Confidentiality Requested: Yes No ### Kansas Corporation Commission Oil & Gas Conservation Division 1215302 Form ACO-1 August 2013 Form must be Typed Form must be Signed All blanks must be Filled # WELL COMPLETION FORM WELL HISTORY - DESCRIPTION OF WELL & LEASE | OPERATOR: License # | | | API No. 15 | | | |--|-------------------|----------------------|---------------------------------|------------------------------|---------------------| | Name: | | | Spot Description: | | | | Address 1: | | | Sec. | TwpS. R | _ | | Address 2: | | | F6 | eet from | uth Line of Section | | City: S | State: Z | ip:+ | Fe | eet from East / We | est Line of Section | | Contact Person: | | | Footages Calculated from | Nearest Outside Section Corr | ner: | | Phone: () | | | □ NE □ NW | V □SE □SW | | | CONTRACTOR: License # | | | GPS Location: Lat: | , Long: | | | Name: | | | | (e.g. xx.xxxxx) | (e.gxxx.xxxxx) | | Wellsite Geologist: | | | Datum: NAD27 | NAD83 WGS84 | | | Purchaser: | | | County: | | | | Designate Type of Completion: | | | Lease Name: | Well | #: | | | e-Entry | Workover | Field Name: | | | | | _ | _ | Producing Formation: | | | | ☐ Oil ☐ WSW ☐ D&A | ☐ SWD | □ SIOW
□ SIGW | Elevation: Ground: | Kelly Bushing: | | | ☐ OG | GSW | Temp. Abd. | Total Vertical Depth: | Plug Back Total Dep | th: | | CM (Coal Bed Methane) | dow | тетір. дай. | Amount of Surface Pipe Se | et and Cemented at: | Feet | | Cathodic Other (Co. | re, Expl., etc.): | | Multiple Stage Cementing | Collar Used? Yes N | 0 | | If Workover/Re-entry: Old Well Ir | | | If yes, show depth set: | | Feet | | Operator: | | | If Alternate II completion, c | cement circulated from: | | | Well Name: | | | feet depth to: | w/ | sx cmt. | | Original Comp. Date: | Original T | otal Depth: | | | | | Deepening Re-perf. | Conv. to E | NHR Conv. to SWD | Drilling Fluid Managemer | nt Plan | | | ☐ Plug Back | Conv. to G | SW Conv. to Producer | (Data must be collected from to | | | | □ Oursesia eta d | D | | Chloride content: | ppm Fluid volume: | bbls | | CommingledDual Completion | | | Dewatering method used:_ | | | | SWD | | | Location of fluid disposal if | hauled offsite: | | | ☐ ENHR | | | Location of fluid disposal fi | nauleu onsite. | | | GSW | | | Operator Name: | | | | <u> </u> | | | Lease Name: | License #: | | | Spud Date or Date Re | eached TD | Completion Date or | QuarterSec | TwpS. R | _ | | Recompletion Date | | Recompletion Date | County: | Permit #: | | #### **AFFIDAVIT** I am the affiant and I hereby certify that all requirements of the statutes, rules and regulations promulgated to regulate the oil and gas industry have been fully complied with and the statements herein are complete and correct to the best of my knowledge. **Submitted Electronically** | KCC Office Use ONLY | |---------------------------------| | Confidentiality Requested | | Date: | | Confidential Release Date: | | Wireline Log Received | | Geologist Report Received | | UIC Distribution | | ALT I II III Approved by: Date: | Page Two | Operator Name: | | | Lease Name: | | | Well #: | | |---|------------------------------|--|--------------------------------|-------------------|----------------------|---|-------------------------------| | Sec Twp | S. R | East West | County: | | | | | | open and closed, flow | ing and shut-in pressu | ormations penetrated. Dures, whether shut-in preith final chart(s). Attach | ssure reached stati | c level, hydrosta | tic pressures, bott | | | | | | otain Geophysical Data a
or newer AND an image f | | gs must be ema | iled to kcc-well-log | gs@kcc.ks.go | . Digital electronic log | | Drill Stem Tests Taken (Attach Additional S | | Yes No | | | n (Top), Depth an | | Sample | | Samples Sent to Geol | ogical Survey | Yes No | Nam | 9 | | Тор | Datum | | Cores Taken
Electric Log Run | | Yes No | | | | | | | List All E. Logs Run: | | | | | | | | | | | CASING | RECORD Ne | w Used | | | | | | | Report all strings set- | | | on, etc. | | | | Purpose of String | Size Hole
Drilled | Size Casing
Set (In O.D.) | Weight
Lbs. / Ft. | Setting
Depth | Type of
Cement | # Sacks
Used | Type and Percent
Additives | ADDITIONAL | CEMENTING / SQL | EEZE RECORD | I | <u> </u> | | | Purpose: | Depth | Type of Cement | # Sacks Used | | Type and Pe | ercent Additives | | | Perforate Protect Casing Plug Back TD | Top Bottom | | | | | | | | Plug Off Zone | | | | | | | | | | otal base fluid of the hydra | n this well?
aulic fracturing treatment ex
submitted to the chemical o | | Yes [Yes [Yes [| No (If No, ski) | o questions 2 ar
o question 3)
out Page Three | | | Shots Per Foot | | N RECORD - Bridge Plug | | | cture, Shot, Cement | | | | | Specify Fo | ootage of Each Interval Perl | orated | (Ar | nount and Kind of Ma | terial Used) | Depth | 0: | 0.11 | | 5 | | | | | TUBING RECORD: | Size: | Set At: | Packer At: | Liner Run: | Yes No | | | | Date of First, Resumed | Production, SWD or ENF | IR. Producing Meth | | Gas Lift C | other (Explain) | | | | Estimated Production
Per 24 Hours | Oil B | bls. Gas | Mcf Wate | er Bl | ols. G | ias-Oil Ratio | Gravity | | Dioposition | N 05 040 | , , , , , , , , , , , , , , , , , , , | AETHOD OF COME | TION | | DDODUCT | ANI INITEDYAL | | Vented Sold | ON OF GAS: Used on Lease | Open Hole | METHOD OF COMPLE Perf. Dually | | nmingled | PRODUCIIC | ON INTERVAL: | | (If vented, Sub | | Other (Specify) | (Submit) | | mit ACO-4) | | | 268267 47243 TICKET NUMBER____ FOREMAN Alan M. | PO Box 884, | Cha | nute, | KS | 66720 | |-----------------------------|------|-------|------|-------| | PO Box 884,
620-431-9210 | or (| 800- | 467- | 8676 | | | CUSTOMER# | WELL NAME & NUMBER | SECTION | TOWNSHIP | RANGE | COUNTY | |--|------------------|---|---------------------------------------|---------------------------------|---|---------------| | -16.14 | 4448 D | Oherky KRI-15 | ww 24) | 17 | 22 | MI | | TOMER | 0 | F., .\ | HittalillEshill | | TOWN # | DOLLER | | ING ADDRE | s Kesouro | es tou | TRUCK# | DRIVER | Safely | MOE | | 7.203 | W 1102 | 4 | 368 | ATIONIA | 34/814 | 1000 | | ,5/ | STATE | ZIP CODE | 370 | Gar Mon | | | | verla | 01 11 11 | 166210 | 548 | Ko. Det | | | | TYPE A | ne String Holes | SIZE 5 1/8 HOLE DEPT | | CASING SIZE & W | EIGHT 27 | 8 | | ING DEPTH | 8011. | | | | OTHER 689 | . 8 Br | | RRY WEIGH | | | /sk | CEMENT LEFT in | | 25 | | LACEMENT | 110. | CEMENT PSI 800 MIX PSI | | RATE 4 be | n | | | ARKS: } | hold meet. | Establishedne | te. Mi | xod of | umped | 0 100 | | 1 15/ | mused by | 945K 50190 CAN | mont Aus | 290,50 | 14 12# | Phane | | eal | Circulate | d comput. | Flushed | Dump | . Jun | real | | This i | a battle | Wall neld | GOD PS | T. Set | float | | | 0 | Y V | | | | | | | | | | | | | | | ID | 5. Chad | | | | | | | <i>J</i> . | 21 2 1 2 2 | | | | 10 | _ | | | | | Λ | Durl | rasic | | | | | | / // | Jan - | | | | | | | | | | | | Control of the Contro | QUANITY or UNIT | S DESCRIPTION | of SERVICES or PRO | DUCT | UNIT PRICE | TOTAL | | Control of the Contro | QUANITY or UNITS | | of SERVICES or PRO | | UNIT PRICE | | | CODE 1 | QUANITY or UNITS | PUMP CHARGE MILEAGE | of SERVICES or PRO | 318 | UNIT PRICE | TOTAL
1085 | | HODE | 1 | PUMP CHARGE | of SERVICES or PRO | | UNIT PRICE | | | HO1 | QUANITY or UNITS | PUMP CHARGE MILEAGE Casing S | of SERVICES or PRO | 318 | UNIT PRICE | D85 | | HO1 | 1 | PUMP CHARGE MILEAGE | of SERVICES or PRO | 318 | UNIT PRICE | 184.00 | | HO1 | 1 | PUMP CHARGE MILEAGE Casing S | of SERVICES or PRO | 318 | UNIT PRICE | 184.00 | | CODE
1401
1406
1407
15036 | 721.6 | PUMP CHARGE MILEAGE C.45.'ns for Min BO VGC | okase
les | 318 | | 184.00 | | CODE
HO1
HO6
HO2
HO7 | 721.6 | PUMP CHARGE MILEAGE CASing for Min fon Mile 80 UGC 50150 Lew | okase
les | 318 | 1081.00 | 184.00 | | CODE
1401
1406
1407
15036 | 721.6 | PUMP CHARGE MILEAGE C.45.'ns fe N'n fon mile 80 vgc 50150 cen Sel | edase
les | 318 | 1081. 00
56.76 | 184.00 | | CODE
1401
1406
1407
15036 | 721.6 | PUMP CHARGE MILEAGE CASing for Min fon Mile 80 UGC 50150 Lew | edase
les | 318
318
368
348
370 | 1081. 00
56.76
63.45 | 184.00 | | CODE
HO1
HO6
HO2
HO7 | 721.6 | PUMP CHARGE MILEAGE C.45.'ns fe N'n fon mile 80 vgc 50150 cen Sel | edase
les
leut
al
materio | 368
368
368
370 | 1081. 00
56.76
63.45
120121 | 184.00 | | HO1 | 721.6 | PUMP CHARGE MILEAGE C.45.'ns fe N'n fon mile 80 vgc 50150 cen Sel | rest
est
naterio
he | 318
318
368
370
370 | 1081.00
56.76
63.45
120,21
- 360.36 | 184.00 | | CODE
HD1
HD2
HD7
JD2C
24
18B | 721.6 | PUMP CHARGE MILEAGE C.45.'ns for Min. fon Mil. 80 vac. 50150 cen gel Pheno se | rest
est
naterio
he | 368
368
368
370 | 1081. 00
56.76
63.45
120121 | 184.00 | | CODE
1401
1406
1407
15036 | 721.6 | PUMP CHARGE MILEAGE C.45.'ns fe N'n fon mile 80 vgc 50150 cen Sel | rest
est
naterio
he | 318
318
368
370
370 | 1081.00
56.76
63.45
120,21
- 360.36 | 184.00 | | 100E
1401
1402
1407
1502L
24
18B | 721.6 | PUMP CHARGE MILEAGE C.45.'ns for Min. fon Mil. 80 vac. 50150 cen gel Pheno se | rest
est
naterio
he | 318
318
368
370
370 | 1081.00
56.76
63.45
120,21
- 360.36 | 184.00 | | CODE
HO1
HO6
HO2
HO7
TO2L
24
18B
07A | 721.6 | PUMP CHARGE MILEAGE C.45.'ns for Min. fon Mil. 80 vac. 50150 cen gel Pheno se | rest
est
naterio
he | 318
318
368
370
370 | 1081.00
56.76
63.45
120,21
- 360.36 | 184.00 | | CODE
HO1
HO6
HO2
HO7
TO2L
24
18B
07A | 721.6 | PUMP CHARGE MILEAGE C.45.'ns for Min. fon Mil. 80 vac. 50150 cen gel Pheno se | reat al materia | 368
368
368
370
370 | 1081.00
56.76
63.45
120,21
- 360.36 | 184.00 | | CODE
HO1
HO6
HO2
HO7
TO2L
24
18B
07A | 721.6 | PUMP CHARGE MILEAGE C.45.'ns for Min. fon Mil. 80 vac. 50150 cen gel Pheno se | reat al materia | 318
318
368
370
370 | 1081. 00
56.76
63.45
120,21
- 360.36
total | 184.00 | I acknowledge that the payment terms, unless specifically amended in writing on the front of the form or in the customer's account records, at our office, and conditions of service on the back of this form are in effect for services identified on this form. Miami County, KS Well:Doherty KRI-15 Lease Dwner:KsResExplo ## WELL LOG | Thickness of Strata | Formation | Total Depth | |--|----------------|-------------| | 21 | soil/clay | 21 | | 17 | shale | 38 | | 23 | lime | 61 | | 10 | shale | 71 | | 5 | lime | 76 | | 38 | shale | 114 | | 14 | lime | 128 | | 12 | shale | 140 | | 27 | lime | 167 | | 7 | shale | 174 | | 18 | lime | 192 | | 3 | shale | 195 | | 17 | lime | 212 | | 3 | shale | 215 | | 3 | lime and shale | 218 | | 19 | shale | 237 | | 10 | sand | 247 | | 7 | sandy shale | 254 | | 72 | shale | 326 | | 6 | sandy shale | 332 | | 23 | shale | 355 | | 3 | broken sand | 358 | | 7 (60) | sand | 365 | | 8 | sandy lime | 373 | | 4 | sandy lime | 377 | | 13 | sandy lime | 390 | | and the second s | sandy lime | 391 | | 1 | broken sand | 392 | | and the property of the second | sandy shale | 393 | | 5 | lime | 3*98 | | and the same of th | shale and lime | 399 | | 7 | sandy lime | 406 | | 4 | lime | 410 | | 3 | shale | 413 | | | broken sand | 420 | | 26 | shale | 446 | | 6 | lime | 452 | | 5 | sandy shale | 457 | | 11 | shale | 468 | | 3 | lime | 471 | y, KS rty KRI-15 wner:KsResExplo # Town Oilfield Service, Inc. (913) 837-8400 Commenced Spudding: 05/15/2014 | 3 shale and lime 15 shale 3 lime 85 kshale 3 lime and shale 8 shale 11 shale 12 lime and shale 11 shale and slate 9 shale 5 sand 18 sand 2 shale 3 lime and shale 11 shale and slate 5 sand 5 sand 2 shale 3 lime and shale 1 shale 5 sand 2 shale 3 lime and shale 4 broken sand 2 shale 3 lime and shale 1 shale 2 shale 3 shale 4 broken sand 2 broken sand 3 shale | 489
492
495
503
506
514
519
560
542
544
555
564
569
587
589
591
593 | |--|---| | Same | 495
503
506
514
519
560
542
544
555
564
569
587
589
591 | | S | 503
506
514
519
560
542
544
555
564
569
587
589
591 | | S | 506
514
519
560
542
544
555
564
569
587
589
591 | | Sample S | 514
519
560
542
544
555
564
569
587
589
591 | | 8 shale 5 lime 11 shale 12 lime and shale 1 lime lime 11 shale and slate 9 shale 5 sand 18 sand 2 shale 2 shale 2 shale and coal 17 shale 1 broken sand 2 broken sand 4 broken sand 2 broken sand 4 broken sand 2 broken sand | 519
560
542
544
555
564
569
587
589
591 | | S | 560
542
544
555
564
569
587
589
591 | | 11 shale 12 lime and shale 2 lime 11 shale and slate 9 shale 5 sand 18 sand 2 shale 2 shale and coal 17 shale 1 broken sand 2 broken sand 4 broken sand 2 broken sand 4 broken sand 2 broken sand 4 broken sand 5 sand 6 sand 7 sand 8 sand 9 sand 9 sand 9 sand 1 broken sand 2 broken sand | 542
544
555
564
569
587
589
591 | | 12 lime and shale 2 lime 11 shale and slate 9 shale 5 sand 18 sand 2 broken sand 2 shale 2 shale and coal 17 shale 1 broken sand 2 broken sand 4 broken sand 2 broken sand broken sand broken sand | 544
555
564
569
587
589
591 | | 11 | 555
564
569
587
589
591 | | 11 shale and slate 9 sand 5 sand 18 sand 2 broken sand 2 shale 2 shale and coal 17 shale 1 broken sand 2 broken sand 4 broken sand 2 broken sand 2 broken sand 2 broken sand | 564
569
587
589
591 | | 9 shale 5 sand 18 sand 2 broken sand 2 shale 2 shale and coal 17 shale 1 broken sand 2 broken sand 4 broken sand 2 broken sand broken sand broken sand | 569
587
589
591 | | 5 sand 18 sand 2 broken sand 2 shale 2 shale and coal 17 shale 1 broken sand 2 broken sand 4 broken sand 2 broken sand 2 broken sand | 587
589
591 | | 18 sand 2 broken sand 2 shale 2 shale and coal 17 shale 1 broken sand 2 broken sand 4 broken sand 2 broken sand broken sand broken sand | 589
591 | | 2 broken sand 2 shale 2 shale and coal 17 shale 1 broken sand 2 broken sand 4 broken sand 2 broken sand 2 broken sand | 591 | | 2 shale 2 shale and coal 17 shale 1 broken sand 2 broken sand 4 broken sand 2 broken sand 2 broken sand | | | 2 shale and coal 17 shale 1 broken sand 2 broken sand 4 broken sand 2 broken sand 2 broken sand 2 broken sand | 593 | | shale 1 broken sand 2 broken sand 4 broken sand 2 broken sand broken sand | | | 1 broken sand 2 broken sand 4 broken sand 2 broken sand 2 broken sand | 610 | | broken sand broken sand broken sand broken sand | 611 | | 4 broken sand 2 broken sand | 613 | | 2 broken sand | 617 | | | 619 | | o snale | 621 | | | 627 | | 6 broken sand | 630 | | 3 broken sand | 634 | | 4 sand | 652 | | 18 core | 657 | | 5 sand | 660 | | 3 shale | 665 | | 5 sandy shale | 677 | | 12 shale | 68/1 | | 4 sandy shale | | | 59 shale | 740-TD |