

KANSAS CORPORATION COMMISSION OIL & GAS CONSERVATION DIVISION

Form ACO-4 Form must be typed March 2009

APPLICATION FOR COMMINGLING OF Commingling ID#_ PRODUCTION (K.A.R. 82-3-123) OR FLUIDS (K.A.R. 82-3-123a)

OPERAT	OR: License #	API No. 15				
Name:_		Spot Description:				
Address	1:		_ Sec Twp	S. R East West		
Address	2:		Feet from Nor	th / South Line of Section		
City:			Feet from Eas	t / West Line of Section		
Contact F	Person:	County:				
Phone:	()	Lease Name:	Well	#:		
1.	Name and upper and lower limit of each production interval to	be commingled:				
	Formation:	(Perfs):				
	Formation:	(Perfs):				
	Formation:	(Perfs):				
	Formation:	(Perfs):				
	Formation:	(Perfs):				
<u> </u>	Estimated amount of fluid production to be commingled from e					
	Formation:			BWPD:		
	Formation:	BOPD:	MCFPD:	BWPD:		
	Formation:			BWPD:		
	Formation:	BOPD:	MCFPD:	BWPD:		
	Formation:	BOPD:	MCFPD:	BWPD:		
□ 3.□ 4.	Plat map showing the location of the subject well, all other well the subject well, and for each well the names and addresses of Signed certificate showing service of the application and affida	of the lessee of record or ope	erator.	es within a 1/2 mile radius of		
For Com	nmingling of PRODUCTION ONLY, include the following:					
☐ 5.	Wireline log of subject well. Previously Filed with ACO-1:	Yes No				
☐ 6.	Complete Form ACO-1 (Well Completion form) for the subject	_				
□ 0.	Complete Form Accord (well completion form) for the subject	won.				
For Com	mingling of FLUIDS ONLY, include the following:					
7.	Well construction diagram of subject well.					
8.	Any available water chemistry data demonstrating the compati	ibility of the fluids to be comi	mingled.			
current in mingling i	IT: I am the affiant and hereby certify that to the best of my formation, knowledge and personal belief, this request for comistrue and proper and I have no information or knowledge, which stent with the information supplied in this application.	Sı	ubmitted Electroni	cally		
KCC	Office Use Only	Protests may be filed by any	y party having a valid interest i	in the application. Protests must be		
	nied Approved	in writing and comply with k the notice of application.	K.A.R. 82-3-135b and must be	filed wihin 15 days of publication of		

Date: _

Approved By:

15-Day Periods Ends: __

POSTROCK

Current Completion

WELL : Hines Farms 14-2

FIELD : Cherokee Basin CBM

STATE: Kansas
COUNTY: Neosho

SPUD DATE: 8/27/2007 COMP. Date: 12/3/2007 API: 15-133-27090-00-00

LOCATION: 14-28S-19E (SW, SE)

ELEVATION: GL - 892'

PREPARED BY: POSTROCK

APPROVED BY:

DATE: June, 2012

DATE:__

POSTROCK

LEGEND

PostRock[®]

KGS STATUS

- ◆ DA/PA
- EOR
- **⇔** GAS
- △ INJ/SWD
- OIL
- **♦** OIL/GAS
- OTHER

Hines Farms 14-2 14-28S-19E 1" = 1,000'

CONFIDENTIA MANSAS CORPORATION COMMISSION WELL CORPORATION DIVISION

ORIGINAL Form Must Be Typed

WELL HISTORY - DESCRIPTION OF WELL & LEASE

Operator: License # 33344	API No. 15 - 133-27090-0000
Name: Quest Cherokee, LLC	County: Neosho
211 W 14th Street	
Chanute KS 66720	500 feet from N (circle one) Line of Section
Purchaser: Bluestem Pipeline, LLC Operator Contact Person: Jennifer R. Ammann Phone: (620) 431-9500	2140 feet from (E) W (circle one) Line of Section
Operator Contact Person: Jennifer R. Ammann	Footages Calculated from Nearest Outside Section Corner:
Phone: (620) 431-9500	(circle one) NE (SE) NW SW
Contractor: Name: TXD Drilling	Lease Name: Hines Farms Well #: 14-2
License: 33837	Field Name: Cherokee Basin CBM
Wellsite Geologist: Ken Recoy	Producing Formation: multiple
Designate Type of Completion:	Elevation: Ground: 892 Kelly Bushing: 11/a
New Well Re-Entry Workover	Total Depth: 921 Plug Back Total Depth: 906.78
OilSWDSIOWTemp. Abd.	Amount of Surface Pipe Set and Cemented at 40 Feet
	Multiple Stage Cementing Collar Used? ☐ Yes ✓ No
Dry Other (Core, WSW, Expl., Cathodic, etc)	If yes, show depth setFeet
If Workover/Re-entry: Old Well Info as follows:	If Alternate II completion, cement circulated from 906.78
Operator:	feet depth to Surface W/ 120 sx cmt.
Well Name:	M. F. 1/1/1/ 10 20
Original Comp. Date:Original Total Depth:	Drilling Fluid Management Plan AHT NJ 4-10-05 (Data must be collected from the Reserve Pit)
Deepening Re-perf Conv. to Enhr./SWD	Chloride content ppm Fluid volume bbls
Plug Back Plug Back Total Depth	Dewatering method used
Commingled Docket No	
Dual Completion Docket No	Location of fluid disposal if hauled offsite:
Other (SWD or Enhr.?) Docket No	Operator Name:
Other (SWD of Entities)	Lease Name: License No.:
8/27/07 8/30/07 8/31/07 Spud Date or Date Reached TD Completion Date or	Quarter SecTwpS. R East West
Spud Date or Date Reached TD Completion Date or Recompletion Date	County: Docket No.:
Kansas 67202, within 120 days of the spud date, recompletion, worker	h the Kansas Corporation Commission, 130 S. Market - Room 2078, Wichita, ver or conversion of a well. Rule 82-3-130, 82-3-106 and 82-3-107 apply. 12 months if requested in writing and submitted with the form (see rule 82-3-s and geologist well report shall be attached with this form. ALL CEMENTING s. Submit CP-111 form with all temporarily abandoned wells.
All requirements of the statutes, rules and regulations promulgated to regulate are complete and correct to the best of my knowledge.	late the oil and gas industry have been fully complied with and the statements
Signature: Annifer R. ammann	KCC Office Use ONLY
Title: New Well Development Coordinator Date: 12/20/07	Letter of Confidentiality Received
Subscribed and sworn to before me this DOT day of	If Denied, Yes Date: RECEIVED
	Wireline Log Receive ANSAS CORPORATION COMMISSION
20 07	Geologist Report Received UIC Distribution DEC 2 6 2007
Notary Public: Serva Plauman	
Date Commission Expires.	RRA KLAUMAN Public - State of Kansas CONSERVATION DIVISION WICHITA, KS

My Appt. Expires 8-4-2010

				Sid	ie Two					de.
Operator Name: Que	est Cherokee, L'U	iso		Lease	Name: H	lines Farms		Well #:14-2	7	
Sec Twp28			West	Count	y: Neosh	<u> </u>				
INSTRUCTIONS: Sh tested, time tool oper temperature, fluid red Electric Wireline Logs	and closed, flowin overy, and flow rate	g and shut-in pes if gas to sur	pressures, v face test, al	whether s long with	hüt-in pre	ssure reached	static level, hyd	rostatic pressure	es, bottor	m hole
Drill Stem Tests Taken (Attach Additional Sheets)			Yes No			ZLog Formation (Top), Depth and Datum				Sample
Samples Sent to Geological Survey			□No		Nam See	e attached		Тор	L	Datum
Cores Taken Electric Log Run (Submit Copy)		☐ Yes ☐ Yes	□ No □ No							
List All E. Logs Run:										
Compensated I Dual Induction Gamma Ray N	Log	n Log	1.000							
		Report al	CASING		No.	ew Used ermediate, produ	ction etc.			
Purpose of String	Size Hole	Size C	asing	We	eight	Setting	Type of	# Sacks		and Percent
Surface	12-1/4	Set (In 8-5/8"	O.D.)	22 22	. / Ft.	Depth 40	"A"	Used 5	, , , , , , , , , , , , , , , , , , ,	danives
Production	6-3/4	4-1/2		10.5		906.78	"A"	120		
,										
			DDITIONAL	CEMENT	ING / SOI	JEEZE RECOE	RD.		1	
Purpose:	Depth Top Bottom	Type of (ment #Sacks Used Type and Percent A				d Percent Additives			
Protect Casing Plug Back TD Plug Off Zone										
Shots Per Foot	PERFORAT Specify	TION RECORD	- Bridge Plug	gs Set/Type	9	Acid, F	racture, Shot, Cem	ent Squeeze Reco	rd	Depth
4	796-799/744-746/					500gai 15%HCLw/ 41	bbls 2%kcl water, 646bbls wa	ater w/ 2% KCL, Blocide, 6700)# 20/40 sand	796-799/744-74
-	730-133/144-140/	700 741		MANUAL TO A						738-741
4	495-498/469-471					300gal 15%HCLw/ 43	bbis 2%kcl water, 598bbis w	ater w/ 2% KCL, Blocke, 590	0# 20/40 sand	495-498/469-47
4	391-395/379-383		<u> </u>			300gal 15%HCLw/ 41	bbis 2%kcl v/ater, 646bbis w	ater w/ 2% KCL, Biocide, 560	0# 20/40 sand	391-395/379-39
TUBING RECORD	Size 3/8"	Set At 840		Packer n/a	At	Liner Run	Yes _✓	No		<u> </u>
Date of First, Resumer	d Production, SWD or	Enhr. P	Producing Met	hod	Flowin	ig 📝 Pum	pìng Gas	Lift Oth	er (Explain	n)
Estimated Production Per 24 Hours	Oil n/a	Bbls.	Gas)mcf	Mcf	Wat Obbls		Bbls.	Gas-Oil Ratio		Gravity
*Disposition of Gas	METHOD OF	COMPLETION	i			Production In	erval			
(If vented, S	Used on Lease ubmit ACO-18.)		Open Hole	Pe	rf. 🗌	Dually Comp.	Commingled	d		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	e. ¹⁹¹ 10 _{2.94}		o' Kanaaa	A KLAL	TERR lotary Put Expens	A CARD				

	Α	В	С	D	Е	F	G	Н	1		K
1	Produced Fluids #	Б	1	2	3	4	5	11	•	<u> </u>	
	Parameters	Units	Input	Input	Input	Input	Input		Click he	re	Click
3	Select the brines	Select fluid		Ī	V		Ī	Mixed brine:	to run SS	-	
4	Sample ID	by checking						Cell H28 is	to ruii oc		Click
5	Date	the box(es),	3/19/2012	3/4/2012	3/14/2012	1/20/2012	1/20/2012	STP calc. pH.	—		
6	Operator	Row 3	PostRock	PostRock	PostRock	PostRock	PostRock	Cells H35-38			Click
7	Well Name		Ward Feed	Ward Feed	Clinesmith	Clinesmith	Clinesmith	are used in	Goal Seek	SSP	
8	Location		#34-1	#4-1	#5-4	#1	#2	mixed brines			Click
9	Field		CBM	CBM	Bartles	Bartles	Bartles	calculations.			
10	Na ⁺	(mg/l)*	19,433.00	27,381.00	26,534.00	25689.00	24220.00	24654.20	Initial(BH)	Final(WH)	SI/SR
11	K ⁺ (if not known =0)	(mg/l)						0.00	Saturation Index	values	(Final-Initial)
	Mg ²⁺	(mg/l)	1,096.00	872.00	1,200.00	953.00	858.00	995.91		lcite	
	Ca ²⁺	(mg/l)	1,836.00	2,452.00	2,044.00	1920.00	1948.00	2040.23	-0.73	-0.60	0.13
	Sr ²⁺		1,050.00	2,432.00	2,044.00	1720.00	1740.00				0.13
	Ba ²⁺	(mg/l)						0.00	Da	rite	
.,		(mg/l)						0.00			
	Fe ²⁺	(mg/l)	40.00	21.00	18.00	82.00	90.00	50.21		lite	
	Zn ²⁺	(mg/l)						0.00	-1.77	-1.80	-0.03
18	Pb ²⁺	(mg/l)						0.00	Gyp	sum	
19	Cl	(mg/l)	36,299.00	48,965.00	47,874.00	45632.00	43147.00	44388.44	-3.19	-3.18	0.00
20	SO ₄ ² ·	(mg/l)	1.00	1.00	8.00	1.00	1.00	2.40	Hemil	ydrate	
	F.	(mg/l)						0.00	-3.96	-3.90	0.06
	Br ⁻	(mg/l)						0.00		ydrite	3.00
	SiO2	(mg/l) SiO2						0.00	-3.47	-3.36	0.12
_			100.00	224.00	250.00	200 00	254.00				0.12
	HCO3 Alkalinity**	(mg/l as HCO3)	190.00	234.00	259.00	268.00	254.00	241.03	Cele	estite	
	CO3 Alkalinity	(mg/l as CO3)						_			
	Carboxylic acids**	(mg/l)						0.00		Sulfide	
27	Ammonia	(mg/L) NH3						0.00	-0.16	-0.22	-0.06
28	Borate	(mg/L) H3BO3						0.00	Zinc	Sulfide	
29	TDS (Measured)	(mg/l)						72781			
30	Calc. Density (STP)	(g/ml)	1.038	1.051	1.050	1.048	1.045	1.047	Calcium	fluoride	
31	CO ₂ Gas Analysis	(%)	19.97	18.76	22.41	35.53	33.79	26.16			
	H ₂ S Gas Analysis***	(%)	0.0289	0.0292	0.0296	0.0306	0.0151	0.0269		rbonate	
33	Total H2Saq	(mgH2S/l)	1.00	1.00	1.00	1.00	0.50	0.90	-0.74	-0.51	0.23
34	pH, measured (STP)	pН	5.67	5.76	5.72	5.54	5.55	5.63	Inhibitor ne	eded (mg/L)	
	Chassa and antion	0-CO2%+Alk,							Calcite	NTMP	
35	Choose one option to calculate SI?		0	0	0	0					
	Gas/day(thousand cf/day)	(Mcf/D)					U	0	0.00	0.00	
	Oil/Day	(B/D)	0	0	1	1	1	4	Barite	BHPMP	-
	Water/Day	(B/D)	100	100	100	100	100	500	0.00	0.00	
39	For mixed brines, enter val										
-		lues for tempera	tures and pressi	<u>ires in Cells</u> (H	(40-H43)			(Enter H40-H43)	p	Н	
41	Initial T	(F)	66.0	71.0	70.0	41.0	49.0	60.0	5.69	5.60	
	Final T		66.0 66.0	71.0 71.0	70.0 70.0	41.0	49.0	60.0 89.0	5.69 Viscosity (5.60 CentiPoise)	
		(F)	66.0 66.0 25.0	71.0 71.0 25.0	70.0 70.0 25.0	41.0 25.0	49.0 25.0	60.0 89.0 25.0	5.69 Viscosity (1.196	5.60 CentiPoise) 0.826	
42 43	Final T Initial P Final P	(F) (F) (psia) (psia)	66.0 66.0	71.0 71.0	70.0 70.0	41.0	49.0	60.0 89.0	5.69 Viscosity (1.196 Heat Capaci	5.60 CentiPoise) 0.826 ty (cal/ml/ ⁰ C)	
42 43 44	Final T Initial P Final P Use TP on Calcite sheet?	(F) (F) (psia) (psia) 1-Yes;0-No	66.0 66.0 25.0	71.0 71.0 25.0	70.0 70.0 25.0	41.0 25.0	49.0 25.0	60.0 89.0 25.0 120.0	5.69 Viscosity (1.196 Heat Capaci 0.955	5.60 CentiPoise) 0.826 ty (cal/ml/ ⁰ C) 0.959	
42 43 44 45	Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav.	(F) (psia) (psia) 1-Yes;0-No API grav.	66.0 66.0 25.0	71.0 71.0 25.0	70.0 70.0 25.0	41.0 25.0	49.0 25.0	60.0 89.0 25.0 120.0	5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor no	5.60 CentiPoise) 0.826 ty (cal/ml/ ⁰ C) 0.959 eeded (mg/L)	
42 43 44 45 46	Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav.	(F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav.	66.0 66.0 25.0	71.0 71.0 25.0	70.0 70.0 25.0	41.0 25.0	49.0 25.0	60.0 89.0 25.0 120.0 30.00 0.60	5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne	5.60 CentiPoise) 0.826 ty (cal/ml/ ⁰ C) 0.959 seded (mg/L) HDTMP	
42 43 44 45 46 47	Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. McOH/Day	(F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D)	66.0 66.0 25.0	71.0 71.0 25.0	70.0 70.0 25.0	41.0 25.0	49.0 25.0	60.0 89.0 25.0 120.0 30.00 0.60	5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00	5.60 CentiPoise) 0.826 ty (cal/ml/°C) 0.959 ceded (mg/L) HDTMP 0.00	
42 43 44 45 46 47 48	Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day	(F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav.	66.0 66.0 25.0	71.0 71.0 25.0	70.0 70.0 25.0	41.0 25.0	49.0 25.0	60.0 89.0 25.0 120.0 30.00 0.60	5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne	5.60 CentiPoise) 0.826 ty (cal/ml/ ⁰ C) 0.959 seded (mg/L) HDTMP	
42 43 44 45 46 47 48 49	Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier	(F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D)	66.0 66.0 25.0	71.0 71.0 25.0	70.0 70.0 25.0	41.0 25.0	49.0 25.0	60.0 89.0 25.0 120.0 30.00 0.60	5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite	5.60 CentiPoise) 0.826 ty (cal/ml/°C) 0.959 ceded (mg/L) HDTMP 0.00 HDTMP	
42 43 44 45 46 47 48 49 50	Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) †	(F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D)	66.0 66.0 25.0	71.0 71.0 25.0	70.0 70.0 25.0	41.0 25.0	49.0 25.0	60.0 89.0 25.0 120.0 30.00 0.60	5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite	5.60 CentiPoise) 0.826 ty (cal/ml/°C) 0.959 ceded (mg/L) HDTMP 0.00 HDTMP	
42 43 44 45 46 47 48 49 50 51	Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH' (Strong base) †	(F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N)	66.0 66.0 25.0	71.0 71.0 25.0	70.0 70.0 25.0	41.0 25.0	49.0 25.0	60.0 89.0 25.0 120.0 30.00 0.60	5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite	5.60 CentiPoise) 0.826 ty (cal/ml/°C) 0.959 ceded (mg/L) HDTMP 0.00 HDTMP	
42 43 44 45 46 47 48 49 50 51	Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH* (Strong base) † Quality Control Checks at	(F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP:	66.0 66.0 25.0	71.0 71.0 25.0	70.0 70.0 25.0	41.0 25.0	49.0 25.0	60.0 89.0 25.0 120.0 30.00 0.60	5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite	5.60 CentiPoise) 0.826 ty (cal/ml/°C) 0.959 ceded (mg/L) HDTMP 0.00 HDTMP	
42 43 44 45 46 47 48 49 50 51 52 53	Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. McOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH (Strong base) † Quality Control Checks at H ₂ S Gas	(F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N)	66.0 66.0 25.0	71.0 71.0 25.0	70.0 70.0 25.0	41.0 25.0	49.0 25.0	60.0 89.0 25.0 120.0 30.00 0.60	5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite	5.60 CentiPoise) 0.826 ty (cal/ml/°C) 0.959 ceded (mg/L) HDTMP 0.00 HDTMP	
42 43 44 45 46 47 48 49 50 51 52 53 54 55	Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated	(F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/l) (pH)	66.0 66.0 25.0	71.0 71.0 25.0	70.0 70.0 25.0	41.0 25.0	49.0 25.0	60.0 89.0 25.0 120.0 30.00 0.60	5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite	5.60 CentiPoise) 0.826 ty (cal/ml/°C) 0.959 ceded (mg/L) HDTMP 0.00 HDTMP	
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH* (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated	(F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) (N) STP: (%) (mgH2S/I) (pH) (%)	66.0 66.0 25.0	71.0 71.0 25.0	70.0 70.0 25.0	41.0 25.0	49.0 25.0	60.0 89.0 25.0 120.0 30.00 0.60	5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite	5.60 CentiPoise) 0.826 ty (cal/ml/°C) 0.959 ceded (mg/L) HDTMP 0.00 HDTMP	
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated Alkalinity Caclulated	(F) (F) (psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3	66.0 66.0 25.0	71.0 71.0 25.0	70.0 70.0 25.0	41.0 25.0	49.0 25.0	60.0 89.0 25.0 120.0 30.00 0.60	5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite	5.60 CentiPoise) 0.826 ty (cal/ml/°C) 0.959 ceded (mg/L) HDTMP 0.00 HDTMP	
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated \$\textstyle{\textstyle{\textstyle{2}}}\$	(F) (F) (psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I)	66.0 66.0 25.0	71.0 71.0 25.0	70.0 70.0 25.0	41.0 25.0	49.0 25.0	60.0 89.0 25.0 120.0 30.00 0.60	5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite	5.60 CentiPoise) 0.826 ty (cal/ml/°C) 0.959 ceded (mg/L) HDTMP 0.00 HDTMP	
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated Alkalinity Caclulated	(F) (F) (psia) (psia) (1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3	66.0 66.0 25.0	71.0 71.0 25.0	70.0 70.0 25.0	41.0 25.0	49.0 25.0	60.0 89.0 25.0 120.0 30.00 0.60	5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite	5.60 CentiPoise) 0.826 ty (cal/ml/°C) 0.959 ceded (mg/L) HDTMP 0.00 HDTMP	
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H† (Strong acid) † OH (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated Scations= \$\times\$	(F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/l) as HCO3 (equiv./l) (equiv./l)	66.0 66.0 25.0	71.0 71.0 25.0	70.0 70.0 25.0	41.0 25.0 25.0	49.0 25.0	60.0 89.0 25.0 120.0 30.00 0.60 0	5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite	5.60 CentiPoise) 0.826 ty (cal/ml/°C) 0.959 ceded (mg/L) HDTMP 0.00 HDTMP	
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61	Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated ECations= ECations= CAlci TDS=	(F) (F) (psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I)	66.0 66.0 25.0 25.0	71.0 71.0 25.0 25.0	70.0 70.0 25.0 25.0 Inhibitor NTMP	41.0 25.0 25.0 Unit Converter	49.0 25.0 25.0 25.0	60.0 89.0 25.0 120.0 30.00 0.60 0	5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00	5.60 CentiPoise) 0.826 ty (cal/ml/°C) 0.959 ceded (mg/L) HDTMP 0.00 HDTMP	
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62	Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH* (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated \$\text{\$\cupe{C}\$}\te	(F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input	66.0 66.0 25.0 25.0 0 0	71.0 71.0 25.0 25.0	70.0 70.0 25.0 25.0	41.0 25.0 25.0 Unit Converter From Unit	49.0 25.0 25.0	60.0 89.0 25.0 120.0 30.00 0.60 0	5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00	5.60 CentiPoise) 0.826 ty (cal/ml/°C) 0.959 ceded (mg/L) HDTMP 0.00 HDTMP	
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62	Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) † OH' (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated ECations= EAnions= Calc TDS= Inhibitor Selection Protection Time	(F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input	66.0 66.0 25.0 25.0 0 0	71.0 71.0 25.0 25.0	70.0 70.0 25.0 25.0 Inhibitor NTMP	41.0 25.0 25.0 Unit Converter	49.0 25.0 25.0 25.0	60.0 89.0 25.0 120.0 30.00 0.60 0	5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00	5.60 CentiPoise) 0.826 ty (cal/ml/°C) 0.959 ceded (mg/L) HDTMP 0.00 HDTMP	
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 60 61 62 63	Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated \$\textit{Z}\text{Calculated}\$ Alkalinity Caclulated \$\text{Lactions}\$ EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer	(F) (F) (psia) (psia) (psia) 1-Yes:0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (equiv./I) Input 120	66.0 66.0 25.0 25.0 0 0	71.0 71.0 25.0 25.0 4 1 1 2	70.0 70.0 25.0 25.0 25.0 Inhibitor NTMP BHPMP	41.0 25.0 25.0 Unit Converter From Unit	49.0 25.0 25.0 25.0 (From metric Value 80	60.0 89.0 25.0 120.0 30.00 0.60 0	5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00	5.60 CentiPoise) 0.826 ty (cal/ml/°C) 0.959 ceded (mg/L) HDTMP 0.00 HDTMP	
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated 2Cations= \$\times\$ \text{Lanions}\$ Lanions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you?	(F) (F) (psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (equiv./I) (mg/I) Input 120	66.0 66.0 25.0 25.0 0 0 0	# 1 2 3	70.0 70.0 25.0 25.0 25.0 Inhibitor NTMP BHPMP PAA	41.0 25.0 25.0 Unit Converter From Unit °C m³	49.0 25.0 25.0 25.0 (From metric Value 80 100	60.0 89.0 25.0 120.0 30.00 0.60 0	5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 Value 176 3,531	5.60 CentiPoise) 0.826 ty (cal/ml/°C) 0.959 ceded (mg/L) HDTMP 0.00 HDTMP	
42 43 44 45 46 47 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid)* OH* (Strong base)* Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated Alkalinity Caclulated EXATIONS= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is:	(F) (F) (psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (equiv./I) (mg/I) Input 120	66.0 66.0 25.0 25.0 0 0 0	71.0 71.0 25.0 25.0 1 1 1 2 3 4	Inhibitor NTMP BHPMP PAA DTPMP	Unit Converter From Unit °C m³ m³	49.0 25.0 25.0 25.0 (From metric Value 80 100 100	60.0 89.0 25.0 120.0 30.00 0.60 0	5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629	5.60 CentiPoise) 0.826 ty (cal/ml/°C) 0.959 ceded (mg/L) HDTMP 0.00 HDTMP	
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 60 61 62 63 64 65 66	Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated Alkalinity Caclulated Alkalinity Caclulated Alkalinity Caclulated PCO2 Calculated Alkalinity Caclulated FOCO Calculated FOCO Calculated FOCO Calculated Alkalinity Caclulated FOCO Calculated FOCO Calculate	(F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (mg/I) Input 120 1 4	0 0 0 Unit min 1-Yes;0-No #	## 1 2 3 4 5 5	Inhibitor NTMP BHPMP PAA DTPMP PPCA	Unit Converter From Unit °C m³ m³ MPa	49.0 25.0 25.0 25.0 (From metric Value 80 100 1,000	60.0 89.0 25.0 120.0 30.00 0.60 0 0 To Unit °F ft³ bbl(42 US gal) psia	5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 145,074	5.60 CentiPoise) 0.826 ty (cal/ml/°C) 0.959 ceded (mg/L) HDTMP 0.00 HDTMP	
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67	Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH (Strong base) * Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated SCations= ZAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: If you select Mixed, 1st inhibitor # is:	(F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (mg/I) Input 120 1 4	0 0 0 Unit min 1-Yes;0-No #	## 1 2 3 4 5 6	Inhibitor NTMP BHPMP PAA DTPMP PPCA SPA	Unit Converter From Unit C	49.0 25.0 25.0 25.0 (From metric Value 80 100 1,000 496	60.0 89.0 25.0 120.0 30.00 0.60 0 0 To Unit "F ft ³ bbl(42 US gal) psia	5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 145,074 7,194	5.60 CentiPoise) 0.826 ty (cal/ml/°C) 0.959 ceded (mg/L) HDTMP 0.00 HDTMP	
42 44 45 46 47 48 49 50 51 52 53 54 55 56 60 61 62 63 64 65 66 67 68 69	Final T Initial P Final P Use TP on Calcite sheet? API Oil Grav. Gas Sp.Grav. MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) † Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated ECations= EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: If you select Mixed, 1st inhibitor # is: % of 1st inhibitor is:	(F) (F) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/l) as HCO3 (equiv./l) (equiv./l) (mg/l) Input 120 1 4 1 50	0 0 0 0 Unit min 1-Yes;0-No # # %	## 1 2 3 4 4 5 6 6 7	Inhibitor NTMP BHPMP PAA DTPMP PPCA SPA HEDP	Unit Converter From Unit °C m³ m³ MPa Bar Torr	49.0 25.0 25.0 25.0 25.0 Value 80 100 1,000 496 10,000	60.0 89.0 25.0 120.0 30.00 0.60 0 0 To Unit °F ft³ bbl(42 US gal) psia psia psia	5.69 Viscosity (1.196 Heat Capaci 0.955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 145,074 7,194 193	5.60 CentiPoise) 0.826 ty (cal/ml/°C) 0.959 ceded (mg/L) HDTMP 0.00 HDTMP	

Saturation Index Calculations

Champion Technologies, Inc. (Based on the Tomson-Oddo Model)

Brine 1: Ward Feed Yard 34-1
Brine 2: Ward Feed Yard 4-1
Brine 3: Clinesmith 5-4
Brine 4: Clinesmith 1
Brine 5: Clinesmith 2

			Ratio			
	20%	20%	20%	20%	20	
Component (mg/L)	Brine 1	Brine 2	Brine 3	Brine 4	Brine 5	Mixed Brine
Calcium	1836	2452	2044	1920	1948	1952
Magnesium	1096	872	1200	953	858	865
Barium	0	0	0	0	0	0
Strontium	0	0	0	0	0	0
Bicarbonate	190	234	259	268	254	253
Sulfate	1	1	8	1	1	1
Chloride	36299	48965	47874	45632	43147	43206
CO ₂ in Brine	246	220	264	422	405	401
Ionic Strength	1.12	1.48	1.46	1.38	1.31	1.31
Temperature (°F)	89	89	89	89	89	89
Pressure (psia)	50	50	120	120	120	119

Saturation Index

Calcite	-1.71	-1.41	-1.48	-1.68	-1.69	-1.69
Gypsum	-3.71	-3.64	-2.82	-3.73	-3.72	-3.69
Hemihydrate	-3.70	-3.65	-2.83	-3.74	-3.71	-3.69
Anhydrite	-3.89	-3.79	-2.97	-3.89	-3.88	-3.85
Barite	N/A	N/A	N/A	N/A	N/A	N/A
Celestite	N/A	N/A	N/A	N/A	N/A	N/A

PTB

Calcite	N/A	N/A	N/A	N/A	N/A	N/A
Gypsum	N/A	N/A	N/A	N/A	N/A	N/A
Hemihydrate	N/A	N/A	N/A	N/A	N/A	N/A
Anhydrite	N/A	N/A	N/A	N/A	N/A	N/A
Barite	N/A	N/A	N/A	N/A	N/A	N/A
Celestite	N/A	N/A	N/A	N/A	N/A	N/A

DRMATION:	MULKY	(PERFS):	391 -	395			
ORMATION:	SUMMIT	(PERFS):	379 -	383			
ORMATION:	CATTLEMAN	(PERFS):	566 -	571			
ORMATION:		(PERFS):	-				
ORMATION:		(PERFS):	-				
ORMATION:		(PERFS):		·			
ORMATION:		(PERFS):	-	·			
ORMATION:		(PERFS):					
ORMATION:		(PERFS):					
ORMATION:		(PERFS):					
ORMATION:		(PERFS):					
FORMATION: ESTIMATED AI	MOUNT OF FLUID PRODUCTION		EACH INT	ERVAL			
	MOUNT OF FLUID PRODUCTION	<u> </u>	1 EACH INT 0	MCFPD:	8	BWPD:	5.71
ESTIMATED AI	MULKY	N TO BE COMMINGLED FROM			<u>8</u> 8	BWPD:	5.71 5.71
ESTIMATED AIFORMATION:	MULKY	N TO BE COMMINGLED FROM BOPD:	0	MCFPD:			
ESTIMATED AIFORMATION:	MULKY SUMMIT	N TO BE COMMINGLED FROM BOPD: BOPD:	0	MCFPD:	8	BWPD:	5.71
ESTIMATED AIFORMATION: FORMATION: FORMATION:	MULKY SUMMIT	N TO BE COMMINGLED FROM BOPD: BOPD: BOPD:	0	MCFPD: MCFPD:	8	BWPD: BWPD:	5.71
ESTIMATED AIFORMATION: FORMATION: FORMATION: FORMATION:	MULKY SUMMIT	N TO BE COMMINGLED FROM BOPD: BOPD: BOPD: BOPD: BOPD:	0	MCFPD: MCFPD: MCFPD: MCFPD:	8	BWPD: BWPD: BWPD:	5.71
ESTIMATED AIFORMATION: FORMATION: FORMATION: FORMATION: FORMATION:	MULKY SUMMIT	N TO BE COMMINGLED FROM BOPD: BOPD: BOPD: BOPD: BOPD: BOPD:	0	MCFPD: MCFPD: MCFPD: MCFPD: MCFPD:	8	BWPD: BWPD: BWPD:	5.71
ESTIMATED AIFORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION:	MULKY SUMMIT	N TO BE COMMINGLED FROM BOPD: BOPD: BOPD: BOPD: BOPD: BOPD: BOPD:	0	MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD:	8	BWPD: BWPD: BWPD: BWPD:	5.71
ESTIMATED AIFORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION:	MULKY SUMMIT	N TO BE COMMINGLED FROM BOPD: BOPD: BOPD: BOPD: BOPD: BOPD: BOPD: BOPD: BOPD:	0	MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD:	8	BWPD: BWPD: BWPD: BWPD: BWPD:	5.71
ESTIMATED AIFORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION:	MULKY SUMMIT	N TO BE COMMINGLED FROM BOPD:	0	MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD: MCFPD:	8	BWPD: BWPD: BWPD: BWPD: BWPD: BWPD:	5.71
ESTIMATED AIFORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION: FORMATION:	MULKY SUMMIT	N TO BE COMMINGLED FROM BOPD:	0	MCFPD:	8	BWPD: BWPD: BWPD: BWPD: BWPD: BWPD: BWPD:	5.71

Attidav	it of Notice Served	
Re:	• • • • • • • • • • • • • • • • • • • •	GLING OF PRODUCTION OR FLUIDS - ACO-4
	Well Name: HINES FARMS 14-2	Legal Location: NESWSWSE S14-T28S-R19E
The unde	ersigned hereby certificates that he / she is a duly authorized	agent for the applicant, and that on the day 29TH of JUNE
2012	•	enced above was delivered or mailed to the following parties:
Note: A	copy of this affidavit must be served as a part of the applicati	on.
	Name	Address (Attach additional sheets if necessary)
HUDS	ON FAMILY FARMS LLC % TARA HUDSC	509 N FOREST, CHANUTE, KS 66720
THIE	SING, HELEN LOUISE	618 APACHE DR, ALVA, OK 73717
	•	
I further a	ttest that notice of the filing of this application was published	in the CHANUTE TRIBUNE , the official county publication
of NEO	DSHO	county. A copy of the affidavit of this publication is attached.
		00.40
Signed thi	s 29TH day of JUNE	_, 2012
		Aunter BA Beal
		Applicant or Duly Authorized Agent
_	<u>Subscri</u> bed and swo	orn to before me this 29TH day of JUNE , 2012
	DENISE V. VENNEMAN	Daniel St. The according
	SEAL July 1, 2012	Notary Public WARMENT
1	July 1, 2012	
		My Commission Expires:
7 .01.0000000000000000000000000000000000		

HINES FARMS 14-2 - APPLICATION FOR COMMINGLING OF PRODUCTION OR FLUIDS Offset Operators, Unleased Mineral Owners and Landowners acreage (Attach additional sheets if necessary) Legal Description of Leasehold: Name: SEE ATTACHED I hereby certify that the statements made herein are true and correct to the best of my knowledge and belief. Applicant of Duly Authorized Agent _{day of} JUNE 2012 29TH Subscribed and sworn before me this DENISE V. VENNEMAN MY COMMISSION EXPIRES Notary Public July 1, 2012 My Commission Expires:

HINES FARMS 14-2

SE SW & SW SE OF 14 1/2 uc?

HUDSON FAMILY FARMS LLC %HUDSON TARA 509 N FOREST CHANUTE, KS 66720

N2 NW4 of 24

THIESING, HELEN LOUISE 618 APACHE DR ALVA OK 73717

BEFORE THE STATE CORPORA-TION COMMISSION OF THE STATE OF KANSAS NOTICE OF FILING APPLICATION

RE: In the Matter of Postrock Midcontinent Production, LLC Application for Commingling of Production in the Hines Farms 14-2 located in Neosho County, Kansas.

TO: All Oil & Gas Producers, Unleased Mineral Interest Owners, Landowners, and all persons whomever concerned.

You, and each of you, are hereby notified that Postrock Midcontinent Production, LLC has filed an application to commingle the Riverton, Neutral, Rowe, Cattleman, Croweburg, Bevier, Mulky and Summit producing formations at the Hines Farms 14-2, located in the NE SW SW SE, S14-T28S-R19E, Approximately 493 FSL & 2141 FEL, Neosho County, Kansas.

Any persons who object to or protest this application shall be required to file their objections or protest with the Conservation Division of the State Corporation Commission of the State of Kansas within fifteen (15) days from the date of this publication. These protests shall be filed pursuant to Commission regulations and must state specific reasons why granting the application may cause waste, violate correlative rights or politute the natural resources of the State of Kansas.

All persons interested or concerned shall take notice of the foregoing and shall govern themseives accordingly. All person and/or companies wishing to protest this application are required to file a written protest with the Conservation Division of the Kansas Oil and Gas Commission.

Upon the receipt of any protest, the Commission will convene a hearing and protestants will be expected to enter an appearance either through proper legal counsel or as individuals, appearing on their own behalf.

Postrock Midcontinent Production, LLC 210 Park Avenue, Sulte 2750 Oklahoma City, Oklahoma 73102 (405) 660-7704

Affidavit of Publication 🗀

STATE OF KANSAS, NEOSHO COUNTY, ss: Rhonda Howerter, being first duly sworn, deposes and says: That she is Classified Manager of THE CHANUTE TRIBUNE, a daily newspaper printed in the State of Kansas, and published in and of general circulation in Neosho County, Kansas, with a general paid circulation on a daily basis in Neosho County, Kansas, and that said newspaper is not a trade, religious or fraternal

publication.

Said newspaper is a daily published at least weekly 50 times a year: has been so published continuously and uninterruptedly in said county and state for a period of more than five years prior to the first publication of said notice; and has been admitted at the post office of Chanute, in said county as second class matter.

That the attached notice is a true copy thereof and was published in the regular and entire issue of said newspaper for ___ consecution time___, the first publication thereof being made as aforesaid on the olo day of Mau 2012, With subsequent publications being made on the following dates: 2012 2012 2012 Subscribed and sworn to and before me this day of _(Notary Public My commission expires: January 9, 2015 Printer's Fee\$ 63.30 Affidavit, Notary's Fee\$ 3.00 Additional Copies\$_ Total Publication Fees\$ 66.30

AFFIDAVIT

STATE OF KANSAS

SS.

County of Sedgwick

Mark Fletchall, of lawful age, being first duly sworn, deposeth and saith: That he is Record Clerk of The Wichita Eagle, a daily newspaper published in the City of Wichita, County of Sedgwick, State of Kansas, and having a general paid circulation on a daily basis in said County, which said newspaper has been continuously and uninterruptedly published in said County for more than one year prior to the first publication of the notice hereinafter mentioned, and which said newspaper has been entered as second class mail matter at the United States Post Office in Wichita, Kansas, and which said newspaper is not a trade, religious or fraternal publication and that a notice of a true copy is hereto attached was published in the regular and entire Morning issue of said The Wichita Eagle for _1_ issues, that the first publication of said notice was

made as aforesaid on the 1st of

June A.D. 2012, with

subsequent publications being made on the following dates:

And affiant further says that he has personal knowledge of the statements above set forth and that they are true.

Subscribed and sworn to before me this

1st day of June, 2012

PENNY L. CASE Notary Public -My Appt. Expires

Notary Public Seddwick County, Kansas

Printer's Fee: \$132.40

LEGAL PUBLICATION

PUBLISHED IN THE WICHITA EAGLE

PUBLISHED IN THE WICHTA EAGLE
JUNE 1, 2012 (3187792)
BEFORE THE STATE CORPORATION
COMMISSION OF THE STATE OF KANSAS
NOTICE OF FILING APPLICATION
RE: In the Matter of Postrack Midcontinent
Production, LLC Application for Commingling
of Production in the Hines Farms 14-2 located
in Months County, Kansas in Neosho County, Kansas.

TO: All Oil & Gas Producers, Unleased Mineral Interest Owners, Landowners, and all persons whomever concerned.

whomever concerned.
You, and each of you, are hereby notified
hat Postrock Midcontinent Production,
LLC has filed an application to commingle
the Riverton, Neutral, Rowe, Cattleman,
Croweburg, Bevier, Mulky and Summit
producino formations at the Hines Farms 14-2,
located in the NE SW SW SE, S14-T28S-R19E,
Approximately 493 FSL & 2141 FEL, Neosho
County, Kansas.
Any persons who object to or protest
this application shall be required to file their
objections or protest with the Conservation
Division of the State Corporation Commission
of the State of Kansas within fifteen (15)
days from the date of this publication. These
protests shall be filed pursuant to Commission

profests shall be filed pursuant to Commission regulations and must state specific reasons why granting the application may cause waste, violate correlative rights or pollute the natural resources of the State of Kansas.

All persons interested or concerned shall take notice of the foregoing and shall govern themselves accordingly. All person and/or companies wishing to protest this application are required to file a written profest with the Conservation Division of the Kansas Oil and Gas Commission.

Upon the receipt of any protest, the Commission will convene a hearing and protestants will be expected to enter an appearance either through proper legal counsel or as Individuals, appearing on their

Postrock Midcontinent Production, LLC 210 Park Avenue, Suite 2750 Oklahoma City, Oklahoma 73102

(405) 660-7704

Conservation Division Finney State Office Building 130 S. Market, Rm. 2078 Wichita, KS 67202-3802

Phone: 316-337-6200 Fax: 316-337-6211 http://kcc.ks.gov/

Mark Sievers, Chairman Thomas E. Wright, Commissioner Sam Brownback, Governor

July 16, 2012

Clark Edwards
PostRock Midcontinent Production LLC
Oklahoma Tower
210 Park Ave, Ste 2750
Oklahoma City, OK 73102

RE: Approved Commingling CO071207

Hines Farms 14-2, Sec.14-T28S-R19E, Neosho County

API No. 15-133-27090-00-01

Dear Mr. Edwards:

Your Application for Commingling (ACO-4) for the above described well, received by the KCC on July 2, 2012, has been reviewed and approved by the Kansas Corporation Commission (KCC) per K.A.R. 82-3-123. Notice was examined and found to be proper per K.A.R. 82-3-135a. No protest had been filed within the 15-day protest period.

Based upon the depth of the Riverton formation perforations, total oil production shall not exceed 100 BOPD and total gas production shall not exceed 50% of the absolute open flow (AOF).

Commingling ID number CO071207 has been assigned to this approved application. Use this number for well completion reports (ACO-1) and other correspondence that may concern this approved commingling.

Sincerely,

Rick Hestermann Production Department