KOLAR Document ID: 1431365

Confiden	tiality Requested:
Yes	No

KANSAS CORPORATION COMMISSION OIL & GAS CONSERVATION DIVISION Form ACO-1 January 2018 Form must be Typed Form must be Signed All blanks must be Filled

WELL COMPLETION FORM WELL HISTORY - DESCRIPTION OF WELL & LEASE

OPERATOR: License #	API No.:
Name:	Spot Description:
Address 1:	
Address 2:	Feet from Dorth / South Line of Section
City: State: Zip:+	Feet from East / West Line of Section
Contact Person:	Footages Calculated from Nearest Outside Section Corner:
Phone: ()	
CONTRACTOR: License #	GPS Location: Lat:, Long:
Name:	(e.g. xx.xxxx) (e.gxxx.xxxx)
Wellsite Geologist:	Datum: NAD27 NAD83 WGS84
Purchaser:	County:
Designate Type of Completion:	Lease Name: Well #:
New Well Re-Entry Workover	Field Name:
	Producing Formation:
└ Oil └ WSW └ SWD └ Gas └ DH └ EOR	Elevation: Ground: Kelly Bushing:
	Total Vertical Depth: Plug Back Total Depth:
CM (Coal Bed Methane)	Amount of Surface Pipe Set and Cemented at: Feet
Cathodic Other (Core, Expl., etc.):	Multiple Stage Cementing Collar Used?
If Workover/Re-entry: Old Well Info as follows:	If yes, show depth set: Feet
Operator:	If Alternate II completion, cement circulated from:
Well Name:	feet depth to:w/sx cmt.
Original Comp. Date: Original Total Depth:	
Deepening Re-perf. Conv. to EOR Conv. to SWD	Drilling Fluid Management Plan
Plug Back Liner Conv. to GSW Conv. to Producer	(Data must be collected from the Reserve Pit)
	Chloride content: ppm Fluid volume: bbls
Commingled Permit #: Dual Completion Permit #:	Dewatering method used:
Dual Completion Permit #: SWD Permit #:	Location of fluid disposal if hauled offsite:
EOR Permit #:	Location of fluid disposa if flauled offsite.
GSW Permit #:	Operator Name:
	Lease Name: License #:
Spud Date or Date Reached TD Completion Date or	Quarter Sec TwpS. R East West
Recompletion Date Recompletion Date	County: Permit #:

AFFIDAVIT

I am the affiant and I hereby certify that all requirements of the statutes, rules and regulations promulgated to regulate the oil and gas industry have been fully complied with and the statements herein are complete and correct to the best of my knowledge.

Submitted Electronically

KCC Office Use ONLY						
Confidentiality Requested						
Date:						
Confidential Release Date:						
Wireline Log Received Drill Stem Tests Received						
Geologist Report / Mud Logs Received						
UIC Distribution						
ALT I II III Approved by: Date:						

KOLAR Document ID: 1431365

Operator Nar	ne:			Lease Name:	Well #:
Sec	Twp	S. R	East West	County:	

Page Two

INSTRUCTIONS: Show important tops of formations penetrated. Detail all cores. Report all final copies of drill stems tests giving interval tested, time tool open and closed, flowing and shut-in pressures, whether shut-in pressure reached static level, hydrostatic pressures, bottom hole temperature, fluid recovery, and flow rates if gas to surface test, along with final chart(s). Attach extra sheet if more space is needed.

Final Radioactivity Log, Final Logs run to obtain Geophysical Data and Final Electric Logs must be emailed to kcc-well-logs@kcc.ks.gov. Digital electronic log files must be submitted in LAS version 2.0 or newer AND an image file (TIFF or PDF).

Drill Stem Tests Take	en		Y	/es 🗌 No			.og l	-ormation	(Top), Depth	and Datum	Sample
(Attach Additional		1011		⁄es 🗌 No		Nam	e			Тор	Datum
Samples Sent to Ge Cores Taken Electric Log Run Geologist Report / M List All E. Logs Run:	lud Logs	vey	Y Y	∕es ∐No ∕es ∏No ∕es ∏No ∕es ∏No							
			Bep	CASING ort all strings set-	RECORD	Ne Ne		lsed production	n etc		
Purpose of String		e Hole rilled	Si	ze Casing et (In O.D.)	Weight Lbs. / F		Set	ting pth	Type of Cement	# Sacks Used	Type and Percent Additives
		'		ADDITIONAL		i / SQL	JEEZE R	ECORD			
Perforate Protect Casing		epth Bottom	Тур	e of Cement	# Sacks U	sed			Type and	Percent Additives	
Plug Back TD Plug Off Zone	Plug Back TD Plug Off Zone										
 Did you perform a hy Does the volume of Was the hydraulic fra 	the total base	fluid of the hy	draulic fr	acturing treatmen		-] Yes] Yes] Yes	No (If No,	skip questions 2 ar skip question 3) fill out Page Three	
Date of first Production Injection:	n/Injection or F	Resumed Proc	luction/	Producing Met	hod:		Gas Lift	Oth	ner <i>(Explain)</i>		
Estimated Production Per 24 Hours		Oil Bl	bls.	Gas	Mcf	Wate	er	Bbl	S.	Gas-Oil Ratio	Gravity
DISPOSIT	TION OF GAS	d on Lease		METHOD OF		-	TION: Comp.	Comr	mingled	PRODUCTIC Top	DN INTERVAL: Bottom
(If vented, S	ubmit ACO-18.,)				(Submit	ACO-5)	(Subm	it ACO-4)		
Shots Per Foot	Shots Per Perforation Perforation Bridge Plug Bridge Plug Foot Top Bottom Type Set At		Bridge Plug Set At			Acid, F		ementing Squeeze			
						_					
TUBING RECORD:	Size:		Set At:		Packer At:						

Form	ACO1 - Well Completion	
Operator	ST Petroleum, Inc.	
Well Name	THOMAS C 2-2	
Doc ID	1431365	

Casing

Purpose Of String	Size Hole Drilled	Size Casing Set	Weight	Setting Depth	Type Of Cement		Type and Percent Additives
Surface	9	6.250	10	21	Portland	4	50/50 POZ
Production	5.625	2.875	8	934	Portland	129	50/50 POZ

Well: 2-2 Lease Owner: Thomas C

8

WELL LOG

Thickness of Strata	Formation	Total Depth
0-15	soil-clay	15
32	lime	47
6	shale	53
10	lime	63
8	shale	71
15	lime	86
17	shale	103 redbed
75	lime	178
32	shale	210
8	lime	218
20	shale	238
7	lime	245
6	shale	251
8	lime	259
32	shale	291
1	lime	292
10	. shale	302
27	lime	329
5	shale	334
23	lime	357
4	shale	361
3	lime	364
6	shale	370
7	lime	377 Hertha
175	shale	552
6	lime	558
10	shale	568
5	lime	573
19	shale	592
3	lime	595
7	shale	602
11	lime	613
24	shale	637
3	lime	640
66	shale	706
1	lime	707
130	shale	837
2	limey sand	839 good oil show
4	sand	843 solid-good saturation
1	sand	844 broken-good oil show

Lease Owner: Thomas C

Johnson County, KS TDR Construction, INC. Commenced Spudding: Well: 2-2 (913) 837-8400

12/18/2018

96	shale	940 TD
	Addated by an	
	at the second	
· · · · · · · · · · · · · · · · · · ·		
		0
		4
Sa pos one Sugar	······	· · · · · · · · · · · · · · · · · · ·
	41	
	1-11 - 14 - 10	
		·
		2
	· · · · · · · · · · · · · · · · · · ·	

Short Cuts

TANK CAPACITY BBLS. (42 gal.) equals D²x.14xh D equals diameter in feet. h equals height in feet.

BARRELS PER DAY Multiply gals. per minute x 34.2

HP equals BPH x PSI x .0004 BPH - barrels per hour PSI - pounds square inch

TO FIGURE PUMP DRIVES * D - Diameter of Pump Sheave * d - Diameter of Engine Sheave SPM - Strokes per minute RPM - Engine Speed R - Gear Box Ratio *C - Shaft Center Distance

D - RPMxd over SPMxR d - SPMxRxD over RPM SPM - RPMXD over RxD R - RPMXD over SPMxD

BELT LENGTH - 2C + 1.57(D + d) + $\frac{(D-d)^2}{4C}$

* Need these to figure belt length WATTS = AMPS TO FIGURE AMPS: VOLTS 746 WATTS equal 1 HP

Log Book Well No. Farm Thomas (Section) (Township) For_ST Petroleum inc

15-091-24479

Town Oilfield Services, Inc. 1207 N. 1st East Louisburg, KS 66053 913-710-5400

	CA	SING A	ND TUBING	MEASU	JREMENTS	
	 Feet	In	Feet		East	
		D	St	<u> </u>	Feet	In.
<i>ः</i> र	105		art 14	$\left - \right $		
	035	FI	net			
		1	pai			
	940	TT				
0 2						
Ξ.						
Α,						
			1	-		
-						
5						
2		-				<u> </u>
2						
1			14. I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I			
3						
-						
			and the second second			
		Feet 905 935 940 	Feet In. 905 B 935 F0 940 T 940 T <	Feet In. Feet 905 B<414 935 Floort 940 TD 940 TD	Feet In. Feet In. 903 B.4/4 935 Floet 940 TD 940	905 B 41E

-1-

4

g i K

Thickness of Strata	Formation	Total Depth	Remarks
0-15	Soil-clay	15	
32	Lime	47	
6	Shale	53	
10	Lime	63	
3	Shale	71	and the second
15	Lime	86	•
17	Shale	103 redl	Deed
75	Lime	178 100	
32	Shale	210	2
8	Lime	218	
20	Shale	238	
7	Lime	245	
6	Shall	251	
8	Line	259	
32	Shall	291	
1	lime	292	
10	Shale	302	
27	Lime	329	
5	Shale	334	
23	Lime	357	
4	Shale	361	
3	Lime	364	
4	Shalk.	370	1
1700	Line	371 Hal	hg
115	Shale	550	
<u>&</u>	Lime	558	
10	-2-	568	

 \mathcal{C}

٠

ž

11

		568	
Thickness of Strata	Formation	Total Depth	Remarks
5	Lime	573	
19	Shale	592	·
3	Lime	595	
7	Shale	602	
11	Lime	613	
24	shale	637	-
3	Lime	640	-
lole	Shale	706	-
_/	Lime	707	
130	shale,	837	-
2	limey gound	839	good, Oil Shew,
<u> </u>	Savel	843	solid- good, saturation
/	Sand	544	broken good Oil Show
<u><u>s</u>(e</u>	shale	940	TD
		_	·
			·
	· · · · · · · · · · · · · · · · · · ·		•
		-	
			y
	·····	4	· · · · · · · · · · · · · · · · · · ·
		-	2 ²
V	4		
	-4-		-5-

á

Q	ES		.095		TICKET NUME LOCATION FOREMAN	A	68 y Ki					
PRESSURE PUMPING LLC PO Box 884, Chanute, KS 66720 620-431-9210 or 800-467-8676 FIELD TICKET & TREATMENT REPORT CEMENT												
DATE	CUSTOMER #	WELL NAME & NUM		SECTION	TOWNSHIP	RANGE	COUNTY					
12-19-18	7522	Thomas ()	2-2	SW 14	14.	22	50					
CUSTOMER ST PEtroloum				TRUCK #	DRIVER	TRUCK #	DRIVER					
MAILING ADDRESS 18800 San Slower RU. CITY STATE ZIP CODE				6691	Simlade" Har Bel							
Edge	1705	165 6602	5481	Cas Ken		21. 3 510						
LASING DEPTH	1934-	DRILL PIPE Ball 904	990 CASING SIZE & WEIGHT 278 EVE									
SLURRY WEIGHT SLURRY YOL WATER S			WATER gal/	/ok CEMENT LEFT in CASING								
DISPLACEMEN	т	DISPLACEMENT PSI	MIX PSI		RATE		<u> </u>					
REMARKS: Held Sufery Meeting, Mix and pump 200 " Gel To flesh hole. Miy and pump 1295k Poz. Blend TH with 29k Gel i Vy												
ElD-Se Cement	Pump	213 rubech	plug	10 161	W Jeft	phine C	Sing.					
Press	une wel	1 4970 000 1	st, w	CIL MEID	900013		<u>« / </u>					

CODE	QUANITY or UNITS	DESCRIPTION of SERVICES or PRODUCT		TOTAL
E0451	1	PUMP CHARGE	15004	
EDAU2	30	MILEAGE	214,52	
CEOTI	Dillion	Var TK	660%	-
E0853	2 ARS	Var TK	200-	1
			2574.	-
(4)		Less 40'	6 1029,80	
				154/4.
C 584/1-	18989 129 SK	Poz Blend IH	1741.5	2/
5915	217 #	Veel	95,10	
2.6075	32 #	EID-Scal	649.	1.
P8176	1	21/2" Rubber /lug	4500	
,	*		1945.6	2
		Less-407,	278.22	-
			- 157	1167,3
		SCANNED		
			net automation	00 10
avin 3737		1.11	25 OSALES TAX ESTIMATED	ant
	21/1	1 1 10	TOTAL P	2809.1
UTHORIZTION	Klimatata	- 12+19/She Jun Aron 12/94	DATE_	4675

I acknowledge that the payment terms, unless specifically amended in writing on the front of the form or in the customer's account records, at our office, and conditions of service on the back of this form are in effect for services identified on this form.

ATTENTION: THESE TERMS AND CONDITIONS CONTAIN INDEMNITY PROVISIONS FOR DAMAGE TO PERSONS AND PROPERTY. All Services or Products provided by QES Pressure Pumping LLC (M/a Consolidated OI Well Services LLC) are subject to these Terms and Conditions unless superseded by a Master Service Agreement agreed by the parties. In the event Customer does not accept these Terms and Conditions as written. Customer must request a Missler Service Agreement from QES. Contracts Administration Department al insuffgesip com.

The operations, solvices, succiles, materials, persistence or goods to be provided if <u>Solvices</u> for <u>Products</u>' to applicable) by OES Pressure Pumping 110 (<u>COES</u>) will be provided to you as contartier (<u>Coefficien</u>) is eccenterion with the following terms and conditions (<u>Solvement</u>). GES and Conterner may be referred to as 'Porty or 'Purples'

 <u>Price and Taxes</u>: Custamonwill pay QES for the Services in Products in accordance with QES, quoted price which exclude applicable laxes or process learning from: Customor shad pay of applicable laxes and process learning fees related to the Services annex Products. QES prices are subject to change without ootkas

2. Terms of Payment, Customer will pay DES cash in advance for Services and Producte unless QES has approved enditiprior to the performance of this Services ancier delivery of the Products. Credit farms for approved eccuring require fully payment of the involcas ancier delivery of the Products. Credit farms for approved eccuring require table of stopped and and an involve not paid within 30 days will be charged an involved req of 15% per month on the maximum rate allower, under applicable state law, which even a higher. Costenter will be inspensible for any fees including but no. Invited to GES in the context on allow exercises when the OES including but no. Invited to allower a fees including but no. Invited to allower a fees. and/or collection fee coule

3. Proof of Sark out or Delivery of Products. OES will furnish workdation of proof of Services before the and Product derivated to Desformer's representative at the time of performance of the Services on Product defeaty. Container agrees to sign and return such verdication indicating Cubic mer's acceptance of the Services of Performer. Services or Products

4. <u>Driversy or Completion</u>. All tabling and responsibility of GES ceases when (1) Products are delivered to the Customer by CES and no longer in the care, custody and control of CES or (2) when the currier nearing the Products and/or degrade. GES when the responsible to the currier cardinal products and do the grade. GES when the responsible to the currier degrade to exceed a subscription of the Customer by CES and no longer and the grade in case of strenger currently experiments and/or degrade to exist a current of the current term the current term of the current current term of the current current term of the current sufficiency of the of the sufficiency of the current sufficiency of the curent sufficiency of the current sufficiency of the cur

5 Weillier Senaine Site Conditions, Castomer, having exatedy and control of the well and/or service site, and having supprior knowledge of the same and the conditions surrounding itrem, wirrant that the well and/or service site well as the event condition to reache and non-minister. Services and Products Open OES' request, Castomer will ask the destination to very that the well as service site adequate the service and the condition to very that the well as service site adequate the service the services are the devices of Products. Casto have were that the service site adequate to contain while able to takely access the very and service site and that any special coupment or rand improvements induced as such access without the the responsibility of Castomer, indees otherwise agreed to be device.

6 Channest Press his way that more transformers. Conterner spreas that for any warte creater, se part of the Services. Catabanes will be considered the "generator" on purposes of any non-cobie ways or regulations partialning to the transportation, atorage and har bling of chemicals and hazardous materials.

7. Data. Data. Transmission and Stange KES does not kontant or guarantee the encursory of any research emights, survivy, or other data generated for the Sections. GES is not meportable for any accidental or intercored metropolar of such data by third permission if a the responsibility of the Guarantee to safeguard such sets against loss no using any next to secure clabal or separate for the sections. 810 7803

storage.
a WARMANTIES - UNITATION OF CIGABLETX.
a) QES warrants that the Services and Products will (i) on tree from behalls in materials and accompanies that the Services and Products will (ii) on tree from behalls in materials and economic to the plant spectrum terms in use of services information of the plant spectrum terms of removed information products and this devices and Products and plant spectrum will post to be plant spectrum terms of the plant and terms of the plant and terms of the plant spectrum terms of the plant and terms of the plant and terms of the plant spectrum terms of the plant and terms of the plant spectrum terms of the plant and terms of the plant spectrum terms of the plant and terms of the plant spectrum terms of the plant and terms of the plant spectrum terms of the terms of the spectrum terms of the terms of the plant spectrum terms of the terms of the terms of terms

b) EXCEPT FOR THE WARRANTIES EXPRESSLY STATED ABOVE. THERE ARE NO OTHER WARRANTIES. THE PARTIES EXPRESSLY EXCLUDE AND CUSTOMER WAIVES ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

C) IN NO EVENT WILL GES' ENTIRE LIABILITY (IN TORY, CONTRACT, WARRANTY, IMFRINGEMENT OR OTHERWISE) TO CUSTOMER EXCEED THE PURCHASE PRICE ACTUALLY PAID BY GUSTOMER FOR THE SERVICES OR PRODUCTS THAT GIVE RISE TO A DISPUTE. THIS PROVISION WILL SURVIVE ANY TERMINATION OF THIS AGREEMENT

9 INDEMNIFICATION AND WAIVER OF CONSEQUENTIAL DAMAGES

• mechanic function and invariant or consistence in all connects. Comparison of the Second Health of the Second sul spontacions and invite

9.2 <u>QES INDEMNITY</u>, GES AGREES TO PROTECT, DEFEND, INDEMINIFY AND HOLD HARNLESS CUSTOMER ORDUP FROM AND AGAINST ALL CLAIMS, DEMANDS, AND GAUSES OF ACTION OF EVERY KIND AND CHARACTER, ARISING IN CONNECTION WITH THE SERVICEB, ON ACCOUNT OF BODILY INJURY, ILLIESS, OR DEATH OF ANY MEMBER OF QES GROUP OR, DAMAGE TO OR LOSS OF PROPERTY OF ANY MEMBER OF QES GROUP.

9.3 <u>EUSTOMER INDEMNITY.</u> CUSTOMER AGREES TO PROTECT. DEFEND, INDEMNIFY AND HOLD HARMLESS DES GROUP FROM AND AGAINST ALL CLAIMS, DEMANDS, AND CAUSES OF ACTION OF EVERY KIND AND CHARACTER, ARISING IN CONNECTION WITH THE SERVICES, ON ACCOUNT OF BODILY INJURY ILLNESS, OR DEATH OF ANY MEMBER OF CUSTOMER GROUP OR DAMAGE TO OR LOSS OF PROPERTY OF ANY MEMBER OF CUSTOMER GROUP.

9.4 WELL, CUSTOMER WILL RELEASE. PROTECT, DEFEND, AND INDEMNIFY QES GROUP FROM AND AGAINST ALL CLAIMS, DEMANDS AND CAUSES OF ACTION OF EVERY KIND AND CNARACTER IN THE EVENTS OF: (1) LOSS OR DAMAGE TO ANY GEOLOGICAL FORMATION, STRATA OF ALL CLAIMS, DEMONSTRATING RELEASED FOR WATER RESOURCE BENEATH THE THE LAND OR WATER, (I) LOSS OR DAMAGE TO THE HOLE OR WELL, (II) CE OF

IMPAIRMENT OF PROPERTY RIGHTS OR OTHER INTERESTS IN OR TO OR., GAS, MINERAL OR WATER RESOURCES, AND (IV) REGAINING CONTROL OF ANY WILD WELL OR OUT OF CONTROL WELL, UNDERGROUND OR ABOVE THE SURFACE, INCLUDING REMOVAL OF WRECK, DEBRIS, FQUIPMENT, AND HAZARDOUS MATERIALS AND REMEDIATING ENVIRONMENTAL DAMAGE.

9.5 POLLUTION RESPONSIBILITY, Sobject to paragraphs 9.2 and 9.3, it is understood and agreed between Customer and QES that the responsibility for poliution shall be as follows: (a) QES WILL ASSUME RESPONSIBILITY FOR CONTROL AND REMOVAL OF AND WILL PROTECT, DEFEND AND INDEMNEY CUSTOMER GROUP FROM AND REMOVAL OF AND WILL CALLED AND CAUSES OF ACTION OF EVERY KIND OF CHARACTER ARBING FROM POLLUTION OR CONTAMINATION WHICH ORIGINATES ABOVE THE SURFACE OF THE LAND OR WATER FROM THE EQUIPMENT OF ANY MEMBER OF QES GROUP MAINTAINED IN QES GROUPS' CARE, CUSTODY AND CONTROL, AND ARISING FROM THE PERFORMANCE OF THE SERVICES.

SERVICES. (b) CUSTOMER WILL ASSUME RESPONSIBILITY FOR CONTROL AND REMOVAL OF AND WILL PROTECT, DEFEND AND INDEMNIFY ORS GROUP FROM AND AGAINST ALL GLAIMS, DEMANDS AND CAUSES OF ACTION OF EVERY KIND AND CHANAGTER ARISING FROM POLLUTION OTHER THAN THAT DESCRIBED IN SECTION 9.5(A) ABOVE, WHICH MAY OCCUR DURING THE CONJUCT OF OPERATIONS HEREUNDER, INCLUDING, BUT NOT LUMITED TO. POLLUTION REBULTING FROM FIRE, BLOWOUT, CRATERING, SEEPAGE OR OTHER UNCONTROLLED FLOW OF OIL, GAS OR OTHER SUBSTANCE.

B.6 WAIVER OF CONSEQUENTIAL DAMAGES, NOTWITHSTANDING ANY PROVISION TO THE CONTRARY, CUSTOMER AND DES FURTHER AGREE THAT MEITHER PARTY WILL BE LABLE TO THE OTHER OR EACH OTHER'S RESPECTIVE GROUP FOR ANY CONSEQUENTIAL, INCIDENTAL OR INDIRECT DAMAGES, INCLUDING BUT NOT LIMITED TO, LOSS OF PROFIL, INCIDENTAL PRODUCTON, REVENUE, OR ANTICIPATED BUSINESS ("LOSSIES"), CUSTOMER AGREES TO INDEMNIFY AND HOLD DES GROUP HARMLESS FROM AND AGAINST ANY AND ALL CLAIMS FOR SUCH LOSSES ASSERTED BY MEMBERS OF CUSTOMER GROUP, LES AGREES TO INDEMNIFY AND HOLD CUSTOMER GROUP HARMLESS FROM AND AGAINST ANY AND ALL CLAIMS FOR SUCH LOSSES ASSERTED BY MEMBERS OF DES GROUP.

9.7 EXCEPT AS OTHERWISE EXPRESSLY LIMITED BY THIS AGREEMENT OR BY LAW. ALL RELEASES, INDEMNITY OBLIGATIONS AND OTHEN LIABILITIES ASSUMED UNDER THIS AGREEMENT WILL BE WITHOUT LIMIT AND WITHOUT REGARD TO THE CAUSE OR CAUSES, INCLUDING, WITHOUT LIMITATION, PREEXISTING CONDITIONS, UNSEAWORTHINESS, STRICT LIABILITY, WILLFUL MISCONDUCT, AND THE SOLE, JOINT, GROSS, OR CONCURRENT NEGLIGENCE OF ANY PARTY.

9.8. Each Party hereunder agrees to support its indemnity obligations with liability insurance coverage with limits of liability not lass than ten mittion doltars (\$10,080,080). It is the express intention of the Parties that the indemnities contained inerein apply to the fullest extent permitted by applicable law, and in no event will a Party's indemnity obligation be limited to the amount of the particle function. insumice carried by each Party.

THIS SECTION 9 WILL SURVIVE THE TERMINATION OR EXPIRATION OF THIS AGREEMENT.

to teams, all maintenal patieties of either Park, in any way reached to the Servece symptom on the required by the Argenment, shall to the ardent of the resistance realities assumed by such ready, of normal meaners party grade as additional results (mean by version stratigeners) the ECOV, or protects to a labelity balloces), if it ways subregistion as to the other party grade of the potentiary and non-some bullary reural up of the other party group.

11. Esting Majerre, Esnept the obligation to make payments when due meiller. DES nor Customer without takes normenous to be in meach of this Agreements for any deaty or finite in tentormorke meshang from the acts of Bort point or matters addedly, material change million acts of encounter at action, act of public cuery, war sourcents (but any instance, moth grants, mode, fakes of number attest actions) and a material source of experimental cuery and the experimental cuery and the source of the toric measures of the cuery of the cuery of the cuery of experimental cuery and the cuery of the source of the cuery of the toric measures of the cuery of the source of the cuery of the or work resumes.

10 Governing Law, This Agroundent will be overmed as the laws of the State or Toxets, without regard to the tool of the receiver or state courts located in Hauston, Hama Courty, Tends with respect to impand all disputes that are out of the receiver of the such as the such of the receiver of the such as the receiver of the such as the receiver of the such as the such of the receiver of the such as the receiver of the such as the such as the receiver of the such as the such as the receiver of the receiver of the such as the receiver of the such as the receiver of the such as the receiver of the receiver of the such as the receiver of the rec expiration of this Agreement.

13 (objective # Contrastry, QES will be an unnahized anticipiting with respect to the Services performed, and million QES not strying employed by QES will be deprive for any purpose to be the employee. Spent. aervant, horroweo scrvast or representative of Customer

14. Severability. In the event any provision of this Agreement is inconsistent with or contrary to any applicable taw rule or agreed on the provision with determining terms. As motified, with move is full force and official.

15 (Aetwork A warver on the pairs of either Party of any treach of any twrnt, provision or consition of his Agricuments with not constitute a precedent and not bord orther Pulty herefolds a warver of any encounding or more broach of the same or any other terms provisions or consition of this Agreement.

16. Ender Acceptent This Agroament contains the antine agreement of the Parties with regard to the subject matter barrier test superscripts any oner oral and emitter agreements, contrasts, reputerintations or warrenty between the Parties relating to the subject matter forest. No amendment or modification of the Agreement withe effective unless the in an ing and signer type automated more interfaced and Party. If the Parties when the Saturd Saturd Agreement, then any term or could on breach effective white the set of the Saturd Agreement, then any term or could on breach effective when any term or could on breach effective when any term or could on breach effective when any term or could on breach effective. the provisions of such Master Service Agreement will be deemed invalid.