15-167-62456 Man

CORE LABORATORIES

Reservoir Fluid Study

University of Kansas Shield Oil Producers - Letsch #7 Hall-Gurney 27-14-13W, C W2 E2 S1

> RFL 990108 28-Sep-1999

A product of Core Laboratories, Inc.

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgement of Core Laboratories. Core Laboratories assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations or profitableness, however, of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever.

September 29, 1999

University of Kansas 4008 Learned Hall Lawrence, KS 66045

Subject: Reservoir Fluid Study

Well: Shields Oil Producers - Letsch #7

RFL No. 990108

Attention: Mr. Richard Pancake

Dear Mr. Pancake,

Samples of separator liquid were collected from the subject well on August 2, 1999 and were submitted to our Carrollton, Texas laboratory facilities for use in a Reservoir Fluid Study. Presented in the following report are the results of this study. Should any questions arise or if we may be of further service in anyway, please contact me at 972-323-3940. Thank you.

Sincerely,

Thomas R. Coleman

Reservoir Fluid Laboratory-Carrollton, Texas

TABLE OF CONTENTS

		<u>pg</u>
Laboratory Procedures	•••••••••••••••••••••••••••••••••••••••	i
General Well Information	•••••	1-2
Preliminary Checks of Sample Qu	ality and	
Summary of Samples Received	***************************************	<i>3</i>
Reservoir Fluid Composition	***************************************	4
Pressure Volume Relations		<i>5-6</i>
Viscosity of Reservoir Fluid	*** ***	7
Liquid Shrinkage Analysis	••• ••• ••• ••• ••• ••• ••• ••• •••	8
Nomenclature and Equations		Appendix A
Whole-Oil Gas Chromatogram	•••••	Appendix I
LIST OF F	IGURES	
Pressure Volume Deletions		fig
Pressure-Volume Relations		
Single-Phase Relative Volume		A-1
Single-Phase Fluid Viscosity		R_1

LABORATORY PROCEDURES

UNIVERSITY OF KANSAS
Reservoir Fluid Study
Shields Oil Producers – Letsch #7
RFL 990108

PRELIMINARY QUALITY CHECKS OF SEPARATOR SAMPLES

As a quality check, the room temperature bubblepoint pressure of the separator liquid samples were measured. This information, summarized on page three of the report, indicated that the samples received in the laboratory closely represent reported field separator conditions.

SEPARATOR SAMPLE COMPOSITIONS

The composition of the separator liquid was measured to a triacontanes plus fraction using the low temperature distillation technique. This resulted in the composition listed on page four.

PRESSURE-VOLUME RELATIONS

A portion of the reservoir fluid was charged to a high-pressure visual cell and thermally expanded to the reported reservoir temperature of 105°F. After establishing thermal equilibrium, the fluid sample was subjected to a constant composition expansion at this temperature. The fluid was found to have a saturation pressure of 23 psig. Other data derived from the pressure-volume relations measurements, including relative volumes and average single-phase compressibilities, may be found on pages five and six.

MULTI-PRESSURE VISCOSITY

The viscosity of the reservoir fluid was measured over a wide range of pressures at 105°F. in a rolling ball viscosimeter. The viscosity of the fluid was found to vary from a minimum of 3.91 centipoise at the saturation pressure to a maximum of 6.10 centipoise at 5000 psig. Results may be found on page seven.

SHRINKAGE TEST

A shrinkage was test performed on the reservoir fluid to determine the gas/oil ratio, stock tank oil gravity and formation volume factor. Results may be found on page eight.

GRAPHICAL REPRESENTATIONS

This report includes graphical representations and analytical expressions. The statistical summaries represent an objective estimate of non-systematic error using a preset live of confidence. Confidence intervals are calculated using the Student "t" density distribution tables.

CompanyWell Name	Shield Oil Producers - Letsch #7		
API Well Number			
File Number			
Date Sample Collected	2-Aug-1999		
Sample Type	Separator		
Geographical Location	27-14-13W, C W2 E2 S1		
Field			
escription			
Formation	Lansing/Kansas Cit	y	
Pool (or Zone)	C& D Intervals	-	
Date Completed	•		
Elevation	*	ft	
Producing Interval	2856-76	ft	
Total Depth	2877	ft	
Tubing Size	*	in	
Tubing Depth		ft	
Casing Size	7	in	
Casing Depth	2844	ft	
e Survey Data			
•	_		
Date	*		
·	* *	psig	
Date	* *	psig	
DateReservoir Pressure	* *	psig	
Reservoir Pressure	* * 2-Aug-1999	psig	
Date	* * 2-Aug-1999 +/- 600		
Date		psig psig °F	
Date	+/- 600	psig	
Date	+/- 600	psig	

^{*} Data not forwarded to Core Laboratories.

Production Data

* * *	*API	
* *	* API	
*	*API	
*	Ar!	
*	psig •F	
	Г	
*	Mast/D	
*	· · · · · -	
*		
	SCI/DDI	
18	neia	
	·	
none	Mscf/D	
14.73	psia	
60	*F	
*	·	
•		
14.73	psia	
60	•F	
na		
na		
•	bb//D -+	
•	: - · · · · · · · · · · · · · · · · · ·	*F
*		• F
*	==:	
*	= :	
	14.73 60 * * 14.73 60 na	78

Data not forwarded to Core Laboratories.

PRELIMINARY CHECKS OF SAMPLE QUALITY AND SUMMARY OF SAMPLES RECEIVED

Separator Gas**					
Out to the state of	Sampling	Conditions	Laborat	ory Opening C	onditions
Cylinder Number	psig	• F	psig	° F	Air Content (mol %)

		Separato	r Liquid	· · · · · · · · · · · · · · · · · · ·	
	Sampling	Sampling Conditions L		Laboratory Bubblepoint	
Cylinder Number	psig	* F	psig	• F	Water Recovered (cc)
*323040C	4	78	7	72	0
376483D	8	78	9	70	0

^{*}This sample was selected for further analysis

^{**} No separator gas was collected

Composition of Reservoir Fluid Sample

(by Low Temperature Distillation)

Component Name	Moi %	Wt %	Density (gm/cc)	MW
Hydrogen Sulfide	0.04	0.01	0.8006	34.08
Carbon Dioxide	0.18	0.04	0.8172	44.01
Nitrogen	0.00	0.00	0.8086	28.013
Methane	0.08	0.01	0.2997	16.043
Ethane	0.37	0.06	0.3562	30.07
Propane	1.54	0.35	0.5070	44.097
iso-Butane	0.65	0.20	0.5629	58.123
n-Butane	2.03	0.61	0.5840	58.123
iso-Pentane	1.94	0.73	0.6244	72.15
n-Pentane	3.75	1.41	0.6311	72.15
Hexanes	10.58	4.63	0.6850	84
Heptanes	10.20	5.10	0.7220	96
Octanes	11.89	6.61	0.7450	107
Nonanes	8.07	5.08	0.7640	121
Decanes	6.85	4.78	0.7780	134
Undecanes	5.30	4.05	0.7890	147
Dodecanes	4.27	3.58	0.8000	161
Tridecanes	4.17	3.80	0.8110	175
Tetradecanes	3.45	3.41	0.8220	190
Pentadecanes	3.14	3.37	0.8320	206
Hexadecanes	2.42	2.80	0.8390	222
Heptadecanes	2.21	2.73	0.8470	237
Octadecanes	1.94	2.54	0.8520	251
Nonadecanes	1.70	2.32	0.8570	263
Eicosanes	1.36	1.95	0.8620	275
Heneicosanes	1.15	1.75	0.8670	291
Docosanes	1.00	1.59	0.8720	305
Tricosanes	0.87	1.44	0.8770	318
Tetracosanes	0.71	1.23	0.8810	331
Pentacosanes	. 0.69	1.24	0.8850	345
Hexacosanes	0.52	0.97	0.8890	359
Heptacosanes	0.50	0.96	0.8930	374
Octacosanes	0.45	0.90	0.8960	388
Nonacosanes	0.41	0.87	0.8990	402
Triacontanes plus	5.57	28.88	1.0302	996

100.00

100.00

Totals

Total Sample Properties

Molecular Weight	192.10
Theoretical Liquid Density, gm/scc	0.8425

ALPHA I

Plus Fractions	Mol %	Wt %	Density	MW
Heptanes plus	78.84	91.95	0.8659	224
Undecanes plus	41.83	70.38	0.9087	323
Pentadecanes plus	24.64	55.54	0.9412	433
Elcosanes plus	13.23	41.78	0.9781	607
Pentacosanes plus	8.14	33.82	1.0073	799
Triacontanes plus	5.57	28.88	1.0302	996

VOLUMETRIC DATA (at 105 °F)

Saturation Pressure (Psat)	23 psig
Density at Psat	0.8221 gm/cc
Thermal Exp @ 1800 psig	1.01856 V at 105 °F / V at 60 °F

AVERAGE SINGLE-PHASE COMPRESSIBILITIES

Pi	Pressure Range psig		Single-Phase Compressibility v/v/psl
5000	to	4000	5.63 È -6
4000	to	3000	5.63 E -6
3000	to	1800	5.71 E -6
1800	to	200	6.38 E -6
200	to	23	9.53 E -6

Shield Oil Producers - Letsch #7

RFL 990108

PRESSURE-VOLUME RELATIONS

(at 105 °F)

Pressure	Relative	Density
psig	Volume (A)	gm/cc
5000	0.9706	0.8469
4000	0.9760	0.8425
3000	0.9815	0.8374
2000	0.9871	0.8328
1800	0.9882	0.8318
1000	0.9929	0.8278
500	0.9961	0.8253
400	0.9968	0.8247
300	0.9975	0.8241
200	0.9983	0.8236
100	0.9992	0.8227
50	0.9997	0.8222
b»23	1.0000	0.8221

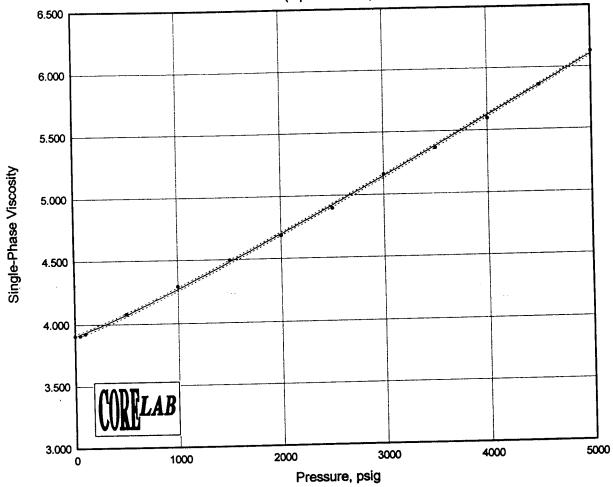
⁽A) Relative Volume: V/Vsat or volume at indicated pressure per volume at saturation pressure.

Shield Oil Producers - Letsch #7 RFL 990108

RELATIVE VOLUME

Relative Volume Expression: y= a + b (Xd)^i + c (Xd)^j		
		LEGEND
where: a= 1.00040e+ 00 b= -3.98682e- 04 c= -4.73289e- 06 Note: Xd (dimensionless 'X') = Pi / Pi	i= 0.744 j= 1.381 sat, psig	Laboratory Data Confidence Limits Analytical Expression Saturation Pressure: 23 psig Current Reservoir Pressure: 600 psig
Confidence level: Confidence interval: 'r squared':	99 % +/- 0.00013 .999771	Pressure-Volume Relations Figure A-1

RESERVOIR FLUID VISCOSITY


(at 105 °F)

	Oil				
Pressure	Viscosity				
psig	ср				
5000	6.10				
4500	5.86				
4000	5.62				
3500	5.38				
3000	5.15				
2500	4.92				
2000	4.70				
1500	4.48				
1000	4.27				
500	4.07				
100	3.93				
50	3.92				
b>>23	3.91				
0	3.93				

Shield Oil Producers - Letsch #7 RFL 990108

SINGLE-PHASE FLUID VISCOSITY

(cp at 105 °F)

Single-Phase Viscosity Expression: y= a + b (dX)^i		LEGEND			
where: a= 3.91347e+ 00 b= 1.64024e- 04	i= 1.116	Laboratory Data Confidence Limits Analytical Expression Saturation Pressure: 23 psig			
Note: dX (delta 'X') = Psat - Pi , psig					
Confidence level: Confidence interval: 'r squared':	99 % +/- 0.0152 cp .999508	Rolling-Ball Viscosity Figure B-1			

Shield Oil Producers - Letsch #7

RFL 990108

SEPARATOR FLASH ANALYSIS

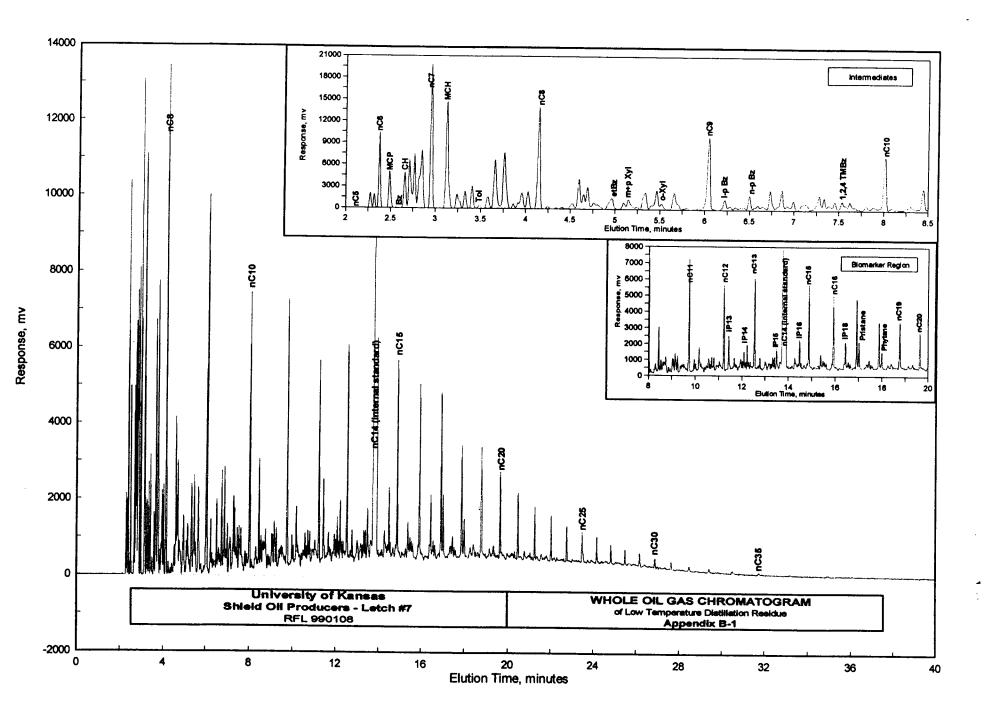
Flash Conditions		Gas/Oil Gas/Oil Ratio Ratio (sct/bbl) (sct/STbbl)		Stock Tank Oil Gravity at 60 °F	Formation Volume Factor	Separator Volume Factor	Specific Gravity of Flashed Gas	Oil Phase Density (gm/cc)	
peig	•F	(A)	(8)	(8)	(*API)	Bofb (C)	(D)	(Air=1.000)	(9)
23 0	105 72	5		5	35.5	1.031	1.006	0.805	0.8221 0.8418
			Rsfb =	5					

⁽A) Cubic Feet of gas at 14.73 psia and 60 °F per Barrel of oil at indicated pressure and temperature.
(B) Cubic Feet of gas at 14.73 psia and 60 °F per Barrel of Stock Tank Oil at 60 °F.
(C) Barrels of saturated oil at 23 psig and 105 °F per Barrel of Stock Tank Oil at 60 °F.
(D) Barrels of oil at indicated pressure and temperature per Barrel of Stock Tank Oil at 60 °F.

EXTENSIONS TO ANALYTICAL EQUATIONS Appendix A

Average Single-Phase Compressibility -

$$\overline{c}_o = -\frac{1}{v} \cdot \left(\frac{\partial v}{\partial P}\right) \Rightarrow -\frac{1}{rv_i} \cdot \left(\frac{rv_i - rv_{i-1}}{P_i - P_{i-1}}\right) \quad \text{for } P_b < P_{i-1} < P_i \le P_w$$
 (a1.1)


DEFINITION OF TERMS

Definition of Variables -

- c Coefficient of Isothermal Compressibility
- v Volume
- P Pressure
- rv Relative Volume (from constant mass expansion)

Definition of Subscripts -

- b at bubble point pressure
- i any discreet point
- o single-phase oil
- w at working conditions

