

KANSAS CORPORATION COMMISSION OIL & GAS CONSERVATION DIVISION Form ACO-4 Form must be typed

March 2009

APPLICATION FOR COMMINGLING OF

PRODUCTION (K.A.R. 82-3-123) OR FLUIDS (K.A.R. 82-3-123a)

OPERAT	OR: License #	API No. 15				
Name:		Spot Descr	iption:			
Address	1:		Sec	Twp.	S. R	East West
	2:			-		
City:	State: Zip:+			Feet from	East /	West Line of Section
Contact I	Person:	County:				-
Phone:	()	Lease Nam	e:		_ Well #:	
_						
∟ 1.	Name and upper and lower limit of each production interval to					
	Formation:		(Perfs):			
	Formation:		(Perfs):			
	Formation:		(Perfs):			
	Formation:		(Perfs):			
	Formation:		(Perfs):			
		a a da da ta must				
2.	Estimated amount of fluid production to be commingled from e					
	Formation:					BWPD:
	Formation:	BOPD:		MCFPD:		BWPD:
	Formation:	BOPD:		MCFPD:		BWPD:
	Formation:	BOPD:		MCFPD:		BWPD:
	Formation:	BOPD:		MCFPD:		BWPD:
□ 3. □ 4.	Plat map showing the location of the subject well, all other we the subject well, and for each well the names and addresses of Signed certificate showing service of the application and affide	of the lessee of reco	rd or operator.			n a 1/2 mile radius of
.	Signed certificate showing service of the application and and	avit of publication as		A.R. 02 0 100	<i>.</i>	
For Con	nmingling of PRODUCTION ONLY, include the following:					
5.	Wireline log of subject well. Previously Filed with ACO-1:	Yes 🗌 No				
6.	Complete Form ACO-1 (Well Completion form) for the subject	well.				
For Con	nmingling of FLUIDS ONLY, include the following:					
7.	Well construction diagram of subject well.					
8.	Any available water chemistry data demonstrating the compat	ibility of the fluide to	ho comminalo	d		
0.	Any available water chemistry data demonstrating the compar	ibility of the huids to	be commingle	u.		
current ir mingling	/IT: I am the affiant and hereby certify that to the best of my normation, knowledge and personal belief, this request for comis true and proper and I have no information or knowledge, which istent with the information supplied in this application.		Submi	itted Elec	tronically	
KCC	Office Use Only	Protests mav be fil	ed by anv partv	havina a valid i	interest in the ar	oplication. Protests must be
	nied Approved		bly with K.A.R. 8			hin 15 days of publication of
	/ Periods Ends:					

Date: _

Approved By:

CONFIDENTIAL WELL COMPLETION FORM

1083437

Form ACO-1 June 2009 Form Must Be Typed Form must be Signed All blanks must be Filled

WELL COMPLETION FORM

	LICTODY	DESCOID		
VVELL	HISTORT	- DESCRIP	WELL &	LEASE

OPERATOR: License #	API No. 15
Name:	Spot Description:
Address 1:	
Address 2:	Feet from North / South Line of Section
City: State: Zip:+	Feet from East / West Line of Section
Contact Person:	Footages Calculated from Nearest Outside Section Corner:
Phone: ()	
CONTRACTOR: License #	County:
Name:	Lease Name: Well #:
Wellsite Geologist:	Field Name:
Purchaser:	Producing Formation:
Designate Type of Completion:	Elevation: Ground: Kelly Bushing:
New Well Re-Entry Workover	Total Depth: Plug Back Total Depth:
Oil WSW SWD SIOW Gas D&A ENHR SIGW OG GSW Temp. Abd. CM (Coal Bed Methane) Cathodic Other (Core, Expl., etc.): If Workover/Re-entry: Old Well Info as follows:	Amount of Surface Pipe Set and Cemented at: Multiple Stage Cementing Collar Used? If yes, show depth set:
Operator:	
Well Name:	Drilling Fluid Management Plan (Data must be collected from the Reserve Pit)
Original Comp. Date: Original Total Depth: Deepening Re-perf. Conv. to ENHR Conv. to SWD Conv. to GSW	Chloride content: ppm Fluid volume: bbls Dewatering method used:
Plug Back: Plug Back Total Depth	Location of fluid disposal if hauled offsite:
Commingled Permit #: Dual Completion Permit #:	Operator Name:
SWD Permit #:	Lease Name: License #:
ENHR Permit #:	Quarter Sec Twp S. R East West
GSW Permit #:	County: Permit #:
Spud Date or Recompletion Date Date Reached TD Completion Date or Recompletion Date	

AFFIDAVIT

I am the affiant and I hereby certify that all requirements of the statutes, rules and regulations promulgated to regulate the oil and gas industry have been fully complied with and the statements herein are complete and correct to the best of my knowledge.

Submitted Electronically

KCC Office Use ONLY
Letter of Confidentiality Received
Date:
Confidential Release Date:
Wireline Log Received
Geologist Report Received
UIC Distribution
ALT I II III Approved by: Date:

	Side Two	
Operator Name:	Lease Name:	Well #:
Sec TwpS. R East West	County:	

INSTRUCTIONS: Show important tops and base of formations penetrated. Detail all cores. Report all final copies of drill stems tests giving interval tested, time tool open and closed, flowing and shut-in pressures, whether shut-in pressure reached static level, hydrostatic pressures, bottom hole temperature, fluid recovery, and flow rates if gas to surface test, along with final chart(s). Attach extra sheet if more space is needed. Attach complete copy of all Electric Wire-line Logs surveyed. Attach final geological well site report.

Drill Stem Tests Taken (Attach Additional She	eets)	Yes No	L	-	n (Top), Depth an	d Datum Top	Sample Datum
Samples Sent to Geolog	gical Survey	Yes No	Indif			юр	Datum
Cores Taken Electric Log Run Electric Log Submitted E (If no, Submit Copy)	Electronically	<pre> Yes □ No Yes □ No Yes □ No Yes □ No</pre>					
List All E. Logs Run:							
		CASING		ew Used			
		Report all strings set-	-conductor, surface, inte	ermediate, product	ion, etc.		
Purpose of String	Size Hole Drilled	Size Casing Set (In O.D.)	Weight Lbs. / Ft.	Setting Depth	Type of Cement	# Sacks Used	Type and Percent Additives

ADDITIONAL CEMENTING / SQUEEZE RECORD

Purpose: —— Perforate	Depth Top Bottom	Type of Cement	# Sacks Used	Type and Percent Additives
Protect Casing Plug Back TD				
Plug Off Zone				

			N RECORD - Bridge Plugs Set/Type ootage of Each Interval Perforated			Acid, Fracture, Shot, Cement Squeeze Record (Amount and Kind of Material Used)			Depth	
TUBING RECORD: Size:			Set At:		Packer	r At:	Liner R	un:	No	
Date of First, Resumed Production, SWD or ENH			۶.	Producing N	1ethod:	ping	Gas Lift	Other (Explain)		
Estimated Production Oil Bt Per 24 Hours		ls.	Gas Mcf Wat		Wate	er	Bbls.	Gas-Oil Ratio	Gravity	
									1	
DISPOSITIO	N OF C	BAS:			METHOD	OF COMPLE	TION:		PRODUCTION INTER	RVAL:
Vented Sold Used on Lease				Open Hole Perf. Dually (Submit)				Commingled (Submit ACO-4)		
(If vented, Subi	mit ACC)-18.)	Other (Specify)							

Mail to: KCC - Conservation Division, 130 S. Market - Room 2078, Wichita, Kansas 67202

Conservation Division Finney State Office Building 130 S. Market, Rm. 2078 Wichita, KS 67202-3802

Phone: 316-337-6200 Fax: 316-337-6211 http://kcc.ks.gov/

Mark Sievers, Chairman Ward Loyd, Commissioner Thomas E. Wright, Commissioner Sam Brownback, Governor

June 06, 2012

CLARK EDWARDS PostRock Midcontinent Production LLC Oklahoma Tower 210 Park Ave, Ste 2750 OKLAHOMA CITY, OK 73102

Re: ACO1 API 15-205-26607-00-00 FAWL HAROLD L 11-1 SW/4 Sec.11-28S-16E Wilson County, Kansas

Dear Production Department:

We are herewith requesting that the Well Completion Form ACO-1 and attached information for the subject well be held confidential for a period of two years.

Should you have any questions or need additional information regarding subject well, please contact our office.

Respectfully, CLARK EDWARDS

1 NAME & UPPER & LOWER LIMIT OF EACH PRODUCTION INTERVAL TO BE COMMINGLED

FORMATION:BARTLESVILLE(PERFS):1116 - 1122
FORMATION: (PERFS): -
FORMATION: (PERFS): -
FORMATION: (PERFS): -

2 ESTIMATED AMOUNT OF FLUID PRODUCTION TO BE COMMINGLED FROM EACH INTERVAL

FORMATION:	SUMMITT	BOPD:	0	MCFPD:	0	BWPD:	6.67
FORMATION:	BARTLESVILLE	BOPD:	3	MCFPD:	0	BWPD:	20
FORMATION:		BOPD:		MCFPD:		BWPD:	
FORMATION:		BOPD:		MCFPD:		BWPD:	
FORMATION:		BOPD:		MCFPD:		BWPD:	

SSP2010

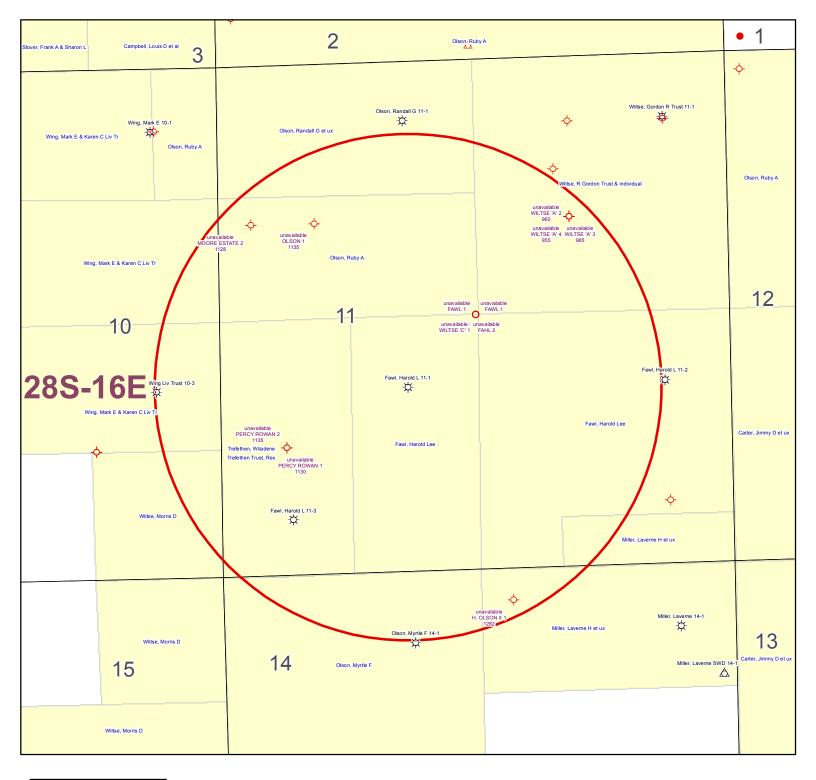
IP Description of Luiss Luiss Ipper Imper Imper </th <th></th> <th>A</th> <th>В</th> <th>С</th> <th>D</th> <th>E</th> <th>F</th> <th>G</th> <th>Н</th> <th>1</th> <th>J</th> <th>К</th>		A	В	С	D	E	F	G	Н	1	J	К
S Sec the herine Nucle the micro Nucle the micro Nucle the micro Nucle the sec th	1		ں						п	1		
3 Solution bind 100 <t< td=""><td></td><td></td><td>Units</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Click he</td><td>re</td><td>Click</td></t<>			Units							Click he	re	Click
Dec. Produce	3			v	 Image: A second s	~		>				Oliala
□ □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< □< <td></td> <td>Click</td>												Click
									-			Click
	-		11010 0							Goal Sook	SCD	CIICK
$ \begin{array}{ c c c c c c } 10 & [c] &$										Gual Seek	33F	Click
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				CBM	CBM	Bartles	Bartles	Bartles	calculations.			CIICK
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10	Na ⁺	(mg/l)*	19,433.00	27,381.00	26,534.00	25689.00	24220.00	24654.20	Initial(BH)	Final(WH)	SI/SR
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		(************************************	(mg/l)						0.00	Saturation Index	values	(Final-Initial)
			(mg/l)	1,096.00	872.00	1,200.00	953.00	858.00	995.91	Ca	lcite	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			(mg/l)	1,836.00	2,452.00	2,044.00	1920.00	1948.00	2040.23	-0.73	-0.60	0.13
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			(mg/l)						0.00	Ba	rite	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			(mg/l)						0.00			
			(mg/l)	40.00	21.00	18.00	82.00	90.00	50.21	H	alite	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			(mg/l)						0.00	-1.77	-1.80	-0.03
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-		(mg/l)						0.00	Gy	psum	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			(mg/l)									0.00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		SO4 ²⁻	(mg/l)	1.00	1.00	8.00	1.00	1.00	2.40		hydrate	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		F	(mg/l)									0.06
164 ICO3 Alkalinity* (mg/l) 190.00 224.00 254.00 254.00 244.00 Cleasting 25 CO3 Alkalinity* (mg/l) -												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						-						0.12
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				190.00	234.00	259.00	268.00	254.00	241.03	Cel	estite	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	_								0.00			
128 Borate (mgf.) H303 0.00 Zinc Sulfide 25 TDS (Measared) (mgf.) 0.00 72781 0.00 26 TDS (Measared) (mgf.) 1.038 1.045 1.048 1.045 1.047 Calcium fluoride 28 JC Calc. Density (STP) (gin.) 1.038 1.051 1.048 1.048 1.045 1.047 Calcium fluoride Total National Stresson 0.0269 0.0306 0.0151 0.0269 0.0306 0.0151 0.0269 0.0306 0.0151 0.0269 0.0306 0.0151 0.0269 0.0306 0.0151 0.0269 0.0306 0.0151 0.0269 0.0306 0.0151 0.0269 0.0306 0.0151 0.0269 0.0306 0.0151 0.0269 0.030 0.0269 0.030 0.0269 0.030 0.0269 0.030 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.07</td>			-									0.07
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			-									-0.06
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	_									Zinc	Suinde	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		· · · · · · · · · · · · · · · · · · ·		1 038	1.051	1 050	1.048	1 0/15		Calaium	1 fluorido	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										Calcium	linuoriae	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	32	H ₂ S Gas Analysis***		0.0289	0.0292	0.0296	0.0306	0.0151	0.0269	Iron C	arbonate	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	33	Total H2Saq	(mgH2S/l)	1.00	1.00	1.00	1.00	0.50	0.90	-0.74	-0.51	0.23
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	34	pH, measured (STP)		5.67	5.76	5.72	5.54	5.55	5.63			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Choose one option								Calcite	NTMP	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	35			0	0	0	0	0				
38 Water/Day (B/D) 100 100 100 100 100 500 0.00 0.00 39 For mixed brines, enter values for temperatures and pressures in Cells (H40-H43) (Enter H40-H43) pH 40 Initial T (F) 66.0 71.0 70.0 41.0 49.0 60.0 5.69 5.60 41 Final T (F) 66.0 71.0 70.0 41.0 49.0 89.0 Viscosity (CentiPoise) 42 Initial P (psia) 25.0 25.0 25.0 25.0 11.96 0.825 0.825 44 Use TP on Calcite sheet? 1-Yes;0-No 0.00 <t< td=""><td>36</td><td>Gas/day(thousand cf/day)</td><td>(Mcf/D)</td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>0.00</td><td>0.00</td><td>_</td></t<>	36	Gas/day(thousand cf/day)	(Mcf/D)						0	0.00	0.00	_
39 For mixed brines, enter values for temperatures and pressures in Cells (H40-H43) (Enter H40-H43) pH 40 Initial T (F) 66.0 71.0 70.0 41.0 49.0 60.0 5.69 5.60 42 Initial T (F) 66.0 71.0 70.0 41.0 49.0 89.0 Viscodity (CentriPoise) 42 Initial P (psia) 25.0 25.0 25.0 25.0 25.0 11.96 0.826 43 Final P (psia) 25.0 25.0 25.0 25.0 11.96 0.826 44 User P on Calcite sheet? (Yes.o-No 0 0 0.00 0.959 0.959 45 API Oil Grav. Sp.Grav. 0 0 0 0 0.00	_		· · · · ·			1	1	1	4		BHPMP	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			· · · · ·				100	100				_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							41.0	49.0				_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	41	Final T	(F)	66.0	71.0	70.0	41.0	49.0	89.0	Viscosity ((CentiPoise)	
44 Use TP on Calcite sheet? I-Yes;0-No 0 0 0.955 0.959 45 API Oil Grav. API Qii Grav. API Qii Grav. API Qii Grav. Sp.Grav. 0.00 Inhibitor needed (mg/L) 46 Gas Sp.Grav. Sp.Grav. 0 0.00 0 0.00	42	Initial P	(psia)	25.0	25.0	25.0	25.0	25.0	25.0			
45 API Oil Grav. API grav. API Oil Grav. Sp.Grav. Sp.Grav. Sp.Grav. Sp.Grav. Sp.Grav. Sp.Grav. Bp.Grav. Br.Grav. Br.Grav. Br.Grav.				25.0	25.0	25.0	25.0	25.0	120.0			_
46 Gas Sp.Grav. Sp.Grav. Sp.Grav. MDTM 47 McOH/Day (B/D) 0 0 0 0.00 0.00 0.00 48 MEG/Day (B/D) 0 0 0 Anhydrite HDTM 49 Conc. Multiplier 0 0 0 0 Anhydrite HDTM 50 H' (Strong acid) * (N) 0 0 0 Anhydrite HDTM 52 Quality Control Checks at STP: 0 0 0.00 0.00 0.00 0.00 54 Total H2Saq (STP) (mgH2S/l) 0 0 0 0 0 0 0 0 0 0 0 0.00 <td< td=""><td></td><td></td><td>,</td><td></td><td></td><td></td><td></td><td></td><td>30.00</td><td></td><td></td><td></td></td<>			,						30.00			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											HDTMP	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	47	MeOH/Day		0					0		0.00	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			(B/D)	0					0		HDTMP	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										0.00	0.00	
52 Quality Control Checks at STP: 53 H ₂ S Gas (%) 54 Total H2Saq (STP) (mgH2S/l) 55 pH Calculated (pH) 56 PCO2 Calculated (%) 57 Alkalinity Caclulated (mg/l) as HCO3 58 ECations= (equiv.l) 60 Calc TDS= (mg/l) 61 Inhibitor Selection Input Unit # Inhibitor 63 Have ScaleSoftPitzer C 80 °F 176 64 pick inhibitor for you? 1 1-Yes;0-No 3 PAA m³ 100 bill(2 US gal) 629 66 If No, inhibitor # is: 4 # 4 DTPMP m³ 100 bill(2 US gal) 629 67 1 st inhibitor # is: 1 # 6 SPA Bar 496 psia 7,194 68 % of 1 st inhibitor # is: 2 # 8 HDTMP Gal 10,000 psia 193 69 2 nd inhibitor # is: 2 #												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									I			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	54	Total H2Saq (STP)	(mgH2S/l)									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			· · ·									
58 59 50 calc TDS=(equiv.f.) (equiv.f.) (equiv.f.) (equiv.f.)(equiv.f.) (equiv.f.) (equiv.f.)Intermodel of the second seco												
60Calc TDS=(mg/l)(mg/l	58	ΣCations=	(equiv./l)									
62Protection Time120min1NTMPFrom UnitValueTo UnitValue63Have ScaleSoftPitzer2BHPMP°C80°F17664pick inhibitor for you?11-Yes;0-No3PAA m^3 100ft³3,53165If No, inhibitor # is:4#4DTPMP m^3 100bbl(42 US gal)62966If you select Mixed,5PPCAMPa1,000psia145,07467 1^{st} inhibitor # is:1#66SPABar496psia7,19468% of 1^{st} inhibitor # is:50%7HEDPTorr10,000psia19369 2^{nd} inhibitor # is:2#8HDTMPGal10,000bbl(42 US gal)238			-	Unit	#	Inhibitor	Unit Converte	r (From metric	to English)			
64 pick inhibitor for you? 1 1-Yes;0-No 3 PAA m³ 100 ft³ 3,531 65 If No, inhibitor # is: 4 # 4 DTPMP m³ 100 bbl(42 US gal) 629 66 If you select Mixed, 5 PPCA MPa 1,000 psia 145,074 67 1 st inhibitor # is: 1 # 6 SPA Bar 496 psia 7,194 68 % of 1 st inhibitor is: 50 % 7 HEDP Torr 10,000 psia 193 69 2 nd inhibitor # is: 2 # 8 HDTMP Gal 10,000 bbl(42 US gal) 238									. .	Value		
65 If No, inhibitor # is: 4 # 4 DTPMP m³ 100 bbl(42 US gal) 629 66 If you select Mixed, 5 PPCA MPa 1,000 psia 145,074 67 1 st inhibitor # is: 1 # 6 SPA Bar 496 psia 7,194 68 % of 1 st inhibitor is: 50 % 7 HEDP Torr 10,000 psia 193 69 2 nd inhibitor # is: 2 # 8 HDTMP Gal 10,000 bbl(42 US gal) 238	63	Have ScaleSoftPitzer			2	BHPMP		80		176		
66 If you select Mixed, 5 PPCA MPa 1,000 psia 145,074 67 1 st inhibitor # is: 1 # 6 SPA Bar 496 psia 7,194 68 % of 1 st inhibitor is: 50 % 7 HEDP Torr 10,000 psia 193 69 2 nd inhibitor # is: 2 # 8 HDTMP Gal 10,000 bbl(42 US gal) 238			1		3							
67 1 st inhibitor # is: 1 # 6 SPA Bar 496 psia 7,194 68 % of 1 st inhibitor is: 50 % 7 HEDP Torr 10,000 psia 193 69 2 nd inhibitor # is: 2 # 8 HDTMP Gal 10,000 bbl(42 US gal) 238			4	#								
68 % of 1 st inhibitor is: 50 % 7 HEDP Torr 10,000 psia 193 69 2 nd inhibitor # is: 2 # 8 HDTMP Gal 10,000 bbl(42 US gal) 238			1	#					-	-		
69 2 nd inhibitor # is: 2 # 8 HDTMP Gal 10,000 bbl(42 US gal) 238									-	-		
									-			
10 Dispita act. coefs? U 1-Yes;0-NO 9 Average Liters 10,000 bbl(42 US gal) 63		Display act. coefs?	0	# 1-Yes;0-No	9	Average	Liters	10,000	bbl(42 US gal)	63		
71 10 Mixed									<u> </u>			

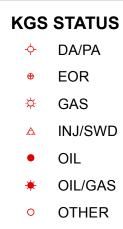
BCC

Saturation Index Calculations

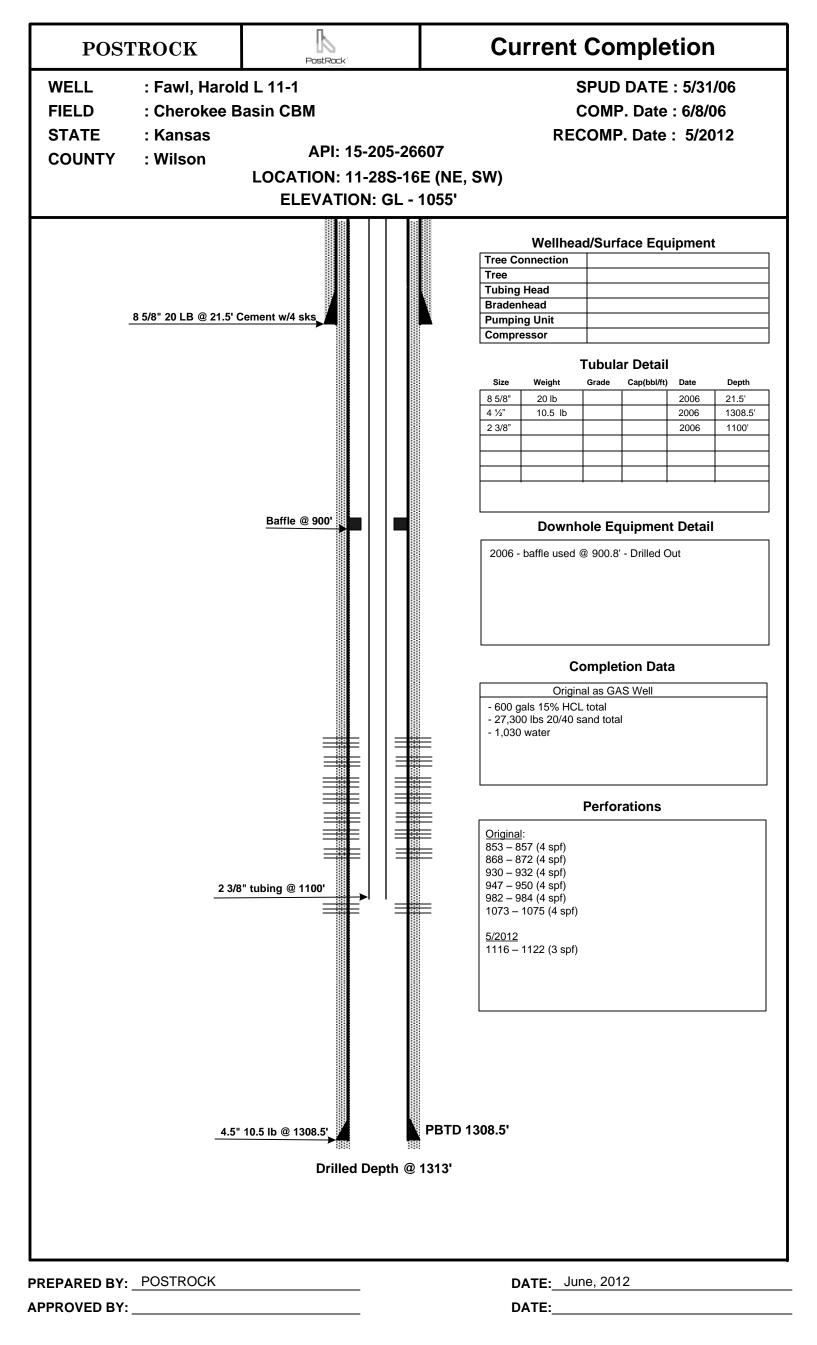
Champion Technologies, Inc. (Based on the Tomson-Oddo Model)

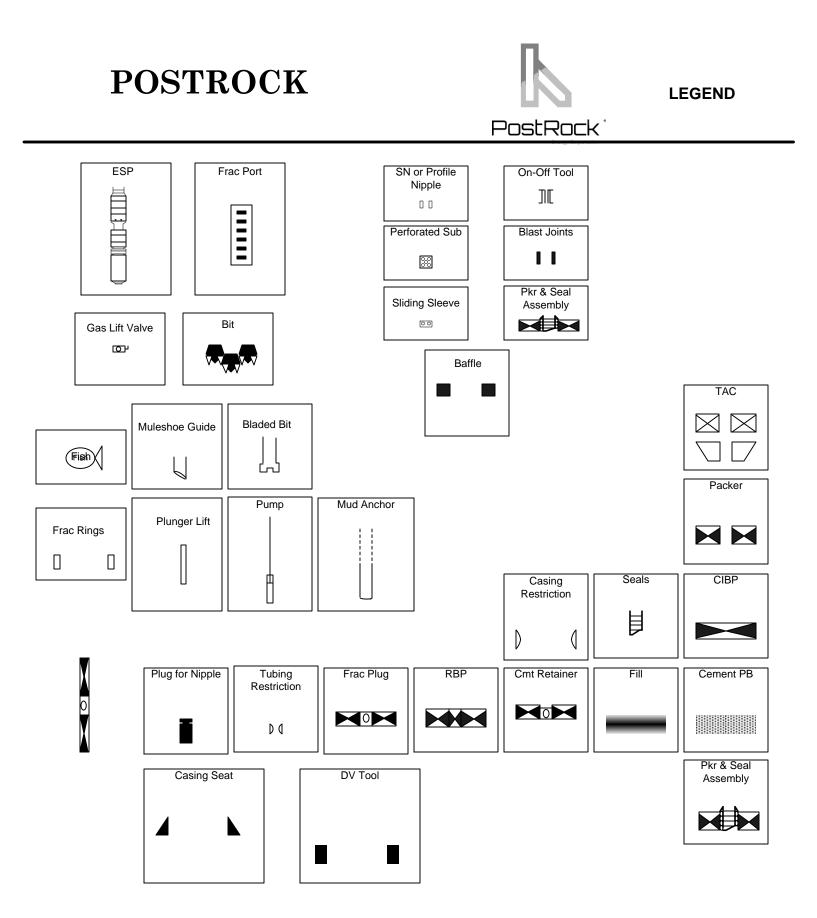
Brine 1: Ward Feed Yard 34-1 Brine 2: Ward Feed Yard 4-1 Brine 3: Clinesmith 5-4 Brine 4: Clinesmith 1 Brine 5: Clinesmith 2


		Ratio								
	20%	20%	20%	20%	20					
Component (mg/L)	Brine 1	Brine 2	Brine 3	Brine 4	Brine 5	Mixed Brine				
Calcium	1836	2452	2044	1920	1948	1952				
Magnesium	1096	872	1200	953	858	865				
Barium	0	0	0	0	0	0				
Strontium	0	0	0	0	0	0				
Bicarbonate	190	234	259	268	254	253				
Sulfate	1	1	8	1	1	1				
Chloride	36299	48965	47874	45632	43147	43206				
CO ₂ in Brine	246	220	264	422	405	401				
Ionic Strength	1.12	1.48	1.46	1.38	1.31	1.31				
Temperature (°F)	89	89	89	89	89	89				
Pressure (psia)	50	50	120	120	120	119				


Saturation Index

Calcite	-1.71	-1.41	-1.48	-1.68	-1.69	-1.69
Gypsum	-3.71	-3.64	-2.82	-3.73	-3.72	-3.69
Hemihydrate	-3.70	-3.65	-2.83	-3.74	-3.71	-3.69
Anhydrite	-3.89	-3.79	-2.97	-3.89	-3.88	-3.85
Barite	N/A	N/A	N/A	N/A	N/A	N/A
Celestite	N/A	N/A	N/A	N/A	N/A	N/A


PTB


Calcite	N/A	N/A	N/A	N/A	N/A	N/A
Gypsum	N/A	N/A	N/A	N/A	N/A	N/A
Hemihydrate	N/A	N/A	N/A	N/A	N/A	N/A
Anhydrite	N/A	N/A	N/A	N/A	N/A	N/A
Barite	N/A	N/A	N/A	N/A	N/A	N/A
Celestite	N/A	N/A	N/A	N/A	N/A	N/A

Fawl, Harold L 11-1 11-28S-16E 1" = 1,000'

AFFIDAVIT

1 SS. -

1

STATE OF KANSAS

County of Sedgwick

Mark Fletchall, of lawful age, being first duly sworn, deposeth and saith: That he is Record Clerk of The Wichita Eagle, a daily newspaper published in the City of Wichita, County of Sedgwick, State of Kansas, and having a general paid circulation on a daily basis in said County, which said newspaper has been continuously and uninterruptedly published in said County for more than one year prior to the first publication of the notice hereinafter mentioned, and which said newspaper has been entered as second class mail matter at the United States Post Office in Wichita, Kansas, and which said newspaper is not a trade, religious or fraternal publication and that a notice of a true copy is hereto attached was published in the regular and entire Morning issue of said The Wichita Eagle for _1_ issues, that the first publication of said notice was

made as aforesaid on the **1St** of

June A.D. 2012, with

subsequent publications being made on the following dates:

And affiant further says that he has personal knowledge of the statements above set forth and that they are true.

Fletchall

Subscribed and sworn to before me this

1st day of June, 2012

PENNY L. CASE emi Notary Public - State of Kansa My Appt. Expires

Notary Public Sedgwick County, Kansas

Printer's Fee : \$132.40

LEGAL PUBLICATION

PUBLISHED IN THE WICHTA EAGLE JUNE 1, 2012 (3187773) BEFORE THE STATE CORPORATION COMMISSION OF THE STATE OF KANSAS

BEFORE THE STATE CORPORATION COMMISSION OF THE STATE OF KANSAS NOTICE OF FILING APPLICATION RE: In he Matter of Postrock Midcontinent Production, LLC Application for Commingling of Production in the Fawi, Harold L 11:1 located in Wilson County, Kansas. TO: All OII & Gas Producers, Unleased Mineral Interest Owners, Landowners, and all persons whomever concerned. You, and each of you, are hereby notified that Postrock Midcontinent Production, LLC has filed an application to commingle the Bartlesville, Weir, Fleming, Croweburg, Bevier, Mulky and Summit producing, LLC has filed an application to commingle the Bartlesville, Weir, Fleming, Croweburg, Bevier, Mulky and Summit producing formations at the Fawi, Harold L 11-1, located in the NE SW NE SW, S11-728-R16E, Approximately 1919 FSL & 1954 FWL, Wilson County, Kansas. Any persons who object to or protest this application shall be required to file their objections or protest with the Conservation Commission of the State of Kansas within fifteen (15) days from the date of this publication. These protests shall be filed pursuant to Commission regulations and must state specific reasons why granting the application shalter extenses. All persons interested or concerned shall take notice of the foregoing and shall govern themselves accordingly. All person and/or companies wishing to protest this application are required to file a written protest with the Conservation Division of the Kansas. OII and Gas Commission. Upon the receipt of any protest this application are required to file a written protest with the conservation Division of the Kansas. OII and Gas Commission. Upon the receipt of any protest this application will be expected to enter an appearance either through proper legal counsel or as individuals, appearing on their own behalf. Pastrock Midcontinent Production, LLC 210 Park Avenue, Suite 2750 Okiahoma City, Okiahoma 73102

210 Park Avenue, Suite 2750 Oklahoma City, Oklahoma 73102 (405) 660-7704

PROOF OF PUBLICATION

STATE OF KANSAS Wilson County - SS

JOSEPH S. and RITA M. RELPH, of lawful age, being duly sworn upon oath that they are the Owners and Publishers of the WILSON COUNTY CITIZEN:

THAT said newspaper has been published at least weekly fifty (50) times a year and has been so published for at least five years prior to the first publication of the attached notice:

THAT said newspaper is a general circulation on a daily, or weekly, or monthly, or yearly basis in;

WILSON COUNTY, KANSAS and is NOT a trade, religious or fraternal publication and has been PRINTED and PUBLISHED in Wilson County, Kansas.

THE ATTACHED was published on the following dates in a regular issue of said newspaper:

in a regular issue of said newspaper:	
1st publication was made on the 3/	day of
May	. 20 12
2nd publication was made on the	
	20
3rd publication was made on the	day of
	. 20
4th publication was made on the	day of
	. 20———
5th publication was made on the	day of
	20
6th publication was made on the	day of
n~	20-27
TOTAL PUBLICATION FEE: \$	1
(Signed) Min SwiBerry	
Subscribed and sworn to before me, this $_$	day of
fure,2	20/2
Acta M. Reeper IN	otary Public)
My commission expires Aug. 30, 2	014

(1

(Published in the Wilson County Citizen on Thursday, May 31, 2012.)

BEFORE THE STATE CORPORATION COMMISSION OF THE STATE OF KANSAS

NOTICE OF FILING APPLICATION

RE: In the Matter of Postrock Midcontinent Production, LLC Application for Commingling of Production in the Fawl, Harold L 11-1 located in Wilson County, Kansas,

TO: All Oil & Gas Producers, Unleased Mineral Interest Owners, Landowners, and all persons whomever concerned.

You, and each of you, are hereby notified that Postrock Midcontinent Production, LLC has filed an application to commingle the Bartlesville, Weir, Fleming, Croweburg, Bevier, Mulky and Summit producing formations at the Fawl, Harold L 11-1, located in the NE SW NE SW, S11-T28S-R16E, Approximately 1919 FSL & 1954 FWL, Wilson County, Kansas.

Any persons who object to or protest this application shall be required to file their objections or protest with the Conservation Division of the State Corporation Commission of the State of Kansas within fifteen (15) days from the date of this publication. These protests shall be filed pursuant to Commission regulations and must state specific reasons why granting the application may cause waste, violate correlative rights or pollute the natural resources of the State of Kansas.

All persons interested or concerned shall take notice of the foregoing and shall govern themselves accordingly. All person and/or companies wishing to protest this application are required to file a written protest with the Conservation Division of the Kansas Oil and Gas Commission.

Upon the receipt of any protest, the Commission will convene a hearing and protestants will be expected to enter an appearance either through proper legal counsel or as individuals, appearing on their own behalf.

 POSTROCK MIDCONTINENT PRODUCTION, LLC 210 Park Avenue, Suite 2750 Oklahoma City, Oklahoma 73102 (405) 660-7704 30 1 cpy.

19

(Attach additional sheets if necessary) Name:		Legal Description of Lease	
POSTROCK MIDCONTINENT PROD	UCTION, LLC	POSTROCK HAS LEASED ALL ACR	EAGE IN THE 1/
		1/2 MILE RADIUS	
	•		
			·
••••••			
I hereby certify that the statements made herein are	true and correct to the best of my	knowledge and belief.	
I hereby certify that the statements made herein are	G	Aunily RA Bind	9
I hereby certify that the statements made herein are	G	Provident Real	
	G	Provident Real	2012
DENISE V. VENNEMAN	Applicant	Provident Real	2012
DENISE V. VENNEMAN	Applicant	Provident Real	2012
DENISE V. VENNEMAN	Applicarit Subscribed and sworn before me Notary Pul	Provident Real	
OFFICIAL MY COMMISSION EXPIRES	Applicarit Subscribed and sworn before me Notary Pul	Junifu RS Beal	2012
DENISE V. VENNEMAN MY COMMISSION EXPIRES	Applicarit Subscribed and sworn before me Notary Pul	Junifu RS Beal	2012

.

		[]	
Affida	vit of Notice Served	Leannannannannannannannannan	
Re:	Application for: _APPLICATION FOR COMMINGL	ING OF PRODUCTION OR FLUIDS -	ACO-4
	Well Name: FAWL, HAROLD L. 11-1	Legal Location: NESWNESW	
The und	lersigned hereby certificates that he / she is a duly authorized age		
2012			
Note: A	copy of this affidavit must be served as a part of the application.		
	Name	Address (Atlach additional sheets if ne	cessary)
POST	ROCK MIDCONTINENT PRODUCTION, LLC	210 PARK AVENUE, SUITE 2750,	OKLAHOMA CITY, OK 73102-5641
I further	attest that notice of the filing of this application was published in th	e WILSON COUNTY CITIZEN	, the official county publication
of _WI	LSON	county. A copy of the affidavit of this publication	n is attached.
Signed th	is <u>13TH day of JUNE</u> ,,	2012	
		Dunnihn RA	Beal
N- Charles and	and the star and the allowed and the allowed and the star and the star and the star of the	Applicant of Duly Authorized Agent	
OFFICI	DENISE V. VENNEMAN MY COMMISSION EXPIRES	o before me this day of	y June 2012
SEAL	July 1, 2012	Deruse UTA	enrem
		My Commission Expires: 7-1-12	2
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

Conservation Division Finney State Office Building 130 S. Market, Rm. 2078 Wichita, KS 67202-3802

Mark Sievers, Chairman Ward Loyd, Commissioner Thomas E. Wright, Commissioner

June 28, 2012

Clark Edwards PostRock Midcontinent Production LLC Oklahoma Tower 210 Park Ave, Ste 2750 Oklahoma City, OK 73102

RE: Approved Commingling CO061204 Fawl, Harold L. 11-1, Sec.11-T28S-R16E, Wilson County API No. 15-205-26607-00-01

Dear Mr. Edwards:

Your Application for Commingling (ACO-4) for the above described well has been reviewed and approved by the Kansas Corporation Commission (KCC) per K.A.R. 82-3-123. Notice was examined and found to be proper per K.A.R. 82-3-135a. No protest had been filed within the 15-day protest period. This application, which was received by the KCC on June 14, 2012, concerns approval to simultaneously produce from the following sources of supply through the same tubing string in the same wellbore:

	Estimated Current Production			
Source of Supply	BOPD	MCFPD	BWPD	Perf Depth
Weir	0.00	0.00	6.67	1073-1075
Fleming	0.00	0.00	6.67	982-984
Crowburg	0.00	0.00	6.67	947-950
Bevier	0.00	0.00	6.67	930-932
Mulky	0.00	0.00	6.67	868-872
Summitt	0.00	0.00	6.67	853-857
Bartlesville	3.00	0.00	20.00	1116-1122
Total Estimated Current Production	3.00	0.00	60.02	

Based upon the depth of the Bartlesville formation perforations, total oil production shall not exceed 100 BOPD and total gas production shall not exceed 50% of the absolute open flow (AOF).

Commingling ID number CO061204 has been assigned to this approved application. Use this number for well completion reports (ACO-1) and other correspondence that may concern this approved commingling.

Sincerely,

Rick Hestermann Production Department

Phone: 316-337-6200 Fax: 316-337-6211 http://kcc.ks.gov/

Sam Brownback, Governor