

Confidentiality Requested:

Yes No

Kansas Corporation Commission Oil & Gas Conservation Division

1159430

Form ACO-1 August 2013 Form must be Typed Form must be Signed All blanks must be Filled

WELL COMPLETION FORM WELL HISTORY - DESCRIPTION OF WELL & LEASE

OPERATOR: License #	API No. 15		
Name:	Spot Description:		
Address 1:	SecTwpS. R		
Address 2:	Feet from North / South Line of Section		
City:	Feet from		
Contact Person:	Footages Calculated from Nearest Outside Section Corner:		
Phone: ()	□NE □NW □SE □SW		
CONTRACTOR: License #	GPS Location: Lat:, Long:		
Name:	(e.g. xx.xxxxx) (e.gxxx.xxxxxx)		
Wellsite Geologist:	Datum: NAD27 NAD83 WGS84		
Purchaser:	County:		
Designate Type of Completion:	Lease Name: Well #:		
☐ New Well ☐ Re-Entry ☐ Workover	Field Name:		
□ Oil □ WSW □ SWD □ SIOW	Producing Formation:		
Gas D&A ENHR SIGW	Elevation: Ground: Kelly Bushing:		
GSW Temp. Abd.	Total Vertical Depth: Plug Back Total Depth:		
CM (Coal Bed Methane)	Amount of Surface Pipe Set and Cemented at: Feet		
Cathodic Other (Core, Expl., etc.):	Multiple Stage Cementing Collar Used? Yes No		
If Workover/Re-entry: Old Well Info as follows:	If yes, show depth set: Feet		
Operator:	If Alternate II completion, cement circulated from:		
Well Name:	feet depth to: w/ sx cmt.		
Original Comp. Date: Original Total Depth:			
☐ Deepening ☐ Re-perf. ☐ Conv. to ENHR ☐ Conv. to SWD	Drilling Fluid Management Plan		
☐ Plug Back ☐ Conv. to GSW ☐ Conv. to Producer	(Data must be collected from the Reserve Pit)		
Commingled Permit #:	Chloride content: ppm Fluid volume: bbls		
☐ Commingled Permit #:	Dewatering method used:		
SWD Permit #:	Location of fluid disposal if hauled offsite:		
ENHR Permit #:	·		
GSW Permit #:	Operator Name:		
	Lease Name: License #:		
Spud Date or Date Reached TD Completion Date or Recompletion Date	Quarter Sec. TwpS. R East West County: Permit #:		

AFFIDAVIT

I am the affiant and I hereby certify that all requirements of the statutes, rules and regulations promulgated to regulate the oil and gas industry have been fully complied with and the statements herein are complete and correct to the best of my knowledge.

Submitted Electronically

KCC Office Use ONLY				
Confidentiality Requested				
Date:				
Confidential Release Date:				
Wireline Log Received				
Geologist Report Received				
UIC Distribution				
ALT I II III Approved by: Date:				

Page Two

Operator Name:			Lease Name: _			Well #:		
Sec Twp	S. R	East West	County:					
open and closed, flow and flow rates if gas t	ving and shut-in presson to surface test, along w	formations penetrated. I ures, whether shut-in pro vith final chart(s). Attach	essure reached stati n extra sheet if more	c level, hydrosta space is neede	itic pressures, bott d.	tom hole tempe	erature, fluid r	recovery,
		otain Geophysical Data a or newer AND an image		egs must be ema	ailed to kcc-well-lo	gs@kcc.ks.gov	n. Digital elec	tronic log
Drill Stem Tests Taken (Attach Additional	•	Yes No		_	on (Top), Depth ar		Samp	
Samples Sent to Geo	ological Survey	☐ Yes ☐ No	Nam	e		Тор	Datur	m
Cores Taken Electric Log Run		☐ Yes ☐ No ☐ Yes ☐ No						
List All E. Logs Run:								
		CASING	RECORD Ne	ew Used				
		Report all strings set-	conductor, surface, inte	ermediate, product	ion, etc.			
Purpose of String	Size Hole Drilled	Size Casing Set (In O.D.)	Weight Lbs. / Ft.	Setting Depth	Type of Cement	# Sacks Used	Type and P Additiv	
		ADDITIONAL	OFMENTING / OOL					
Purpose:	Depth		CEMENTING / SQL	JEEZE RECORD		araant Additiraa		
Perforate	Top Bottom	Type of Cement	# Sacks Used	Type and Percent Additives				
Protect Casing Plug Back TD								
Plug Off Zone								
Did vou perform a hydra	ulic fracturing treatment o	on this well?		Yes	No (If No, ski	p questions 2 ar	nd 3)	
	=	raulic fracturing treatment ex	xceed 350,000 gallons		= ' '	p question 3)	,	
Was the hydraulic fractu	ring treatment information	n submitted to the chemical	disclosure registry?	Yes	No (If No, fill	out Page Three	of the ACO-1)	
Shots Per Foot		ON RECORD - Bridge Plug Footage of Each Interval Per			cture, Shot, Cement			Depth
	Сроспу Г	octago of Laon morvari of	ioratou	(>1	mount and rand or ma	teriar Good)		Борит
TUBING RECORD:	Size:	Set At:	Packer At:	Liner Run:	Yes No			
Date of First, Resumed	Production, SWD or EN							
Fotimeted Device C	0" -	Flowing			Other (Explain)) O" D "		
Estimated Production Per 24 Hours	Oil E	Bbls. Gas	Mcf Wate	er B	bls. G	Gas-Oil Ratio	Gr 	ravity
DISPOSITI	ON OF GAS:	1	METHOD OF COMPLE	ETION:		PRODUCTIO	ON INTERVAL:	
Vented Sold		Open Hole	Perf. Dually	Comp. Con	mmingled			
	bmit ACO-18.)	Other (Specify)	(Submit)	ACO-5) (Sub	omit ACO-4)			

Town Oilfield Service, Inc. (913) 837-8400

Commenced Spudding: 9/4/2013

WELL LOG

hickness of Strata	Formation	Total Depth	
19	soil-clay	19	
74	shale	93	
32	lime	125	
11	shale	136	
2	lime	138	
3	shale	141	
2	lime	143	
45	shale	188	
12	lime	200	
7	shale	207	
35	lime	242	
7	shale	249	
24	lime	273	
4	shale	277	
4	lime	281	
3	shale	284	
9	lime	293	
4	shale	297	
6	sand	303	
28	shale	331	
5	sand	336	
97	sandy shale	433	
6	sand	439	
5	sandy shale	444	
17	shale	461	
2	lime	463	
4	shale	467	
3	lime	469	
3	shale	472	
9	lime	481	
7	shale	488	
7	sand	495	
3	sandy shale	498	
13	shale	511	
12	sand	523	
4	sandy shale	527	
6	sand	533	
3	sandy shale	536	
11	shale	547	
2	lime	549	

Miami County, KS Well: Poss #38 Lease Owner: RT

Town Oilfield Service, Inc. (913) 837-8400

Commenced Spudding: 9/4/2013

2	shale	551		
1	lime	552		
5	shale	557		
3	lime	560		
21	shale	581		
10	lime	591		
20	shale	611		
2	lime	613		
2	shale	615		
2	coal	617		
6	shale	623		
3	lime	626		
48	shale	674		
4	sand	678		
18	core	696		
31	shale	727		
11	broken sand	738		
22	sandy shale	760		

CORE

5	sand	683
6	broken sand	689
1	sand	690
2	broken sand	692
2	sandy shale	694
2	shale	696

Short Cuts

TANK CAPACITY

BBLS. (42 gal.) equals D2x.14xh D equals diameter in feet. h equals height in feet.

BARRELS PER DAY Multiply gals. per minute x 34.2

HP equals BPH x PSI x .0004 BPH - barrels per hour PSI - pounds square inch

TO FIGURE PUMP DRIVES

- * D Diameter of Pump Sheave
- * d Diameter of Engine Sheave

SPM - Strokes per minute

RPM - Engine Speed

R - Gear Box Ratio

*C - Shaft Center Distance

D - RPMxd over SPMxR

d - SPMxRxD over RPM

SPM - RPMXD over RxD

R - RPMXD over SPMxD

BELT LENGTH - 2C + 1.57(D + d) + $\frac{(D-d)^2}{4C}$

* Need these to figure belt length

WATTS = AMPS

TO FIGURE AMPS:

VOLTS

746 WATTS equal 1 HP

Log Book

Well No. <u>⊸s≺</u>		
Farm Poss		
KS	12	(County)
(State)		(County)
	30	30
(Section)	(Township)	(Range)
W		
For Q.T. 8	nderonice	2
	(Well Owner)	

Town Oilfield Services, Inc.

1207 N. 1st East Louisburg, KS 66053 913-710-5400

				E.	
Poss Farm: Anderson County	2	+			
State; Well No. 38	***	27			
Elevation 165	_	8			
Commenced Spuding <u> </u>	-		80	Ж	
Finished Drilling 9-6 2013	0.000				
Driller's Name and Wester	_				, e 8
Driller's Name					
Driller's Name					
Tool Dresser's Name Brandon Stone	-				
Tool Dresser's Name Calc Holann	P -001				
Tool Dresser's Name	-				
Contractor's Name	-				
11 50 30	=				
(Section) (Township) (Range)	_				
Distance from line, ft.	-				
Distance from E line, 4785 ft.	-				
	_				
3-Sacks	: <u>-</u>				
CASING AND TUBING	V		-		
RECORD	3				
NEGGNE					_
40// D					
10" Set 10" Pulled			-	-	
8" Set 8" Pulled	-				
6¼" Set 6¼" Pulled	-				
4" Set 4" Pulled			1		
27/ Set 730 35 2" Pulled			-1-		
7CO TD					

		Ľ
	1	
	Ė	í

Thickness of Strata	Formation	Total Depth	
19	-oil/day	14	Remarks
74	exic./c	C13	
32	Line	125	
))	shale	190	
2	Lime	138	-
3	shale	141	
2	Livie	143	
45	shale	188	
12	Lime	300	
` ` ` `	shale	207	
35) ivic	5,13	
7	shale	2,40	
24	Lime	273	
14	Shale	277	
4	Line	381	
3	shale	284	
9	Lime	2013	N - N
L'	shale	2017	Harthy
6	sould	303	
28	=hc/e	182	mex no oil
5	sand	336	1
97	sand, shalo	7133	edor, or show
4	sand	439	
\$	sandy shale	444	odor, 1.4/1 c o.1
17	Sheile	461	
7	Linge	463	
14	-2-	467	

	1467		Thickness of
B	Total Depth	Formation	Strata
Remarks	469	Lime	3
	472	shale	3
	181	Lime	9
	1184	Sicile	7
N.	495	soud	7
odor, 1.24/e oil	498	surgenerie	3
	511	shele	13
2	523	send	12
5. the ador, + oil + bleedin	527	sand state	1.4
V	\$33	sind	ڼ
adv, little oil + Heedin	536	scrayshale	3
	547	shale	11
	549	Zimi &	5
	551	shale	2
	550	Lime	
	557	shale	5
	50	Lime	3
	-5X I	shale	51
	591	Lime	10
	1211	Shale	20
	613	Lime	5
	615	shorte	.5
	617	coal	5
	623	shale	
	626	Lime	3
	LITH	Shale	18
Long Brown oil and, Sightly	58	schd -4-	1

-5-

-74

President		-278	
Thickness of Strata	Formation	Total Depth	Remarks
78	cone	696	page - 8
31	SNO. T	rer	The same of the sa
- >1	Broken sand	-138	no oil
32	sandy electe	760	
-			
			A.,
	-6-		

-7-

- 9	2
1	j)
3	

*

	core	678	***************************************
Thickness of Strata	Formation	Total Depth	Remarks
5	send	683	Broken sand with oil.
_ (_	Broken sand	689	l a may
	sand	690	Black sand with oil
	Broken sond	692	ev. 4/2 1.44/2 03.1
2	sendy shede	694	
2	shale	496	
82 10 2 2			
		E	
	-8-		-9-

CUSTOMER#

262117

WELL NAME & NUMBER

LOCATION Offaces FOREMAN Slan MA

PO Box 884, Chanute, KS 66720 620-431-9210 or 800-467-8676

DATE

FIELD TICKET & TREATMENT REPORT CEMENT

			ELL NAME & NUMBER	SECTION	TOWNSHIP	RANGE	001111
1/013	5954	Pas	15 458	NW 11	20		COUN
USTOMER	. 10-			1	00	30	141
AILING XODR	ESS .	No.		TRUCK#	DRIVER	TRUCK #	DRIVE
		D.		56	May Mad		DINIVE
IXU O	nore line	STATE	IZID CODE	368	Art Me)		
aish	4	K5	GLOS 3	370	Kes Con		
				510	Set Tuc		
ALCOHOLOGICAL CONTRACTOR	- A (A)	HOLE SIZE_	3 3/8 HOLE DE	PTH760	CASING SIZE &	WEIGHT 2	21/8
ASING DEPTH URRY WEIGH		DRILL PIPE_	TUBING_	Sir		OTHER 70	-
SPLACEMENT		SLURRY VOL			CEMENT LEFT	In CASING_1	
		DISPLACEME		200	RATE 4	an	
	eld men	ting.		casing. 1	1526611	hod n	ate
M. xel	Alumbi	ed 10	Drigel tolla	swed by	99.6	V	50 ac
pigs o	No se	Cir		ement.	Flushed		0.
LAMPE	of fung		affle. Wel	held s	200 PS	I. (50	7
11007	Closes	2 val	ve.				
7-0	- 11						
TO.	5, Chad					111	
	,			1	1 .11	ANDRE	/_
				X/	MAN /		
				, , , ,	8		
ACCOUNT	QUANITY of	r UNITS	DESCRIPTION	of SERVICES or PRO	DUCT	100000000000000000000000000000000000000	
CODE	QUANITY of	r UNITS		of SERVICES or PRO	DDUCT	UNIT PRICE	TOTAL
PIO/			PUMP CHARGE	of SERVICES or PRO	368	UNIT PRICE	TOTAL
CODE CODE	QUANITY of		PUMP CHARGE MILEAGE		368	UNIT PRICE	1085 105
CODE PAOL PAOL SAD 2			PUMP CHARGE MILEAGE	of SERVICES or PRO	368 368 368	UNIT PRICE	1085
CODE PAOL PAOL PAOL PAOL			PUMP CHARGE MILEAGE CC5ing fro ton mile		368 368 368 510	UNIT PRICE	1085
CODE PAOL PAOL SAD 2			PUMP CHARGE MILEAGE		368 368 368 510	UNIT PRICE	1085
CODE PAOL PAOL PAOL PAOL			PUMP CHARGE MILEAGE CC5ing fro ton mile		368 368 368	UNIT PRICE	1085
CODE PAOL PAOL PAOL PAOL	1 25 73. Min	2'	PUMP CHARGE MILEAGE C65ing feo ton inite BO USC	fase	368 368 368 510	UNIT PRICE	1085
CODE PAOL PAOL PAOL PAOL	1 73. n;	2' 1	PUMP CHARGE MILEAGE CC5ing fro ton mile	fase	368 368 368 510	UNIT PRICE	1085 105° 368° 180
CODE 1401 1406 1402 1407 1502C	1 73. n;	2' 1	PUMP CHARGE MILEAGE C.C.Sing feo ton in ile BO USC 50150 cen	fase	368 368 368 510	UNIT PRICE	1085 105 368 180
106 106 107 107	1 25 73. Min	2' 1	PUMP CHARGE MILEAGE C65ing feo ton inite BO USC	fase	368 368 368 510	UNIT PRICE	1085 105 368 180 180
CODE 1401 1406 1402 1407 1502C	1 73. n;	2' 1	PUMP CHARGE MILEAGE C.C.Sing feo ton in ile BO USC 50150 cen	fase	368 368 368 510	UNIT PRICE	1085 105 368 180
CODE 1401 1406 1402 1407 1502C	1 73. n;	2' 1	PUMP CHARGE MILEAGE C.C.Sing feo ton in ile BO USC 50150 cen	fase	368 368 368 510	UNIT PRICE	1085 105 368 180 180
CODE 1401 1406 1402 1407 1502C	1 73. n;	2' 1	PUMP CHARGE MILEAGE C.C.Sing feo ton in ile BO USC 50150 cen	fase	368 368 368 510	UNIT PRICE	1085 105 368 180 180
CODE 1401 1406 1402 1407 1502C	1 73. n;	2' 1	PUMP CHARGE MILEAGE C.C.Sing feo ton in ile BO USC 50150 cen	fase	368 368 368 510	UNIT PRICE	1085 105 368 180 180
CODE 1401 1406 1402 1407 1502C	1 73. n;	2' 1	PUMP CHARGE MILEAGE C.C.Sing feo ton in ile BO USC 50150 cen	fase	368 368 368 510	UNIT PRICE	1085 105 368 180 180
CODE 1401 1406 1402 1407 1502C	1 73. n;	2' 1	PUMP CHARGE MILEAGE C.C.Sing feo ton in ile BO USC 50150 cen	fase	368 368 368 510	UNIT PRICE	1085 105 368 180 180
CODE 1401 1406 1402 1407 1502C	1 73. n;	2' 1	PUMP CHARGE MILEAGE C.C.Sing feo ton in ile 80 usc 50150 cem gel 2 /2 plag	fase	368 368 368 510	UNIT PRICE	1085 105 368 180 180
CODE 1401 1406 1402 1407 1502C	1 73. n;	2' 1	PUMP CHARGE MILEAGE CLSing feo ton ile 80 vac 50/50 cen gel 2 /2 plag	fase	368 368 368 510	UNIT PRICE	1085 105 368 180 180
CODE 1401 1406 1402 1407 502C	99 266	2'	PUMP CHARGE MILEAGE C.C.Sing feo for maile 80 vac 50150 cem gel 2 2 plag	fase	368 368 368 510	UNIT PRICE	1085 105 368 180 180
CODE 1401 1406 1402 1407 502C	99 266	2'	PUMP CHARGE MILEAGE C.C.Sing feo for maile 80 vac 50150 cem gel 2 2 plag	fase	368 368 368 510	SALES TAX	1085 105 368 180 180
CODE 1401 1406 1402 1407 502C	1 73. n;	2'	PUMP CHARGE MILEAGE C.C.Sing feo for maile 80 vac 50150 cem gel 2 2 plag	fase	368 368 368 510		1085 105 368 180 180

account records, at our office, and conditions of service on the back of this form are in effect for services identified on this for

Conservation Division Finney State Office Building 130 S. Market, Rm. 2078 Wichita, KS 67202-3802

Phone: 316-337-6200 Fax: 316-337-6211 http://kcc.ks.gov/

Sam Brownback, Governor

Shari Feist Albrecht, Chair Thomas E. Wright, Commissioner Jay Scott Emler, Commissioner

February 28, 2014

Lance Town R.T. Enterprises of Kansas, Inc. 120 SHORELINE DR LOUISBURG, KS 66053

Re: ACO-1 API 15-003-25835-00-00 Poss 38 NW/4 Sec.11-20S-20E Anderson County, Kansas

Dear Lance Town:

K.A.R. 82-3-107 provides for all completion information to be filed within 120 days of the spud date. Subsection(e)(2) of that regulation states "All rights to confidentiality shall be lost if the filings are not timely."

The above referenced well was spudded on 9/4/2013 and the ACO-1 was received on February 24, 2014 (not within the 120 days timely requirement).

Therefore, your request for confidential treatment of data contained within the ACO-1 filing cannot be granted at this time.

If you should have any questions, please do not hesitate to contact me at (316)337-6200.

Sincerely,

Production Department