KOLAR Document ID: 1423774

Confiden	tiality Requeste	d:
Yes	No	

KANSAS CORPORATION COMMISSION OIL & GAS CONSERVATION DIVISION

Form ACO-1 January 2018 Form must be Typed Form must be Signed All blanks must be Filled

WELL COMPLETION FORM

WELL	HISTORY	 DESCRIPTION 	VOF WELL	& LEASE

OPERATOR: License #	_ API No.:
Name:	_ Spot Description:
Address 1:	S. RBeastWest
Address 2:	Feet from North / South Line of Section
City: State: Zip:+	Feet from East / West Line of Section
Contact Person:	- Footages Calculated from Nearest Outside Section Corner:
Phone: ()	
CONTRACTOR: License #	
Name:	(e.g. xx.xxxx) (e.gxxx.xxxx)
Wellsite Geologist:	Datum: NAD27 NAD83 WGS84
Purchaser:	County:
Designate Type of Completion:	Lease Name: Well #:
New Well Re-Entry Workover	Field Name:
	Producing Formation:
☐ Oil ☐ WSW ☐ SWD □ Gas □ DH □ EOR	Elevation: Ground: Kelly Bushing:
	Total Vertical Depth: Plug Back Total Depth:
CM (Coal Bed Methane)	Amount of Surface Pipe Set and Cemented at: Feet
Cathodic Other (Core, Expl., etc.):	Multiple Stage Cementing Collar Used?
If Workover/Re-entry: Old Well Info as follows:	If yes, show depth set: Feet
Operator:	_ If Alternate II completion, cement circulated from:
Original Comp. Date: Original Total Depth:	_
Deepening Re-perf. Conv. to EOR Conv. to SWD	Drilling Fluid Management Plan
Plug Back Liner Conv. to GSW Conv. to Produce	
	Chloride content: ppm Fluid volume: bbls
Commingled Permit #: Dual Completion Permit #:	Dewatering method used:
SWD Permit #:	 Location of fluid disposal if hauled offsite:
EOR Permit #:	
GSW Permit #:	Operator Name:
	Lease Name: License #:
Spud Date or Date Reached TD Completion Date or	- QuarterSecTwpS. R East West
Recompletion Date Recompletion Date	County: Permit #:

AFFIDAVIT

I am the affiant and I hereby certify that all requirements of the statutes, rules and regulations promulgated to regulate the oil and gas industry have been fully complied with and the statements herein are complete and correct to the best of my knowledge.

Submitted Electronically

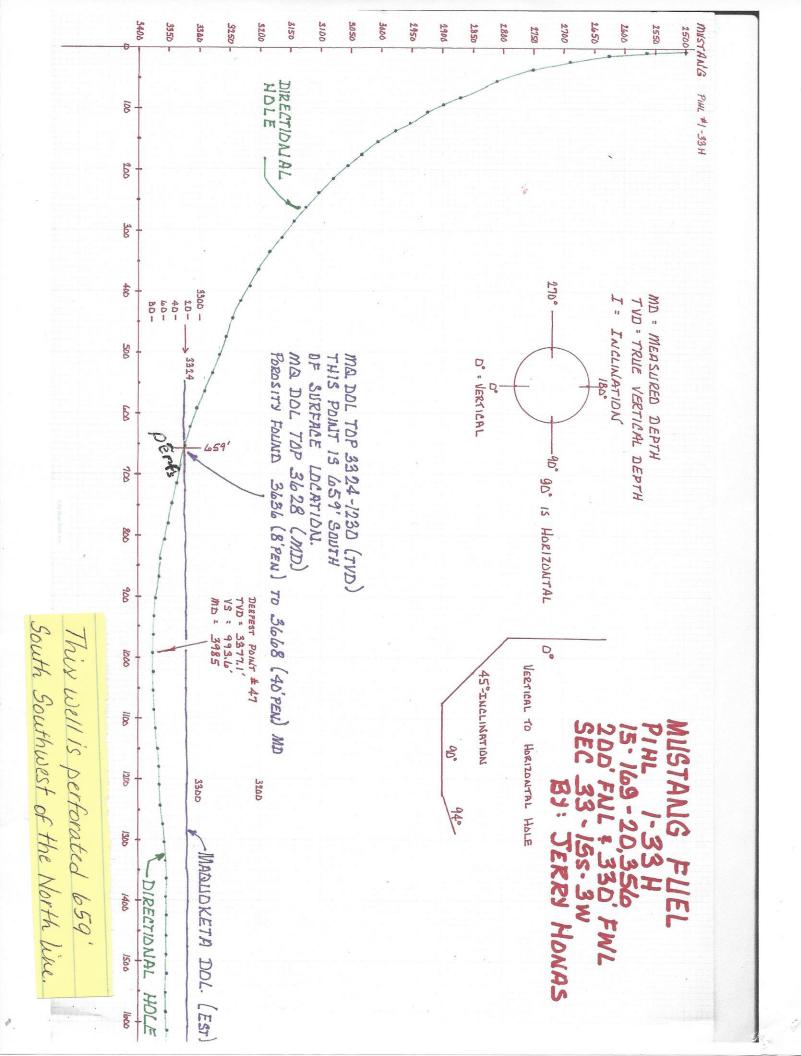
KCC Office Use ONLY
Confidentiality Requested
Date:
Confidential Release Date:
Wireline Log Received Drill Stem Tests Received
Geologist Report / Mud Logs Received
UIC Distribution
ALT I II III Approved by: Date:

KOLAR Document ID: 1423774

Operator Nam	ne:			Lease Name:	_ Well #:
Sec	Twp	S. R	East West	County:	

Page Two

INSTRUCTIONS: Show important tops of formations penetrated. Detail all cores. Report all final copies of drill stems tests giving interval tested, time tool open and closed, flowing and shut-in pressures, whether shut-in pressure reached static level, hydrostatic pressures, bottom hole temperature, fluid recovery, and flow rates if gas to surface test, along with final chart(s). Attach extra sheet if more space is needed.


Final Radioactivity Log, Final Logs run to obtain Geophysical Data and Final Electric Logs must be emailed to kcc-well-logs@kcc.ks.gov. Digital electronic log files must be submitted in LAS version 2.0 or newer AND an image file (TIFF or PDF).

Drill Stem Tests Take				Yes] No			Log	Formatio	n (Top), Deptl	n and Datum	Sample
(Attach Additiona				<i>(</i>	1		Nan	ne			Тор	Datum
Samples Sent to Ge Cores Taken Electric Log Run Geologist Report / M List All E. Logs Run:	Mud Logs	rvey		res res res] No] No] No] No							
			Rep			RECORD			Used	on, etc.		
Purpose of String		ze Hole Drilled	S	ize Casing et (In O.D.]	Wei Lbs.	ght	5	Setting Depth	Type of Cement	# Sacks Used	Type and Percent Additives
Purpose:		Depth	Tur	ADDI e of Ceme		_ CEMENTI # Sacks		UEEZE	RECORD	Tupo or	nd Percent Additives	
Perforate Top Bottom			τyp		5111	# 54068	oseu			Type at	iu Fercent Additives	
Protect Casing Plug Back TD Plug Off Zone												
 Did you perform a h Does the volume of Was the hydraulic fr Date of first Production Injection: 	the total base	e fluid of the h	ydraulic f ion subm	racturing t itted to the Produce		cal disclosure	e registry		☐ Yes ☐ Yes ☐ Yes ft ☐ O	No (If No	, skip questions 2 ar , skip question 3) , fill out Page Three	
Estimated Production Oil Bbls. Per 24 Hours		Ga	as	Mcf	Water Bbls. Gas-Oil Ratio Grav				Gravity			
DISPOSIT	TION OF GAS	5:			1		COMPL	ETION:			PRODUCTIC Top	DN INTERVAL: Bottom
	old Use	ed on Lease 3.)		Open Hole Perf.		Dually Comp. Commingled (Submit ACO-5) (Submit ACO-4)		100				
Shots PerPerforationPerforationFootTopBottom		Bridge F Type	Plug	Bridge Plu Set At				not, Cementing Squeeze Record and Kind of Material Used)				
TUBING RECORD:	Size:		Set At	:		Packer At:						

Form	ACO1 - Well Completion
Operator	Sims, Don dba Don Sims Oil
Well Name	PIHL 1-33H
Doc ID	1423774

Casing

Purpose Of String	Size Hole Drilled	Size Casing Set	Weight	Setting Depth	Type Of Cement		Type and Percent Additives
Conductor	14.75	13.375	54.50	160	CLASS A	80	2
Surface	12.25	9.625	36	473	CLASS A	260	2
Intermedia te	8.75	7	23	3690	CLASS A	175	10
Production	6.125	4.5	11.60	7842	НW	400	3

	BOP West, LLC		Pihl #1-33 H API # 15-169-20	
	PAGE 1	1	200 FNL & 330 FWL Section 33-15S-3W Saline County Elevation GL 1289 KB 1301	/, KS
DATE				
3/23/18			pletion. Tubing spool was removed. A collar was welded prove mechanical integrity. Weeds on location were mow	
	of 121 joints to allow circulation. Set bottom Neutron Log. Correlated log to open hole log tubing conveyed perforating gun and marker correlated marker sub to Gamma-Ray Neutro 24' w/ 4 shots/foot from MD 3638' to 3662'. If subs and installed one additional joint of tubin water to get acid on perfs. Shut valve on an	of tubing at 3815', g run while well wa sub. Ran 115 joi on log. To get per Firing ball was dro ng to allow acid to nulus and pressur icreased rate to 1.	tts 2.375" tubing from Sunrise Supply. Ran bull plugged de Elite Cementing and Acidizing pumped logging tool to TD. s being drilled. Logged from MD 3808' to 2500'. TOOH w the of tubing and pumped Gamma-Ray collar log to 3600' l f gun at correct depth, 10' of tubing subs were installed. P oped and pressured to 3200 PSIG. Gun fired successfully. be spotted on perfs. Elite circulated 12 barrels of acid folk ed tubing to 1350 PSIG to get acid feeding. Treat @ .25 B 5 BPM @ 1600 PSIG. Over flushed 6 barrels. ISIP 600 PS and perforating gun. Shut down for night.	Ran Gamma Ray- vith tubing. Picked up Logged back and erf Maquoketa dolomite Removed tubing owed by 3 barrels of PM @ 1200 PSIG.
	MD = measured depth, not true vertical deptl	h (TVD)		
	casing. Initial pumping rate 1.6 BPM @ 1100 1800 PSIG then 2000 PSIG breaking back to PSIG, 5 minutes 100 PSIG, 10 minutes 50 P tank and started swabbing back acid load. S down for 30 minutes. Ran swab with no fluid	0 PSIG. Increased 0 1800 PSIG. Star SIG, 12.5 minutes wabbed to 3400' if 1 recovered. Char 1. Recovered less	Elite Cementing & Acidizing Acidized with 1500 gallons of rate to 6.4 BPM @ 1700 PSIG, then to 8.2 BPM @ 1700 F ted 25 barrel flush @ 8.5 BPM @ 1800 PSIG. ISIP 600 PS on vacuum. Total load 121 barrels. Let acid soak for 1 ho n 1 hour 45 minutes. Recovered 57.02 barrels. Had show ged swab cup and waited an additional hour. Recovered 5 than 30' of fluid that was 90+% water. Fluid recovered in parrels. Shut well in.	PSIG. Pressure to SIG, 30 seconds 300 pur. Emptied swab is of gas and oil. Shut 30' of fluid 90+% oil.
3/28/18	Re-gauged swab tank. Had lost 3/4" due to	gas bubbles dissir	ating. Yesterdays last swab run corrected for this change.	Total recovery after
	acid job 58.19 barrels. 62.81 barrels of load t	to recover. Ran in	hole with swab. Had 250' above last pull made yesterday. 8.3% oil. Shut well in. Rigged down double drum.	
12.1				
s				
			*	
- 1			5 G. ⁸	
1				