

RGY CORPORATION
BOULEVARD CORE ANALYSIS REPORT

KANSAS 66211 FOR

TRIPLE I ENERGY CORPORATION
BURRIS A-21-W WELL
MIAMI COUNTY, KANSAS

FILE COPY

CORE ANALYSIS
BURRIS A-21-W WELL

CORE LAB

AUGUST 22, 1983

TRIPLE I ENERGY CORPORATION
6600 COLLEGE BOULEVARD
SUITE 310
OVERLAND PARK, KANSAS 66211

ATTN: MR. STEVE ALLEE

SUBJECT: CORE ANALYSIS DATA
BURRIS A-21-W WELL
MIAMI COUNTY, KANSAS
CLI FILE NO. 3406-02451

GENTLEMEN:

DIAMOND CORES WERE TAKEN IN THE SUBJECT WELL AND LATER TRANSPORTED TO OUR CHANUTE LABORATORY FOR ANALYTICAL PURPOSE. THE MEASURED DATA FOLLOWS ON THE ACCOMPANYING PAGES OF THIS REPORT.

THE ACCOMPANYING COREGRAPH PRESENTS THE SURFACE CORE GAMMA LOG AND BINOMIALLY AVERAGED CORE ANALYSIS DATA IN GRAPHICAL FORM TO AID CORRELATION WITH DOWNHOLE ELECTRICAL SURVEYS.

PRODUCTIVITY INDICATED FROM THE RESIDUAL FLUID SATURATION DATA IN THE INTERVAL ANALYZED BETWEEN 458 AND 466 FEET WOULD LIKELY BE OIL AFTER FORMATION TREATMENT.

ZONAL AVERAGES ALONG WITH ESTIMATES OF RECOVERABLE OIL (WHERE APPLICABLE) ARE PRESENTED ON THE CORE SUMMARY PAGE OF THIS REPORT.

SECONDARY RECOVERY FROM A PRUDENT WATER FLOOD PROGRAM MAY APPROXIMATE PRIMARY RECOVERY BARRELS PER ACRE FOOT.

WE ARE PLEASED TO HAVE BEEN OF SERVICE AND TRUST THESE DATA WILL AID THE PRELIMINARY EVALUATION OF THIS WELL.

VERY TRULY YOURS

CORE LABORATORIES, INC.

J. Michael Edwards
J. MICHAEL EDWARDS *IRP*
DISTRICT MANAGER

5 CC - ADDRESSEE

CORE LABORATORIES, INC.
Petroleum Reservoir Engineering
 DALLAS, TEXAS

1

TRIPLE I ENERGY CORPORATION
 BURRIS A NO. 21-W
 LOUISBURG FIELD
 MIAMI COUNTY, KANSAS

DATE: 08/22/83
 FORMATION: WEISER
 DRLG. FLUID: AIR/SALT WATER MIST
 LOCATION: 660'NSL 2310'EWL;SW 1/4;SEC 12-17S-24E

FILE NO: 3406-02451
 ENGINEER: PRITCHARD
 ELEVATION: 1064.0FT.

SMP. NO.	DEPTH	PERM.		POROSITY PERCENT	FLUID SATS.		GR. DEN.	DESCRIPTION
		STB/ AC.FT.	TO AIR MD. PLUG		OIL	WTR.		
CONVENTIONAL PLUG ANALYSIS								
1	453.0-54.0	935.0	1.0	18.1	22.0	31.0		SD,SLTY,SHY,LMY,MIC
	454.0-56.0						SH,SD LAM	
2	456.0-57.0	480.0	8.7	16.0	16.1	59.9		SD,SLTY,SHY,LMY,MIC
3	457.0-58.0	704.0	4.9	18.3	23.6	36.7		SD,SLTY,SHY,LMY,MIC
4	458.0-59.0	1381.0	116.0	23.6	36.7	21.6		SD,LMY,MIC
5	459.0-60.0	1242.0	68.0	21.9	49.2	24.1		SD,SL/SHY,LMY,MIC
6	460.0-61.0	1261.0	78.0	22.3	41.5	24.3		SD,SL/SHY,LMY,MIC
7	461.0-62.0	1274.0	56.0	22.2	44.3	23.1		SD,SL/SHY,LMY,MIC
8	462.0-63.0	896.0	68.0	16.1	40.7	25.6		SD,SL/SHY,LMY,MIC
9	463.0-64.0	1291.0	39.0	22.0	44.9	21.4		SD,SL/SHY,LMY,MIC
10	464.0-65.0	1206.0	30.0	21.6	40.6	25.2		SD,SL/SHY,SL/LMY,MIC
11	465.0-65.6	922.0	68.0	18.0	44.9	31.3		SD,SL/SHY,LMY,MIC
	465.6-68.4						LIME,NO SHOW	
12	468.4-69.0	662.0	32.0	12.9	41.0	31.2		SD-LMY,SHY,MIC
13	469.0-70.0	1165.0	24.0	21.5	41.2	27.5		SD,SL/SHY,SL/LMY,MIC
	470.0-71.0						SH,SL/SDY	

CORE LABORATORIES, INC.

Petroleum Reservoir Engineering

CHANUTE, KANSAS

LITHOLOGICAL ABBREVIATIONS

sand - sd
sandy - sdy
shale - sh
shaly - shy
lime - lm
limey - lmy
fine - fn
medium - md
coarse - cs
grain - gr
slightly - sl/
very - v/
with - w/
silty - slty
vuggy - vgy
brown - brn
dark - dk

laminated - lam
pyrite - pyr
gilcinite - gil
lignite - lig
dolomite - dol
chert - ch
cementations - cmt
calcareous - cal
mica or micaceous - mic
inclusions - incl
pin point porosity - pp
fossiliferous - foss
conglomerate - cong
clay - cl
TBA - too broken to analyze

Company TRIPLE I ENERGY CORPORATIONPage 3Well BURRIS A-21-WCLI File 3406-02451**CORE SUMMARY AND CALCULATED RECOVERABLE OIL**

FORMATION NAME	WEISER				
DEPTH INTERVAL	458 - 466				
FEET OF CORE RECOVERED FROM ABOVE INTERVAL	8				
FEET OF CORE INCLUDED IN AVERAGES	8				
AVERAGE PERMEABILITY: MILLIDARCY'S	65				
PRODUCTIVE CAPACITY: MILLIDARCY-FEET	520				
AVERAGE POROSITY: PER CENT	21.0				
AVERAGE RESIDUAL OIL SATURATION: PER CENT OF PORE SPACE	42.9				
AVERAGE TOTAL WATER SATURATION: PER CENT OF PORE SPACE	24.6				
AVERAGE CONNATE WATER SATURATION: PER CENT OF PORE SPACE (e)	23.0				
OIL GRAVITY: *API					
ORIGINAL SOLUTION GAS-OIL RATIO: CUBIC FEET PER BARREL					
ORIGINAL FORMATION VOLUME FACTOR: BARRELS SATURATED OIL PER BARREL STOCK-TANK OIL	1.04				
CALCULATED ORIGINAL STOCK-TANK OIL IN PLACE: BARRELS PER ACRE-FOOT	1206				

Calculated maximum solution gas drive recovery is 145 barrels per acre-foot, assuming production could be continued until reservoir pressure declined to zero psig. These recovery estimates represent theoretical maximum values for solution gas drive and do not take into account any prior production or drainage to other areas. The difference between the calculated stock-tank oil in place and the solution gas drive recovery estimates, which are barrels per acre-foot, represent that portion of the reservoir oil which is available for possible secondary recovery techniques. Estimates of additional recoverable oil by secondary or enhanced methods would necessitate a complete engineering study of the subject reservoir.

(c) calculated

(e) estimated

(m) measured

CORE LABORATORIES, INC.**Petroleum Reservoir Engineering**

COMPANY TRIPLE I ENERGY CORPORATION FILE NO. 3406-02451
L BURRIS A-21-W DATE 8/22/83
D LOUISBURG FORMATION WEISER ELEV. 1064.0
NTY MIAMI STATE KANSAS DRLG. FLD. AIR/SALT WATER MIST CORES
ATION 660' NSL 2310' EWL; SW 1/4; SEC. 12-17S-24E

CORRELATION COREGRAPH

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc., (all errors or omissions excepted); but Core Laboratories, Inc., and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitability of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

VERTICAL SCALE: $5'' = 100'$

Total Water

PERCENT PORE SPACE
100 80 60 40 20 0

Oil Saturation

PERCENT PORE SPACE

Gamma Ray

RADIATION INCREASE

Permeability

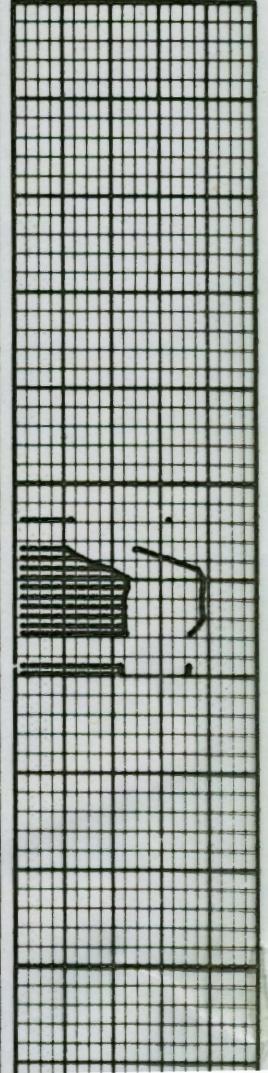
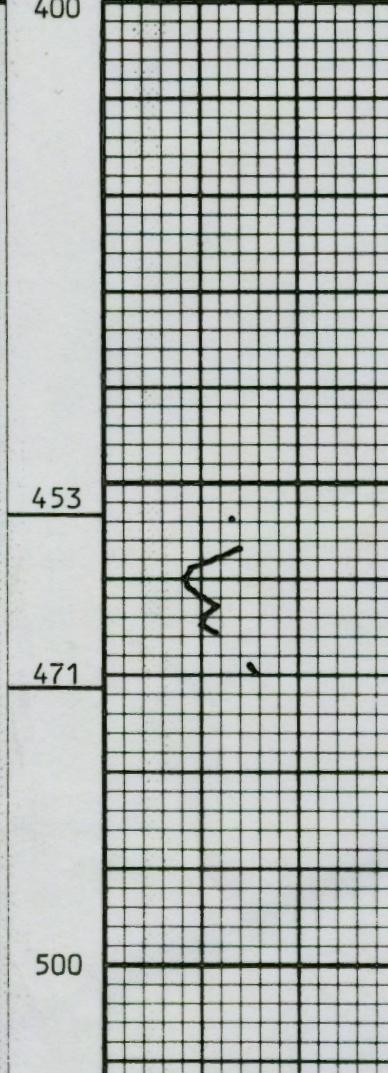
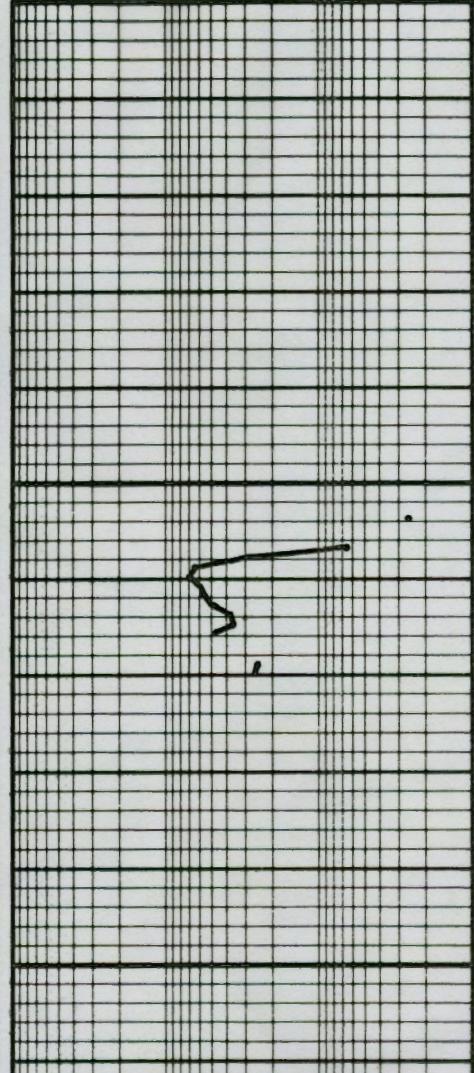
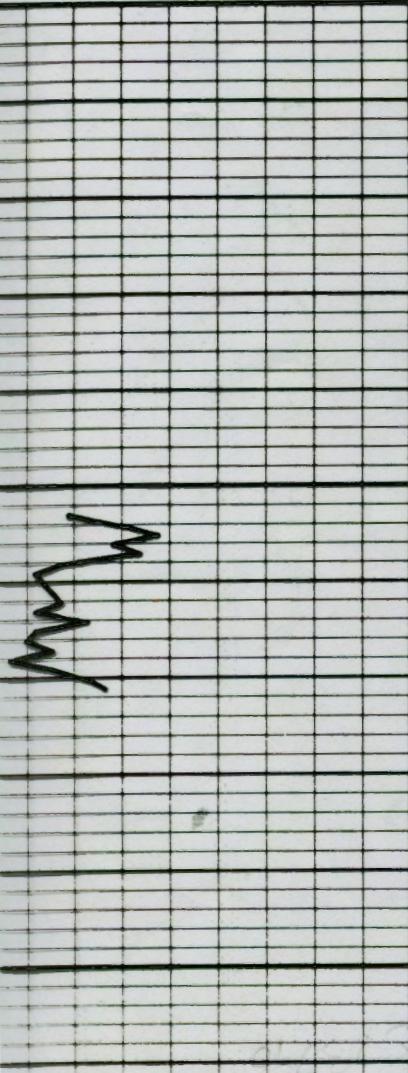
MILLIDARCIES

1000 100 10 1

Depth
Feet
400

Porosity

PERCENT





30 20 10 0

453

471

500

PERCENT PORE SPACE

