

ENERGY CORPORATION
15 BOULEVARD

CORE ANALYSIS REPORT

WICHITA, KANSAS 66211

FOR

TRIPLE I ENERGY CORPORATION
BURRIS A-17-W WELL
MIAMI COUNTY, KANSAS

CORE ANALYSIS
BURRIS A-17-W

AUGUST 31, 1983

TRIPLE I ENERGY CORPORATION
6600 COLLEGE BOULEVARD
SUITE 310
OVERLAND PARK, KANSAS 66211

ATTN: MR. STEVE ALLEE

SUBJECT: CORE ANALYSIS DATA
BURRIS A-17-W WELL
MIAMI COUNTY, KANSAS
CLI FILE NO. 3406-02469

GENTLEMEN:

DIAMOND CORES WERE TAKEN IN THE SUBJECT WELL AND LATER TRANS-
PORTED TO OUR CHANUTE LABORATORY FOR ANALYTICAL PURPOSE. THE
MEASURED DATA FOLLOWS ON THE ACCOMPANYING PAGES OF THIS REPORT.

THE ACCOMPANYING COREGRAPH PRESENTS THE SURFACE CORE GAMMA LOG
AND BINOMIALLY AVERAGED CORE ANALYSIS DATA IN GRAPHICAL FORM TO
AID CORRELATION WITH DOWNHOLE ELECTRICAL SURVEYS.

PRODUCTIVITY INDICATED FROM THE RESIDUAL FLUID SATURATION DATA
IN THE INTERVAL ANALYZED BETWEEN 469 AND 486 FEET WOULD LIKELY
BE OIL AFTER FORMATION TREATMENT.

ZONAL AVERAGES ALONG WITH ESTIMATES OF RECOVERABLE OIL
(WHERE APPLICABLE) ARE PRESENTED ON THE CORE SUMMARY PAGE OF
THIS REPORT.

SECONDARY RECOVERY FROM A PRUDENT WATER FLOOD PROGRAM MAY
APPROXIMATE PRIMARY RECOVERY BARRELS PER ACRE FOOT.

WE APPRECIATE THIS OPPORTUNITY OF SERVING YOU.

VERY TRULY YOURS

CORE LABORATORIES, INC.

J. Michael Edwards/REP
J. MICHAEL EDWARDS
DISTRICT MANAGER

5 CC - ADDRESSEE

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
 DALLAS, TEXAS

1

TRIPLE I ENERGY CORPORATION
 BURRIS A-17-W WELL
 LOUISBURG FIELD
 MIAMI COUNTY, KANSAS

DATE: 8/31/83
 FORMATION: WEISER
 DRLG. FLUID: SALT WATER BASE MUD
 LOCATION: 660'NSL 990'EWL; SW 1/4; SEC. 12-17S-24E

FILE NO: 3406-02469
 ENGINEER: PRITCHARD
 ELEVATION: 1064.60 FT.

SMP. NO.	DEPTH	PERM.		POROSITY PERCENT	FLUID SATS.		GR. DEN.	DESCRIPTION
		STB/ AC.FT.	TO AIR MD. PLUG		OIL	WTR.		

CONVENTIONAL PLUG ANALYSIS

1	469.0-70.0	642.0	2.5	19.0	31.9	54.8	SD, SHY, LIG, PYR, LMY
2	470.0-71.0	667.0	3.8	20.4	24.1	56.2	SD, SHY, LIG, PYR, LMY
3	471.0-72.0	777.0	41.0	22.1	33.9	52.9	SD, SHY, LIG, PYR, LMY
4	472.0-73.0	1069.0	19.0	25.5	34.1	43.8	SD, SHY, LIG, PYR, LMY
5	473.0-74.0	682.0	62.0	13.6	37.8	32.7	SD, SHY, LIG, PYR, LMY
6	474.0-75.0	805.0	66.0	21.9	29.6	50.8	SD, SHY, PYR, LMY, MIC
7	475.0-76.0	857.0	58.0	23.4	31.3	50.8	SD, SHY, LIG, PYR, LMY
8	476.0-77.0	811.0	28.0	22.4	25.8	51.5	SD, SHY, LIG, PYR, LMY
9	477.0-78.0	713.0	8.7	20.8	25.9	54.1	SD, SHY, SLTY, PYR, LMY
10	478.0-79.0	671.0	43.0	20.2	27.2	55.5	SD, SHY, LIG, PYR, LMY
11	479.0-80.0	1024.0	114.0	23.1	40.6	40.6	SD, SHY, PYR, LMY, MIC
12	480.0-80.7	1182.0	156.0	25.3	37.5	37.5	SD, SHY, PYR, LMY, MIC
	480.7-82.0						LM
13	482.0-83.0	819.0	33.0	17.4	42.5	36.8	SD, LMY, PYR, MIC
14	483.0-84.0	1034.0	53.0	22.7	44.1	39.1	SD, SHY, PYR, LMY, MIC
15	484.0-85.0	1040.0	65.0	24.0	38.9	41.9	SD, SHY, PYR, LMY, MIC
16	485.0-85.5	1121.0	109.0	23.0	44.6	34.7	SD, SHY, PYR, LMY, MIC

Company TRIPLE I ENERGY CORPORATION
Well BURRIS A-17-W

Page 3
CLI File 3406-02469

CORE SUMMARY AND CALCULATED RECOVERABLE OIL

FORMATION NAME	WEISER					
DEPTH INTERVAL	469 - 486					
FEET OF CORE RECOVERED FROM ABOVE INTERVAL	17					
FEET OF CORE INCLUDED IN AVERAGES	16					
AVERAGE PERMEABILITY: MILLIDARCY'S	54					
PRODUCTIVE CAPACITY: MILLIDARCY-FEET	864					
AVERAGE POROSITY: PER CENT	21.6					
AVERAGE RESIDUAL OIL SATURATION: PER CENT OF PORE SPACE	34.4					
AVERAGE TOTAL WATER SATURATION: PER CENT OF PORE SPACE	45.9					
AVERAGE CONNATE WATER SATURATION: PER CENT OF PORE SPACE	(e) 44.0					
OIL GRAVITY: *API						
ORIGINAL SOLUTION GAS-OIL RATIO: CUBIC FEET PER BARREL						
ORIGINAL FORMATION VOLUME FACTOR: BARRELS SATURATED OIL PER BARREL STOCK-TANK OIL	1.04					
CALCULATED ORIGINAL STOCK-TANK OIL IN PLACE: BARRELS PER ACRE-FOOT	902					

Calculated maximum solution gas drive recovery is 108 barrels per acre-foot, assuming production could be continued until reservoir pressure declined to zero psig. These recovery estimates represent theoretical maximum values for solution gas drive and do not take into account any prior production or drainage to other areas. The difference between the calculated stock-tank oil in place and the solution gas drive recovery estimates, which are barrels per acre-foot, represent that portion of the reservoir oil which is available for possible secondary recovery techniques. Estimates of additional recoverable oil by secondary or enhanced methods would necessitate a complete engineering study of the subject reservoir.

(c) calculated

(e) estimated

(m) measured

Petroleum Reservoir Engineering

CORE LABORATORIES, INC.

ANY TRIPLE I ENERGY CORPORATION

FILE NO. 3406-02469

BURRIS A-17-W

DATE 8/31/83

LOUISBURG

FORMATION WEISER

ELEV. 1064.60

TY MIAMI STATE KANSAS

DRLG. FLD. SALT WATER BASE MUD

CORES 1

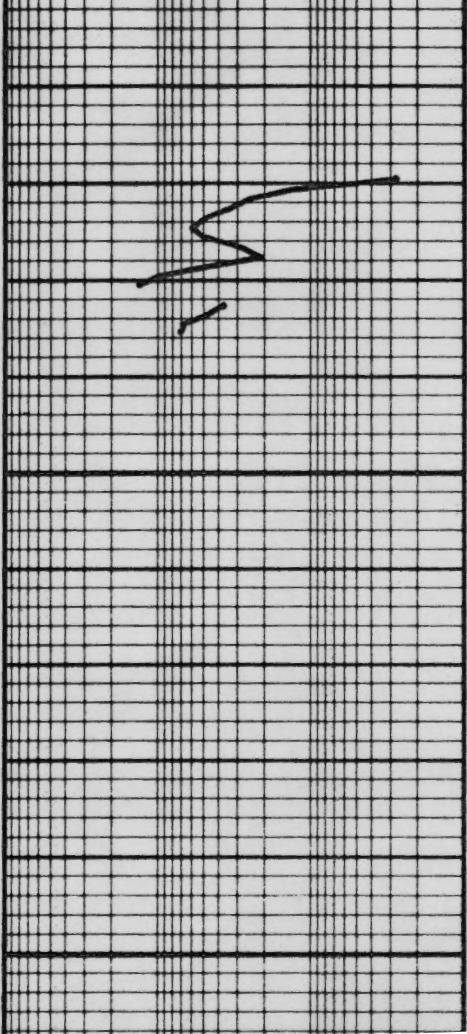
TION 660' NSL 990' EWL; SW 1/4; SEC. 12-17 S-24E


CORRELATION COREGRAPH

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc., (all errors or omissions excepted); but Core Laboratories, Inc., and its officers and employees, assume no responsibility for any accuracy or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

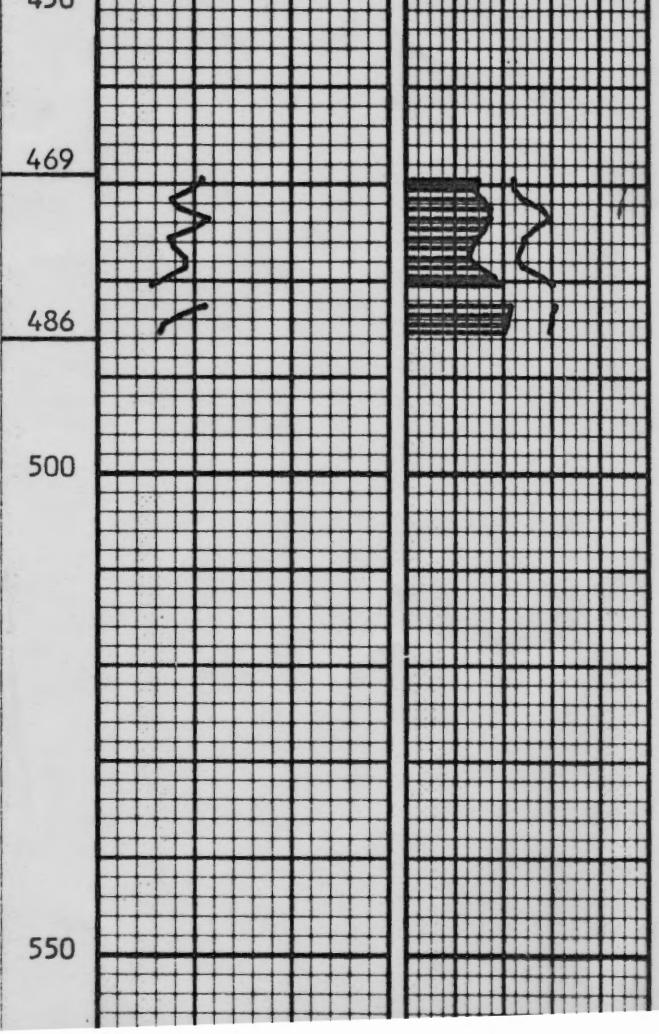
VERTICAL SCALE: $5^{\circ} = 100^{\circ}$

Gamma Ray


RADIATION INCREASE

Permeability

MILLIDARCIAS

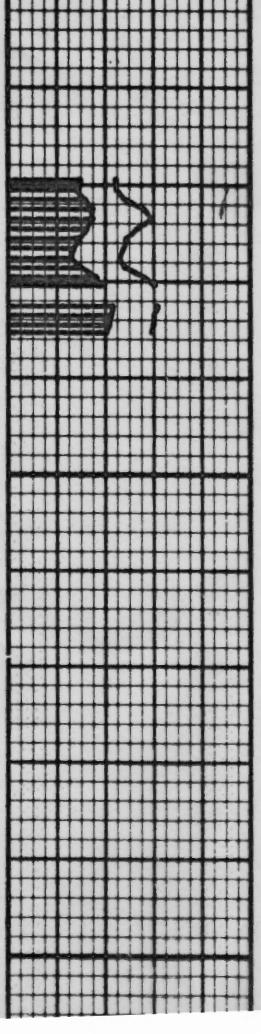

1000 100 10 1

Porosity

PERCENT

Depth Feet 30 20 10 0

Total Water


PERCENT PORE SPACE

100 80 60 40 20 0

Oil Saturation

PERCENT PORE SPACE

0 0 20 40 60 80 100

