KOLAR Document ID: 1638677

Confidentiality Requested:

Yes No

Kansas Corporation Commission Oil & Gas Conservation Division

Form ACO-1
January 2018
Form must be Typed
Form must be Signed
All blanks must be Filled

WELL COMPLETION FORM WELL HISTORY - DESCRIPTION OF WELL & LEASE

OPERATOR: License #	API No.:
Name:	Spot Description:
Address 1:	
Address 2:	Feet from North / South Line of Section
City: State: Zip:+	Feet from _ East / _ West Line of Section
Contact Person:	Footages Calculated from Nearest Outside Section Corner:
Phone: ()	□NE □NW □SE □SW
CONTRACTOR: License #	GPS Location: Lat:, Long:
Name:	(e.g. xx.xxxxx) (e.gxxx.xxxxx)
Wellsite Geologist:	Datum: NAD27 NAD83 WGS84
Purchaser:	County:
Designate Type of Completion:	Lease Name: Well #:
New Well Re-Entry Workover	Field Name:
	Producing Formation:
☐ Oil ☐ WSW ☐ SWD	Elevation: Ground: Kelly Bushing:
☐ Gas ☐ DH ☐ EOR	Total Vertical Depth: Plug Back Total Depth:
☐ OG ☐ GSW	Amount of Surface Pipe Set and Cemented at: Feet
CM (Coal Bed Methane) Cathodic Other (Core, Expl., etc.):	Multiple Stage Cementing Collar Used?
If Workover/Re-entry: Old Well Info as follows:	If yes, show depth set: Feet
•	If Alternate II completion, cement circulated from:
Operator:	•
Well Name:	feet depth to: sx cmt.
Original Comp. Date: Original Total Depth:	
☐ Deepening ☐ Re-perf. ☐ Conv. to EOR ☐ Conv. to SWD	Drilling Fluid Management Plan
Plug Back Liner Conv. to GSW Conv. to Producer	(Data must be collected from the Reserve Pit)
Commingled Permit #:	Chloride content: ppm Fluid volume: bbls
Dual Completion Permit #:	Dewatering method used:
SWD Permit #:	Location of fluid disposal if hauled offsite:
EOR Permit #:	·
GSW Permit #:	Operator Name:
	Lease Name: License #:
Spud Date or Date Reached TD Completion Date or	Quarter Sec. Twp. S. R. East West
Recompletion Date Recompletion Date	County: Permit #:

AFFIDAVIT

I am the affiant and I hereby certify that all requirements of the statutes, rules and regulations promulgated to regulate the oil and gas industry have been fully complied with and the statements herein are complete and correct to the best of my knowledge.

Submitted Electronically

KCC Office Use ONLY								
Confidentiality Requested								
Date:								
Confidential Release Date:								
Wireline Log Received Drill Stem Tests Received								
Geologist Report / Mud Logs Received								
UIC Distribution								
ALT I II Approved by: Date:								

KOLAR Document ID: 1638677

Page Two

Operator Name: _				Lease Name:		Well #:					
Sec Twp.	S. R.	Ea	ast West	County:							
	flowing and shu	ıt-in pressures, w	hether shut-in pre	ssure reached st	atic level, hydrosta	tic pressures, bot		val tested, time tool erature, fluid recovery,			
Final Radioactivity files must be subm						iled to kcc-well-lo	gs@kcc.ks.gov	. Digital electronic log			
Drill Stem Tests Ta			Yes No		_	on (Top), Depth ar		Sample			
Samples Sent to G	Geological Surv	ey	Yes No	Na	me		Тор	Datum			
Cores Taken Electric Log Run Geologist Report / List All E. Logs Ru	_		Yes No Yes No Yes No								
		R			New Used	on, etc.					
Purpose of Strir		Hole			Setting Depth	Type of Cement	# Sacks Used	Type and Percent Additives			
			ADDITIONAL	CEMENTING / S	QUEEZE RECORD	I					
Purpose:		epth Ty	pe of Cement	# Sacks Used	sed Type and Percent Additives						
Protect Casi											
Plug Off Zon											
 Did you perform a Does the volume o Was the hydraulic 	of the total base f	luid of the hydraulic	fracturing treatment	_	=	No (If No, sk	ip questions 2 an ip question 3) out Page Three (,			
Date of first Producti Injection:	ion/Injection or Re	esumed Production	/ Producing Meth	nod:	Gas Lift 0	Other (Explain)					
Estimated Production Per 24 Hours	on	Oil Bbls.					Gas-Oil Ratio	Gravity			
DISPOS	SITION OF GAS:		N	METHOD OF COMP	LETION:			N INTERVAL: Bottom			
	_	on Lease	Open Hole			mmingled mit ACO-4)	Тор	Bottom			
,	, Submit ACO-18.)				· · · · · · · · · · · · · · · · · · ·						
Shots Per Foot	Perforation Top	Perforation Bottom	Bridge Plug Type	Bridge Plug Set At	Acid	Fracture, Shot, Cer (Amount and Kind	menting Squeeze I of Material Used)	Record			
TUBING RECORD:	Size:	Set /	At:	Packer At:							
. 5213 (1200) 10.	JIEG.			. 30.0.71							

Form	ACO1 - Well Completion
Operator	Colt Energy Inc
Well Name	CHARLOTTE HOBBS 61
Doc ID	1638677

Casing

Purpose Of String	Size Hole Drilled	Size Casing Set	Weight	Setting Depth	Type Of Cement		Type and Percent Additives
Surface	11.25	8.625	24	20	Portland	7	None
Production	6.75	4.5	11.60	1050	Thick Set (OWC)	_	2#/sx Phenoseal

810 E 7[™] PO Box 92 EUREKA, KS 67045 (620) 583-5561

66749

Cement or Acid	Field Report
Ticket No.	6028
Foreman K	Mcc.

Camp Eureka

		A SECTION AND A SECTION							
Date	Cust. ID#	Le	ase & Well Number		Section	Township	Range	County	State
11-12-21	1003		Hobbs # 61					Allen	Ks
Customer				Safety	Unit #	Driv	ver	Unit#	Driver
Colt Energy, INC.				Meeting	104	AlAN.	M.		K. A. Brox.
Mailing Address				KM	114	ShANN	on f.		
P.o. Bo	× 388			AM					
City		State	Zip Code	SF					
magazin /		Otate	Zip Code						

Job Type Longstring Casing Depth 1053	Hole Depth 1065' Hole Size 63/4"	Slurry Vol. <u>39 864</u> Slurry Wt. <u>13.8 *</u>	Tubing Drill Pipe
Casing Size & Wt. 41/2 11.60 * Displacement 16-3 BbL	Cement Left in Casing 4 5J Displacement PSI 650	Water Gal/SKBump Plug to 1200 R51	Other

Remarks: SAFETY Meeting: Rig up to 41/2 Casing. Break Circulation w/ 5 Bbl fresh water. Pump 400 Gel flush w/ 25ks Hulls, 5 Bbl water Spacer. Mixed 125 sks Thick Set Cement w/ 2 # Phenoseal /sk @ 13.8 # / gal yield 1.75 = 39 Bbl Slurry. (Note: we Had 22 Bbl Cement Slurry fumped = 240 Cement Behind 41/2 when Annulus Started Bridging off Pressure would Max out @ 1600 rs; Loose Circulation, Sump 41/2 out of Hole. By the time we got done Sumping the rest of the Cement Pressures & Fluid Returns to Surface were normal) wash out sump & Lines, Shut down, Release Plug. Displace Plug to Seat w/ 16.2 Bbl fresh water. Final Sumping Pressure 650 PSI. Bump Plug to 1200 PSI. wast 2 mins. Belease Pressure, +Joat Held. Shut in @ 0 PSI. 2 Bbl Slurry to Pit. Annulus Kept falling Back. Top off w/ Cement from flow Ditch. Job Complete. Rig down.

Code	Qty or Units	Description of Product or Services	Unit Price	Total
2 /02	1	Pump Charge		
107	50	Mileage		
201	125 sks	THICK Set Cement	The state of the s	
208	250 #	Phenoseal 2#/sk		
108A	6.87 TONS	Ton Mileage		
2 206	400#	Ton Mileage Gel Flush	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
214	80#	Holls		
2 403	1	41/2 Top Rubbee Plug		
	4926			
		THANK You		
		M	100	
Authoriz	ation By wes	Moots Title Colt Co. Rep.		

					Colt En	ergy Driller's	Log						
Lease: Hobbs Well No. 61 Well Locat			tion: 1497' FNL & 1220' FWL Se			Sec. 9	Twp. 24S			Rng	;. 19E		
API #: 15-00	01-31690		Type: Oil		County: All	en		State: KS	Spud: 1	1/4/2	2021 1	Total De	pth: 1065'
Driller: Dev	in Bernstin		Surface Ca	asing		Bit Re	ecord				Coring	Record	
Crew: Seth	Sanford		Bit Size:	11.25"	Туре	Size	Start	End	Core #		Size	Start	End
			Casing Size:	8.625"	PDC	11.25"	0'	20'	1				
			Casing Length:	20'	PDC	6.75"	20'	1065'	2				
			Cement used:	7 sx					3				
		_	Cement Type:	Portland					4				
From	То		Formation		From	То		Formation				Pipe Ta	ly
0	21	Cement								1	38.20	19	38.80
21	130	Limeston	e							2	35.70	20	38.50
130	280	Shale								3	35.90	21	38.50
280	360	Limestone								4	38.80	22	36.05
360	560	Shale								5	37.50	23	35.10
560	700	Shale and	l limestone							6	36.40	24	38.20
700	800	Shale and	l limestone							7	38.15	25	38.55
800	860	Shale								8	38.20	26	35.85
860	900	Shale and	l sandstone							9	37.00	27	37.20
900	960	Shale and	l coal							10	36.25	28	37.25
960	1065	Sandston	e							11	36.70	29	
										12	36.85	30	
										13	36.90		
										14	35.60		
										15	40.10		
										16	36.95	34	
										17	38.10	35	
										18	38.50		
			Total: 1045.80'+4' shoe=104									oe=1049.80'	