OPERATOR

Company: SANDLIN OIL CORPORATION Address: 621 17TH ST, STE. 2055

DENVER, CO 80293-2001

Contact Geologist: KATHIE SANDLIN
Contact Phone Nbr: 303-292-3313
Well Name: PAUL MCRAE # 1

Location: NW NE SE NW, SEC.27-T12S-R18W

API: 15-051-26,862-00-00

Pool: Field: BEMIS-SHUTTS

State: KANSAS Country: USA

Scale 1:240 Imperial

Well Name: PAUL MCRAE # 1

Surface Location: NW NE SE NW, SEC.27-T12S-R18W

Bottom Location:

API: 15-051-26,862-00-00

License Number: 6677

Spud Date: 2/8/2017 Time: 6:00 PM

Region: ELLIS COUNTY

Drilling Completed: 2/14/2017 Time: 2:07 AM

Surface Coordinates: 1555' FNL & 2300' FWL

Bottom Hole Coordinates:

Ground Elevation: 2160.00ft K.B. Elevation: 2166.00ft

Logged Interval: 3000.00ft To: 3752.00ft

Total Depth: 3750.00ft Formation: ARBUCKLE

Drilling Fluid Type: CHEMICAL/FRESH WATER GEL

SURFACE CO-ORDINATES

Well Type: Vertical
Longitude: -99.3080127
Latitude: 38.9826829
N/S Co-ord: 1555' FNL
E/W Co-ord: 2300' FWL

LOGGED BY

Company: SOLUTIONS CONSULTING, INC.

Address: 108 W 35TH

HAYS, KS 67601

Phone Nbr: (785) 639-1337

Logged By: GEOLOGIST Name: HERB DEINES

CONTRACTOR

Contractor: ROYAL DRILLING, INC.

Rig #: 1

Rig Type: MUD ROTARY

 Spud Date:
 2/8/2017
 Time:
 6:00 PM

 TD Date:
 2/14/2017
 Time:
 2:07 AM

 Rig Release:
 2/14/2017
 Time:
 11:45 PM

ELEVATIONS

K.B. Elevation: 2166.00ft

K.B. to Ground: 6.00ft Ground Elevation: 2160.00ft

NOTES

RECOMMENDATION TO PLUG AND ABANDON WELL BASED ON LOW STRUCTURE AND NEGATIVE RESULTS OF TWO DSTS.

OPEN HOLE LOGGING BY ELI: DUAL INDUCTION LOG, COMPENSATED DENSITY/NEUTRON LOG AND MICRO LOG.

DRILL STEM TESTING BY TRILOBITE TESTING, INC: ONE (1) CONVENTIONAL TEST AND ONE (1) STRADDLE TEST.

N SI	AUL MCRAE #1 W NE SE NW EC.27-12S-18W 160'GL 2166'KB	WERTH ETAL #1 SW SW SW SE SEC.22-12-18W KB 2165'	JOY # 1 SW NW SE NE SEC.27-12-18W KB 2151'
FORMATION	LOG TOPS	LOG TOPS	LOG TOPS
Anhydrite	1430 +736	+ 743	+ 743
B-Anhydrite	1465 +701	+ 708	+707
Topeka	3156 -990	-973	-986
Heebner Sh.	3388-1222	-1204	-1215
Toronto	3409-1243	-1226	
LKC	3437-1271	-1249	-1263
ВКС	3658-1492	-1479	-1499
Arbuckle	3692-1526	-1508	-1519
RTD	3750-1584	-1602	-1574

SUMMARY OF DAILY ACTIVITY

2-08-17	RU, set 8 5/8" surface casing to 213' w/ 150 sxs 80/20 POS 2%Gel 3%CC, plug down 1:00 AM 2-09-17, slope 1 degree
2-09-16	213', WOC, rig maintenance
2-10-17	1240', drilling
2-11-17	2475', drilling, displace 3000'
2-12-17	3146', CFS 3470', short trip, CCH, TOWB, DST # 1 3414'-3470' "C"
	zone LKC, slope ½ degree
2-13-17	3470', finish DST #1, TIWB, lost returns @ 3551' and restored
	returns with LCM, drilling, CFS 3696'
2-14-17	3750', RTD 2:07 AM at 3750', CCH, TOWB, logs, straddle DST # 2

DRILL STEM TEST REPORT

Sandlin Oil Corporation

621 17th st. STE 2055

Denver Co 80293-2001 ATTN: Herb Deines ,Kathie 27-12s-18w Ellis

Paul McRae #1

Job Ticket: 64091 DST#: 1

Test Start: 2017.02.13 @ 02:55:14

GENERAL INFORMATION:

Formation: LKC A-C

Deviated: No Whipstock: ft (KB)

Time Tool Opened: 04:40:24 Time Test Ended: 09:19:08

Interval: 3414.00 ft (KB) To 3470.00 ft (KB) (TVD)

Total Depth: 3470.00 ft (KB) (TVD)

Hole Diameter: 7.85 inches Hole Condition: Fair Test Type:

Conventional Bottom Hole (Initial) Tester: Ray Schwager

Unit No: 77

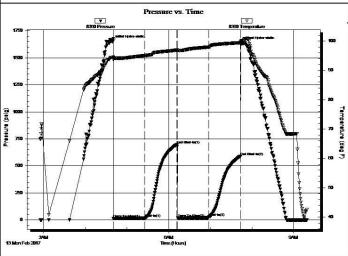
Reference Bevations: 2166.00 ft (KB)

2160.00 ft (CF)

KB to GR/CF: 6.00 ft

Serial #: 8360 Inside

Press@RunDepth: 3416.00 ft (KB) 26.85 psig @ Capacity: 8000.00 psig


Start Date: 2017.02.13 End Date: 2017.02.13 Last Calib.: 2017.02.13 Start Time: 02:55:14 End Time: 09:19:08 Time On Btm: 2017.02.13 @ 04:39:09 Time Off Btm: 2017.02.13 @ 07:46:53

TEST COMMENT: 45-IFP-w k bl thru-out 1/2"to 2"bl

45-ISIP-no bl

45-FFP-wk surface bl thru-out

45-FSIP-no bl

PRESSURE SUMMARY Time Pressure Annotation Temp (Min.) (psig) (deg F) 0 1645.37 94.42 Initial Hydro-static 12.92 93.69 Open To Flow (1) 2 47 17.75 95.06 Shut-In(1) End Shut-In(1) 93 696.19 96.91 94 17.22 96.72 Open To Flow (2) 26.85 139 97.95 | Shut-In(2) 589.05 185 99.44 End Shut-In(2) 188 1631.21 100.19 Final Hydro-static

	Recovery			
Length (ft)	Description	Volume (bbl)		
25.00	VSOCM 1/2% O99 1/2% M	0.35		

Gas Rates Choke (inches) Pressure (psig) Gas Rate (Mcf/d)

	5.55

Trilobite Testing, Inc Ref. No: 64091 Printed: 2017.02.13 @ 09:37:22

DRILL STEM TEST REPORT

Sandlin Oil Corporation

27-12s-18w Ellis

621 17th st.

Paul McRae #1

STE 2055 Denver Co 80293-2001

Job Ticket: 64092 DST#: 2

ATTN: Herb Deines ,Kathie

Test Start: 2017.02.14 @ 10:30:27

GENERAL INFORMATION:

Formation: Arbuckle

Deviated: No Whipstock: ft (KB) Test Type: Conventional Straddle (Reset) Ray Schwager

Time Tool Opened: 11:42:22

Tester: Unit No: 77

Time Test Ended: 16:26:51

Reference Bevations: 2166.00 ft (KB)

Total Depth: 3752.00 ft (KB) (TVD)

2160.00 ft (CF) KB to GR/CF: 6.00 ft

Hole Diameter: 7.85 inches Hole Condition: Fair

Serial #: 8360 Inside

Press@RunDepth: 46.04 psig @ 3665.00 ft (KB)

Capacity:

8000.00 psig

Start Date:

End Date:

2017.02.14 Last Calib.: 16:26:51

2017.02.14

Start Time:

Interval:

2017.02.14

End Time:

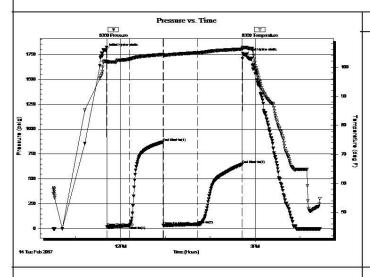
Time On Btm:

2017.02.14 @ 11:40:37

10:30:27

3656.00 ft (KB) To 3707.00 ft (KB) (TVD)

Time Off Btm:


2017.02.14 @ 14:47:06

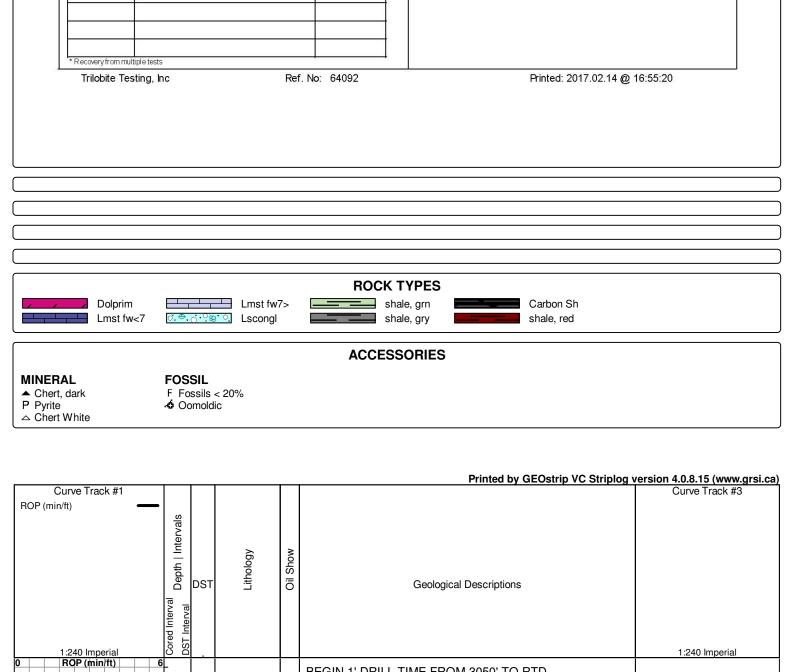
TEST COMMENT: 30-IFP-wk to a fr bl 1/2"to 5"bl

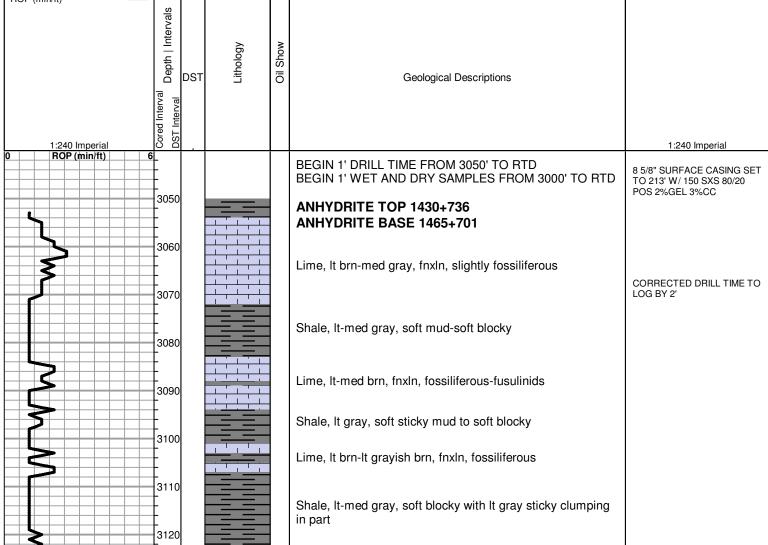
45-ISIP-no bl for approx 35 min then got surface bl

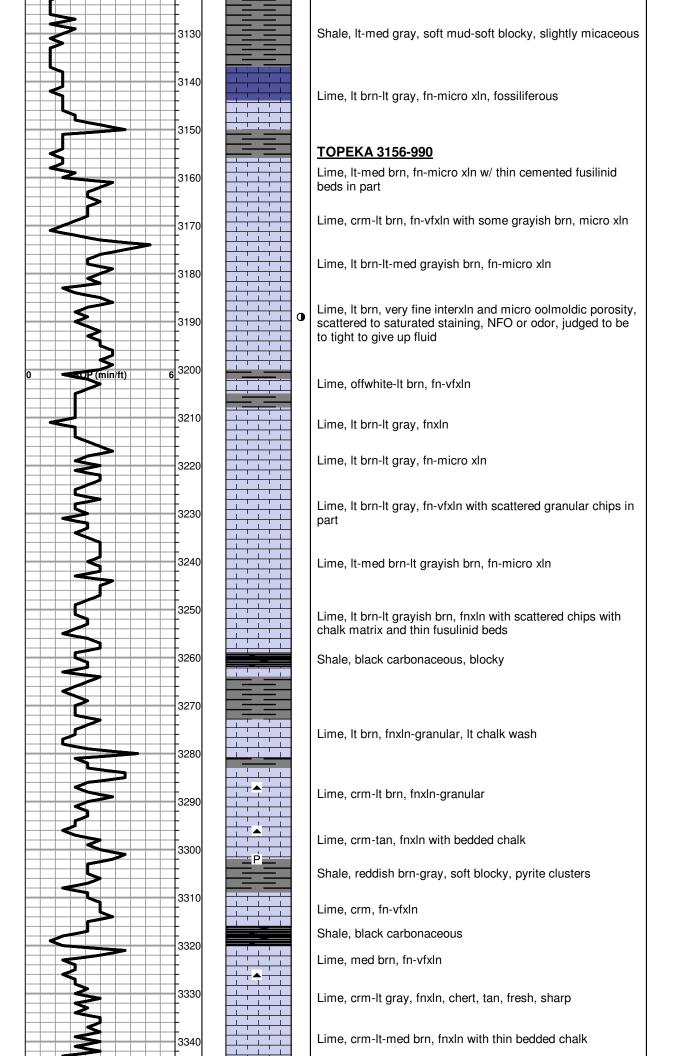
45-FFP-w k bl thru-out 1/2" to 2 1/4"bl

60-FSIP-no bl

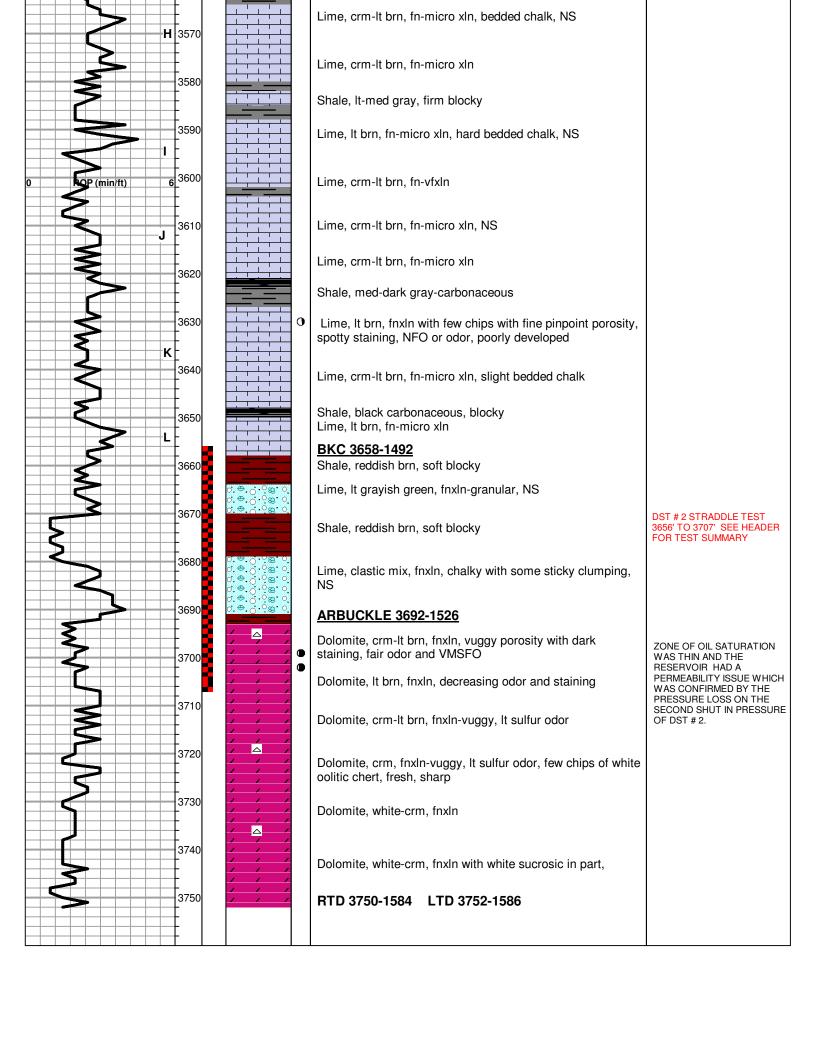
PRESSURE SUMMARY


THE COUNTY AND THE PROPERTY OF				
Time	Pressure	Temp	Annotation	
(Min.)	(psig)	(deg F)		
0	1789.71	101.99	Initial Hydro-static	
2	19.39	101.67	Open To Flow (1)	
32	31.91	102.77	Shut-In(1)	
77	871.62	104.33	End Shut-In(1)	
77	34.57	104.00	Open To Flow (2)	
123	46.04	104.96	Shut-In(2)	
183	647.06	106.20	End Shut-In(2)	
187	1741.63	106.77	Final Hydro-static	


Recovery


olume (bbl)	Description	Length (ft)
.56	co	40.00
.56	HOCM 25%O75%M	40.00
	HOCM 25%O75%M	40.00

Cac	Rates
Jas	Rates


Choke (Inches) Pressure (psig) Gas Ra	ate (IVICT/a)
---------------------------------------	---------------

