KOLAR Document ID: 1475784

Confidentiality Requested:

Yes No

Kansas Corporation Commission Oil & Gas Conservation Division

Form ACO-1
January 2018
Form must be Typed
Form must be Signed
All blanks must be Filled

WELL COMPLETION FORM WELL HISTORY - DESCRIPTION OF WELL & LEASE

OPERATOR: License #	API No.:
Name:	Spot Description:
Address 1:	SecTwpS. R
Address 2:	Feet from North / South Line of Section
City: State: Zip:+	Feet from _ East / _ West Line of Section
Contact Person:	Footages Calculated from Nearest Outside Section Corner:
Phone: ()	□NE □NW □SE □SW
CONTRACTOR: License #	GPS Location: Lat:, Long:
Name:	(e.g. xx.xxxxx) (e.gxxx.xxxxx)
Wellsite Geologist:	Datum: NAD27 NAD83 WGS84
Purchaser:	County:
Designate Type of Completion:	Lease Name: Well #:
New Well Re-Entry Workover	Field Name:
□ Oil □ WSW □ SWD	Producing Formation:
Gas DH EOR	Elevation: Ground: Kelly Bushing:
☐ OG ☐ GSW	Total Vertical Depth: Plug Back Total Depth:
CM (Coal Bed Methane)	Amount of Surface Pipe Set and Cemented at: Feet
Cathodic Other (Core, Expl., etc.):	Multiple Stage Cementing Collar Used? Yes No
If Workover/Re-entry: Old Well Info as follows:	If yes, show depth set: Feet
Operator:	If Alternate II completion, cement circulated from:
Well Name:	feet depth to:w/sx cmt.
Original Comp. Date: Original Total Depth:	
☐ Deepening ☐ Re-perf. ☐ Conv. to EOR ☐ Conv. to SWD	Drilling Fluid Management Plan
☐ Plug Back ☐ Liner ☐ Conv. to GSW ☐ Conv. to Producer	(Data must be collected from the Reserve Pit)
Committed at Provider	Chloride content: ppm Fluid volume: bbls
Commingled Permit #: Dual Completion Permit #:	Dewatering method used:
SWD Permit #:	Location of fluid disposal if hauled offsite:
EOR Permit #:	Location of fluid disposal if fladied offsite.
GSW Permit #:	Operator Name:
<u> </u>	Lease Name: License #:
Spud Date or Date Reached TD Completion Date or	Quarter Sec TwpS. R East West
Recompletion Date Recompletion Date	County: Permit #:

AFFIDAVIT

I am the affiant and I hereby certify that all requirements of the statutes, rules and regulations promulgated to regulate the oil and gas industry have been fully complied with and the statements herein are complete and correct to the best of my knowledge.

Submitted Electronically

KCC Office Use ONLY
Confidentiality Requested
Date:
Confidential Release Date:
Wireline Log Received Drill Stem Tests Received
Geologist Report / Mud Logs Received
UIC Distribution
ALT I II III Approved by: Date:

KOLAR Document ID: 1475784

Page Two

Operator Name:					Lease Nam	ne:			Well #:	
Sec Tw	pS	S. R	Eas	st West	County:					
	l, flowing an	d shut-in pres	sures, wh	ether shut-in pre	ssure reached	static	level, hydrostat	ic pressures, bo		val tested, time tool erature, fluid recovery,
Final Radioactivi files must be sub							gs must be emai	led to kcc-well-l	ogs@kcc.ks.go	v. Digital electronic log
Drill Stem Tests (Attach Addit		1		Yes No		Lo		n (Top), Depth a		Sample
Samples Sent to	Geological	Survey		Yes No		Name			Тор	Datum
Cores Taken Electric Log Run Geologist Report List All E. Logs F	t / Mud Log	s		Yes No Yes No Yes No						
			Rej	CASING	RECORD [Nev		on, etc.		
Purpose of St	tring	Size Hole Drilled		Size Casing let (In O.D.)	Weight Lbs. / Ft.		Setting Depth	Type of Cement	# Sacks Used	Type and Percent Additives
				ADDITIONAL	CEMENTING /	SQUE	EEZE RECORD		'	
Purpose: Perforate	To			pe of Cement	# Sacks Use	ed		Type and	Percent Additives	
Protect Ca										
Plug Off Z										
Did you perform Does the volume Was the hydraul	e of the total	base fluid of the	hydraulic	fracturing treatment		-	Yes S? Yes Yes	No (If No, s	kip questions 2 ar kip question 3) Il out Page Three	
Date of first Produ Injection:	ction/Injectio	n or Resumed Pi	roduction/	Producing Meth	od:		Gas Lift O	ther <i>(Explain)</i>		
Estimated Product Per 24 Hours		Oil	Bbls.		Mcf	Water			Gas-Oil Ratio	Gravity
DISPO	OSITION OF	GAS:		N	METHOD OF CO	MPLET	ΓΙΟΝ:			ON INTERVAL:
Vented		Used on Lease		Open Hole		Dually (Submit A		nmingled	Тор	Bottom
,	ed, Submit AC							·		
Shots Per Foot	Perforation Top	on Perfor Bott		Bridge Plug Type	Bridge Plug Set At		Acid,		ementing Squeeze and of Material Used)	
TUBING RECORI	D: S	size:	Set A	: -	Packer At:					

Form	ACO1 - Well Completion
Operator	TDR Construction, Inc.
Well Name	MCCOY 24
Doc ID	1475784

Casing

Purpose Of String	Size Hole Drilled	Size Casing Set	Weight	Setting Depth	Type Of Cement		Type and Percent Additives
Surface	9	6.25	12	32	Portland	5	50/50 poz
Production	5.625	2.875	6.5	817	Portland		50/50 POZ 2% Bentonite

Franklin County, KS Well: McCoy #24

Lease Owner: TDR

TDR Construction, INC. Commenced Spudding:10/8/2019 (913) 710-5400

WELL LOG

Thickness of Strata	Formation	Total Depth
0-40	soil-clay	40
22	shale	62
25	lime	87
8	shale	95
11	lime	106
3	shale	109
18	lime	127
41	shale	168
18	lime	186
77	shale	263
23	lime	286
23	shale	309
7	lime	316
41	shale	357
2	lime	359
16	shale	375
7	lime	382
3	shale	385
12	lime	397
11	shale	408
22	lime	430
3	shale	433
5	lime	438
4	shale	442
6	lime	448 Hertha
127	shale	575
5	sand	580 no oil
49	shale	629
6	lime	635
39	shale	674
4	lime	678
16	shale	694
3	lime	697
21	shale	718
2	lime	720
4	shale	724
2	sandy shale	726
5	sand	731 broken-good oil show
7	sand	738 solid-good saturation
7	sand	745 broken-good oil show
75	shale	820 TD

Short Cuts

TANK CAPACITY

BBLS. (42 gal.) equals D²x.14xh D equals diameter in feet. h equals height in feet.

BARRELS PER DAY Multiply gals. per minute x 34.2

HP equals BPH x PSI x .0004 BPH - barrels per hour PSI - pounds square inch

TO FIGURE PUMP DRIVES

- * D Diameter of Pump Sheave * d - Diameter of Engine Sheave SPM - Strokes per minute RPM - Engine Speed R - Gear Box Ratio
- *C Shaft Center Distance
- D RPMxd over SPMxR d - SPMxRxD over RPM SPM - RPMXD over RxD R - RPMXD over SPMxD

BELT LENGTH - 2C + 1.57(D + d) + $\frac{(D-d)^2}{4C}$

* Need these to figure belt length

WATTS = AMPS

TO FIGURE AMPS:

VOLTS

746 WATTS equal 1 HP

Log Book

ell No.

arm_McCoy

15 Frank

(State) (County) 32 /5 2 2 Section) (Township) (Range)

For TDR CONSTINCTION

15-059-27225

Town Oilfield Services, Inc. 1207 N. 1st East

1207 N. 1st East Louisburg, KS 66053 913-710-5400

CASING AND TUBING MEASUREMENTS Feet 1 Feet _ 830 Feet TDR CONSTINCTION County 2007 (Range) 5 5/4 borelole 2 1/4 Casing AND TUBING - Farm: Franklin 61/2" Pulled 10" Pulled 8" Pulled 2" Pulled 4" Pulled 6-01 Tool Dresser's Name RECORD (Township) State; Well No. Wesley - 0 Commenced Spuding Tool Dresser's Name Tool Dresser's Name Contractor's Name 5 suchs Finished Drilling Distance from __ Driller's Name Driller's Name (Section) Distance from_ **Driller's Name** Elevation_ 614" Set 10" Set 8" Set 2" Set 4" Set

Remarks						*																			29		-	ب
Total Depth	94	62	87	95	106	109	127	891	186	263	286	309	316	357	35.9	375	382	385	397	408		433	438	775	448 Hath		DO W Coc	
Formation	50:1-clay	Shale	いえん	Shale	Lime	Shale	Lime	Shale	LIME	Shale	Lime	Shelt	Line	Shale	Lime	Shalt.	Line	Shale	Lime	Shale	L'ME	Sh.12	Lime	Shale	Lime Lime	Shale	A A	-2-
Thickness of Strata	04-0	22	25	80	11	2	L	16	81	17	23	83	7	16	18	16	7	2	で/	11	33	M	S	h	ę	127	0	

TOTAL .	Remarks											17 1 4	Took Co.		5.80 10 8850 C. C. C. S. C.							-5-
250	Total	629	635	150	678	694	(09.7	718	720	724	726	73/ Laker-	2		820 70	N					***	
7 ² 2	Formation	Shale	Lime E	Shalt	1 1 4	Shale	Lin12	Shale	Limb	Shall	るというと	Same	Sime	KIE	Shall							4
e.	Thickness of Strata	49	e	39	Ь	16	W	8	CS	Ь	8	In	1	5	15/							

MENT TREA	TMENT REPORT					
Customer:	DR Construction	Well:	McCoy #24	Ticke	et: I	CT2571
City, State:	ouisburg, KS	County	FR, KS	Dat	e: 10	/11/2019
Field Rep:	ance Town	S-T-R:	NE 32-15-2	1 Servic	e: lo	ngstring
Downhole In	formation	Calculated Slu	rry	Product	%1#	# -
	5 5/8 in	Weight:	#/sx	Class A	50%	4935
Hole Size:						
Hole Size: Hole Depth:	820 ft	Water / Sx:	gal / sx	Poz	50%	3885
			gal / sx ft ³ / sx	Poz Gel	50% 2%	3885 176
Hole Depth: Casing Size:	820 ft	Water / Sx:			_	
Hole Depth:	820 ft 2 7/8 in	Water / Sx: Yield:		Gel	_	

0.0 bbls

#DIV/0! sx

Excess:

Total Slurry:

Total Sacks:

Kol Seal

Flo Seal

Salt (bww)

Tool / Packer:

Displacement:

Depth:

baffle

790 ft

4.6 bbls

				Total	8,996
TIME RA	TE PSI	BBLs	REMARKS	Total	0,990
	.0		established circulation		
	.0		mixed and pumped 200# Bentonite followed by 5 bbls fresh water		
	.0		mixed and pumped 105 sks 50/50 sks Pozmix cement w/ 2% Bentonite per sk		
	.0		cement to surface, flushed pump clean		
	.0		pumped 2 1/2" rubber plug to baffle w/ 4.57 bbls fresh water		
			pressured to 800 PSI		
			released pressure to set float valve		
4	.0		washed up equipment		
			The state of the s		
		_			

	CREW	UNIT		SUMMARY	
Cementer	Casey Kennedy	89	Average Rate	Average Pressure	Total Fluid
Pump Operator	Harold Bechtle	239	3.5 bpm	#DIV/01 psi	- bbls
Bulk #1	Alan Mader	248			
Bulk #2	Keith Detwiler	124			