640 Acres Rolary Tools were used from feet lo_ feet to "Cable tools were used from _teet, and trom_ > feet to-_leel to_ TOOLS USED If so, state kind, depth set and results obtained Jeet, and from NOTE: Were bottom hole plugs used? Type Rig Note: What method was used to protect sands if outer strings were pulled? | Locate well correctly CHARA | Elevatio | 160 Line ar | WELL | TAME O | | FARM | 160 160 OFFICE | СОМРА | |---|--|-------------|----------------------------|----------------------------------|---|-----------------------|-----------------------------|-----------------------------------| | CHARACTER OF WELL (Oil, gas or dryhole) | Elevation (Relative to sea level) DERRICK FLOOR 24 | Line and | WELL LOCATED C. N/W. SW. W | DATE OF FIRST PRODUCTIONCOMPLETE | DRILLING STARTED920 19530RILLING FINISHEI | FARM NAME LAWSON WELL | office AddressOklahomaCity, | COMPANY OPERATING BENSOIL-ROLL LO | **ADDRESS** Oklahoma City, Oklahoma Form 1002A OPERATOR Benson-Montin Corporation Elevation (Relative to sea level) DERRICK FLOOR 24,95ROUND drilling started 9-20., 19.53 drilling finished 9-27, 19 53FARM NAME Lawson. office Address Oklahoma City, Oklahoma COMPANY OPERATING Benson-Montin Corporation DATE OF FIRST PRODUCTIONCOMPLETED COUNTY Norton sec 36 TWP 3 , AGE 24 ...It. East of West Line of Quarter Section WELL NO... | | | ယ | 2 | - | | 1 | |-----------------|---------------------------|----|---------|----------|------|---------------------------| | Formation | Periora | ÷ | | | Name | | | From | Perforating Record II Any | | | | | | | То | d H Am | | | | From | С | | To No. of Shots | 4 | | | | To | IL OR GAS S | | Formalion | 3 L | 57 | 5 | • | Nome | CIL OR GAS SANDS OR ZONES | | From | Shot Record | | | | | | | 7 | | _ | - | | 77 | | | Size | | | | | From | | | Size of Shot | | | | | 7 | | | r
C | 5170 | | | | , | ۶
۱ | 8 5/ | Size | | |------------|------------|------------------|---|----------------------|---|--------|------|-----------------------|-----------------------------| | 0,6c 8/2 8 | Ft. | Amount Set Sacks | | liner Becord: Amount | _ | /b | | ₩t. | | | _ | ln. | Set | | A TOUR | | | | | > | | z c l | Cement | Sacks | | - | | | _ | Thds. | Amount Set | | ÷ | Gal. | | | | | | | Make | Set | | _ | . Make | Chemical | CEME | Kind | | 3810 | 280 | Fi. | | | | | _ | NTING | _ | | | | În. | | | | Camenting | Method of | CEMENTING AND MUDDING | | | | | Ft. | | | | | * | DING | Tob | | | | ñ. | | | | | | | | | | | Size | Amoun | | | Method | Mudding | *************************************** | Во | | | | Length Depth Set Make | Amount Pulled Packer Record | | | - | | | Bottom | | | | Depth | Pack | | | (See Note) | Results | | | _ | | | Set | er He | | | Note) | ılts. | | | | | | Make | proz | CASING RECORD | TVITIME | | |------------|--| | PRODUCTION | | | 1531 | | | roductionbbls. Gravity of oilType of Pump it pump is used, describe | mount of Oil Productionbbls. Size of choke, if anyLength of testWater | | |---|---|---| | ğ | 으 | | | | õ | | | l | 7 | | | | d u | | | 144 | ctio | | | • | Ī | | | 9 | | ļ | | 3 | | | | <u>e</u> | Ļ | } | | 2 | P. | | | l | Š | | | | õ | | | | <u>~</u> | | | ž | ok | | | 0 | | 1 | | 5 | 9 | - | | į | Ť | | | = | | | | gu d | | | | Ę. | L | | | <u>د</u> | ğ, | | | 9 | ÷ | | | <u>a</u> . | <u>.</u> | | | 10 | 8 | | | Ġ | | | | | Ì | - | | | | | | | × | | | 1 | Ē | 1 | My Commission expires... 2nd day of actober 3953 11. 19. D. Flerend Vice-Pres. ## FORMATION RECORD Give detailed description and thickness of all formations drilled through, contents of sand, whether dry, water, oil or gas. | Shale & shells 270 270 270 Shale & shells 270 1025 1835 Shale & shells sand 1025 1835 1835 2066 2100 2390 2340 2390 254,5 2340 2390 2360 2360 2360 2360 2360 2376 2375 237 | Formation | lop | Bollom | l ormanon | fob | monag | |--|------------------|------------|---------------|--------------------|-----|---| | & shells 270 1025 shells sand 1025 1835 nite 2066 2100 2100 2390 shells 2545 2900 2390 2545 & lime 2545 2900 2900 2960 % shale 3210 3275 & lime 3775 3807 3807 3810 Illeration 2496 E. Heebner 3513 Toronto 3539 Lansing 354 Arbackle 3807 T. D. 3810 | • | 0 | 270 | | | | | ## 1835 2066 2100 2390 shells 2390 2545 & Lime 2545 2900 2960 2960 2960 2960 2960 2960 2960 | & shell | | 752F | | | | | rite 2066 2100 2390 shells 2390 2545 2900 2545 2900 2960 2960 2960 2960 2960 3210 3275 3210 3275 3207 3807 3807 3807 3807 3810 POPS: Elleration 2496 E. Heebner 3513 Toronto 3539 Lansing 3554 Arbuckle 3807 T. D. 3810 | | | 2066 | | | | | ## 2100 2390 ### 2390 2545 #### 2390 2545 ################################### | Anhydrite | 2066 | 2100 | | | | | shells 2390 2545 & lime 2545 2900 2960 2960 2960 2960 2960 2960 2960 | Shale | 2100 | 2390 | | | | | % shale 2960 2960 % shale 2960 3210 % shale 3210 3275 % shale 3275 3807 3800 2960 3210 1te 2960 3275 3807 3810 POPS: Elevation 2496 E. Heepner 3513 Toronto 3539 Lansing 3554 Arbackle 3807 T. D. 3810 | | 2390 | | | | | | & shale 2960 3210 e & lime 3210 3075 & shale 3210 3075 & shale 3076 3375 3807 at lime 3807 3810 gops: Elevation 2496 E. Heebner 3513 floronto 3539 Lansing 3554 Arbuckle 3807 T. D. 3810 | | 2900 | | | | | | lime 3210 3075 hale 3076 3375 lime 3807 3807 3807 3810 Elevation 2496 E. Heebner 3513 Toronto 3539 Lansing 3554 Arbuckle 3807 T. D. 3810 | 50 | 2960 | | | | | | hale 3.775 3375 lime 3375 3807 3807 3810 Elevation 2496 E. Heebner 3513 Toronto 3539 Lansing 3554 Arbuckle 3807 T. D. 3810 | 30 | 3210 | | | | | | lime 3375 3807 3810 FOPS: Elevation 2496 E. Heebner 3513 Foronto 3539 Lansing 3554 Arbuckle 3807 T. D. 3810 | <u>β</u> ο
το | 37/6 | | | | | | JEO7 JEIO FOPS: Elevation 2496 E. Heebner 3513 Foronto 3539 Lansing 354 Arbuckle 3807 T. D. 3810 | | 3375 | | | | | | rops: epation 2496 R. epner 3513 ronto 3539 nsing 3554 buckle 3807 D. 3810 | Dolomite | 3807 | | | | | | eration 2496 R. ebner 3513 ronto 3539 nsing 3554 buckle 3807 D. 3810 | | | | rops: | - | - | | neing 3
buckle
D. 381 | | Hee | \sim | 2496 R. | | | | | | Lan
Arb | <u>ሰ</u> ለ ለክ | 554
554
8807 | | · · · · · · · · · · · · · · · · · · · | | | | F3 |). 381 | *************************************** |