXPIRES                                              | Subscribed and sworn before me this                      | Beal grees: April 20,        | 2016         |
| OFFICIAL MY COMMISSION EXPIRES                                              | Subscribed and sworn before me this                      | Beal grees: April 20,        | 2016         |
| OFFICIAL MY COMMISSION EXPIRES                                              | Subscribed and sworn before me this                      | gh day of FEBRUARY  July 20, | 2016         |
| OFFICIAL MY COMMISSION EXPIRES                                              | Subscribed and sworn before me this                      | Beal grees: April 20,        | 2016         |
| OFFICIAL MY COMMISSION EXPIRES                                              | Subscribed and sworn before me this                      | gh day of FEBRUARY  July 20, | 2016         |
| OFFICIAL MY COMMISSION EXPIRES                                              | Subscribed and sworn before me this                      | gh day of FEBRUARY  July 20, | 2016         |
| OFFICIAL MY COMMISSION EXPIRES                                              | Subscribed and sworn before me this                      | gh day of FEBRUARY  July 20, | 2016         |
| OFFICIAL MY COMMISSION EXPIRES                                              | Subscribed and sworn before me this                      | gh day of FEBRUARY  July 20, | 2016         |
| OFFICIAL MY COMMISSION EXPIRES                                              | Subscribed and sworn before me this                      | gh day of FEBRUARY  July 20, | 2016         |

**LEGAL LOCATION** 

SPOT

CURR\_OPERA

**ADDRESS** 

S11-T29S-R16E S11-T29S-R16E NW SW NW SE

Caravel Energy of Kansas, Inc.

Caravel Energy of Kansas, Inc.

PO BOX 44308 DENVER, CO 80201 PO BOX 44308 DENVER, CO 80201

## 11-29S-16E

W2 SW4 less tract

Harold Fawl 17428 Udall Rd Altoona, KS 66710

#### NW4

Larry G Spurrier Jr. 2020 Brentwood Wichita, KS 67218

#### NE4

Barbara Noah, Leanne Howard, & Joanne Howard 211 N 11th Fredonia, KS 66736

### E2 SE4 less

Mary Louise Rettman Trust 11234 Thomas Rd Altoona, KS 66710

# 12-29S-16E

#### **W2 SW4**

Dee Anna & Jimmie L. Corns (1/2) 23099 E. Mockingbird Dr. Golden, MO 65658

Lee Donna Cranor-Bryan (1/2) 1300 CR 152 Georgetown, TX 78626 Conservation Division Finney State Office Building 130 S. Market, Rm. 2078 Wichita, KS 67202-3802



Phone: 316-337-6200 Fax: 316-337-6211 http://kcc.ks.gov/

Sam Brownback, Governor

Mark Sievers, Chairman Thomas E. Wright, Commissioner Shari Feist Albrecht, Commissioner

February 25, 2013

Clark Edwards
PostRock Midcontinent Production LLC
Oklahoma Tower
210 Park Ave, Ste 2750
Oklahoma City, OK 73102

RE: Approved Commingling CO021309

Streets Rev Trust 11-2, Sec. 11-T29S-R16E, Wilson County

API No. 15-205-27037-00-00

Dear Mr. Edwards:

Your Application for Commingling (ACO-4) for the above described well, received by the KCC on February 11, 2013, has been reviewed and approved by the Kansas Corporation Commission (KCC) per K.A.R. 82-3-123. Notice was examined and found to be proper per K.A.R. 82-3-135a. No protest had been filed within the 15-day protest period.

Based upon the depth of the Riverton formation perforations, total oil production shall not exceed 100 BOPD and total gas production shall not exceed 50% of the absolute open flow (AOF).

### File form ACO-1 upon re-completion of the well to commingle.

Commingling ID number CO021309 has been assigned to this approved application. Use this number for well completion reports (ACO-1) and other correspondence that may concern this approved commingling.

Sincerely,

Rick Hestermann Production Department