APPENDIX VI

Exhibit VI-2

Reservoir Fluid Study for K.R.M. PETROLEUM CORPORATION

G.C. Lemon No. 6 Well Lemon Ranch Pool Field Comanche County, Kansas

CORE LABORATORIES, INC. Petrolcum Reservoir Engineering DALLAS TEXAS 75207 June 22, 1979

RESERVOIR FLUID DIVISION

K.R.M. Petroleum Corporation 817 17th Street Suite 820 Denver, Colorado 80202

Attention: Mr. Jerry C. Simmons

Subject: Reservoir Fluid Study

G.C. Lemon No. 6 Well Lemon Ranch Pool Field Comanche County, Kansas Our File Number: RFL 79352

Gentlemen:

Duplicate subsurface fluid samples were collected from the subject well by a representative of Tefteller, Inc. on May 21, 1979. These samples were submitted to our Dallas laboratory for use in a reservoir fluid study. Presented to you in the following report are the results of this study.

As a quality check, the room temperature saturation pressure of each subsurface sample was initially determined. At 72°F., the two subsurface samples were found to have bubble point pressures of 1473 psig and 1475 psig. These values were considered to be in excellent agreement with one another and the sample having the higher room temperature saturation pressure was selected for use in the reservoir fluid study.

The hydrocarbon composition of the reservoir fluid was measured by low temperature fractional distillation. The results of this distillation in terms of both mol percent and weight percent are presented on page two.

A portion of the subsurface fluid was initially subjected to constant composition expansion at the reservoir temperature of 125°F. During this expansion, a bubble point pressure of 1695 psig was determined. The results of the pressure-volume measurements at the reservoir temperature are presented on page four.

During differential pressure depletion at the reservoir temperature, the fluid liberated a total of 845 cubic feet of gas at 14.65 psia and 60°F. per barrel of residual oil at 60°F. The relative oil volume associated with this test was 1.490 barrels of saturated fluid per barrel of residual oil. In addition, the

K.R.M. Petroleum Corporation G.C. Lemon No. 6 Well

oil density and the properties of the evolved gases were measured at each point during the depletion. A summary of the differential pressure depletion data may be found on page five.

Viscosity measurements were then performed on the reservoir fluid at 125°F. in a rolling ball viscosimeter. The viscosity of the fluid was found to vary from a minimum of 0.388 centipoise at the saturation pressure to a maximum of 1.390 centipoises at atmospheric pressure.

Four single-stage separator tests were then performed at 70°F. to determine the effect of separator pressure upon gas/oil ratio, stock tank oil gravity, formation volume factor and separator gas composition. The results of the four separator tests are tabulated on page seven and the associated chromatographic analyses of the separator gas samples may be found on page eight. The separator data indicates that optimum separation should occur near 90 psig at 70°F. and near optimum separation should occur over pressures ranging from 60 psig to 100 psig.

It has been our pleasure to perform this reservoir fluid study for K.R.M. Petroleum Corporation. Should you have any questions or if we may be of further assistance in any matter, please feel free to call upon us.

Very truly yours,

Core Laboratories, Inc.

P. L. Moses, Manager Reservoir Fluid Analysis

PLM: JF:bt

7 cc: Addressee

	7.5. 7.5.0	Page 1 of 11
		File RFL 79352
Company K.R.M. Petroleum Corp.		
	Date Samp	
Well G.C. Lemon No. 6	County	Comanche
Field Lemon Ranch Pool	State	Kansas
FORMATION (CHARACTERIS	TICS
Formation Name		Lansing Kansas City
Date First Well Completed		, 19
Original Reservoir Pressure (Lemon No. 3)		1762 PSIG @ 4777
Original Produced Gas-Oil Ratio		SCF/
Production Rate		Bbl/1
Separator Pressure and Temperature		PSIG80
Oil Gravity at 60° F.		47
Datum		Ft. Sub
Original Gas Cap		None
	RACTERISTIC	
Elevation		1766 KB
Total Depth		4802 PB
Producing Interval		4778-4788
Tubing Size and Depth		$\frac{2-3/8}{1}$ In. to $\frac{4770}{1}$
Productivity Index		Bbl/D/PSI @Bbl/I
Last Reservoir Pressure		1768 PSIG @ 4783
Date		May 21 , 19 ⁷
Reservoir Temperature		125 °F . @ 4783
Status of Well		Shut in
Pressure Gauge		Amerada
Normal Production Rate		Bbl/I
Gas-Oil Ratio		SCF/I
Separator Pressure and Temperature		PSIG,
Base Pressure		PS
Vell Making Water		
SAMPLING	CONDITIONS	
Sampled at		4683
status of Well		Shut in
Gas-Oil Ratio		
Separator Pressure and Temperature		SCF/I
Tubing Pressure		PSIG,
Casing Pressure		535 PS
		Nil PS Tefteller, Inc.
Sampled by Type Sampler		refler, inc.
The pampier		

REMARKS:

CORE LABORATORIES, INC. Petroleum Reservoir Engineering

DALLAS, TEXAS

					Pag	e o	f 11
					File	RFL 7	9352
Company	K.R.M.	Petroleum Co	orp.	. Formation_		Kansas	City
Company			 	. Formation_			
Well	G.C. I	emon No. 6		County	Comanch	e	
Field	Lemon	Ranch Pool		State	Kansas		
Н	YDRO	CARBON A	NALYSIS OF_	Reservoir	Fluid	SAMPL	E
COMPONE	NT	MOL PER CENT	WEIGHT PER CENT	DENSITY GRAMS PE	R CUBIC	° AP1 @ 60° F.	MOLECULAR WEIGHT
						,	
Hydrogen Su Carbon Diox		Nil	Nil				
Nitrogen	ıde	1.01 1.29	0.50 0.41				
Methane		29.53	5.35				
Ethane		6.07	2.06				
Propane		10.30	5.13				
iso-Butane		2.26	1.48				
n-Butane		6.57	4.31				
iso-Pentane		2.38	1.94				
n-Pentane		2.05	1.67		,		
Hexanes		4.16	4.03				
Heptanes pla	us	34.38	73.12	0.8	326	38.3	188
		100.00	100.00				

CORE LABORATORIES, INC. Petroleum Reservoir Engineering

DALLAS, TEXAS

Page_	3	of	11	
File	RFL	79352		
Well	G.C.	Lemon	No.	6

VOLUMETRIC DATA OF Reservoir Fluid SAMPLE

- 1. Saturation pressure (bubble-point pressure)
- __1695 _ PSIG @ __125 _ *F.
- 2. Specific volume at saturation pressure: ft 3/lb
- 0.02348 @ 125 °F.
- 3. Thermal expansion of saturated oil @ 5000 PSI = $\frac{V @ 125 \cdot F}{V @ 70 \cdot F} = 1.03347$
- 4. Compressibility of saturated oil @ reservoir temperature: Vol/Vol/PSI:

From
$$0.000$$
 PSI to 0.000 PSI = 0.000 PSI = 0.000 PSI = 0.000 PSI = 0.000 PSI to 0.000 PSI = 0.000 PSI = 0.000 PSI to 0.000 PSI = 0.000 PSI = 0.000 PSI = 0.000 PSI = 0.000 PSI to 0.000 PSI = 0.0000 PSI = 0.00000 PSI = 0.00000 PSI = 0.0000

Petroleum Reservoir Engineering DALLAS, TEXAS

Page_	4	of	11		
File	RFL	79352			
Well	G.C.	Lemon	No.	6	

Pressure-Volume Relations at 125 *F.

Pressure PSIG	Relative Volume (1)	Y Function (2)
5000	0.9634	
4500	0.9678	
4000	0.9725	
3500	0.9775	
3000	0.9829	
2500	0.9888	
2000	0.9955	
1900	0.9969	
1800	0.9984	
1700	0.9999	
1695	1.0000	
1685	1.0033	
1675	1.0054	
1652	1.0104	
1590	1.0273	
1525	1.0474	2.329
1438	1.0781	2.260
1339	1.1192	2.207
1219	1.1808	2.134
1095	1.2631	2.055
959	1.3866	1.955
828	1.5515	1.867
690	1.8093	1.761
550	2.2210	1.660
427	2.8406	1.559
311	3.8688	1.480

(1) Relative Volume: V/Vsat is barrels at indicated pressure per barrel at saturation pressure.

(2) Y Function = $\frac{(Psat-P)}{(Pabs)(V/Vsat-1)}$

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or territableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

Petroleum Reservoir Engineering
DALLAS. TEXAS

Page	of	11
File	RFL 79352	
	G.C. Lemon No.	6

Differential Vaporization at 125 °F.

Pressure PSIG	Solution Gas/Oil Ratio(1)	Relative Oil Volume(2)	Relative Total Volume(3)	Oil Density gm/cc	Deviation Factor Z	Gas Formation Volume Factor(4)	Incremental Gas Gravity
1695	845	1.490	1.490	0.6823			
1400	733	1.442	1.634	0.6921	0.833	0.00970	0.751
1200	663	1.412	1.781	0.6989	0.844	0.01145	0.745
900	555	1.365	2.170	0.7100	0.868	0.01563	0.746
600	446	1.317	3.024	0.7224	0.898	0.02407	0.773
300	331	1.264	5.738	0.7359	0.935	0.04892	0.841
150	259	1.227	11.216	0.7454	0.959	0.09579	0.996
0	0	1.033		0.7829			1.874
	at 60°F.	= 1.000					

Gravity of residual oil = 43.2°API at 60°F.

⁽¹⁾ Cubic feet of gas at 14.65 psia and 60°F. per barrel of residual oil at 60°F.

⁽²⁾ Barrels of oil at indicated pressure and temperature per barrel of residual oil at 60°F.

⁽³⁾ Barrels of oil plus liberated gas at indicated pressure and temperature per barrel of residual oil at 60°F.

⁽⁴⁾ Cubic feet of gas at indicated pressure and temperature per cubic foot at 14.65 psia and 60°F.

Petroleum Reservoir Engineering DALLAS, TEXAS 75207

Page_	6	_of	11	
File	RFL	79352		
Well_	G.C.	Lemon	No.	6

Viscosity Data at 125 °F.

Pressure PSIG	Oil Viscosity Centipoise	Calculated Gas Viscosity Centipoise	Oil/Gas Viscosity <u>Ratio</u>
5000	0.464		
4000	0.441		
3000	0.418		
2000	0.395		
1750	0.389		
1695	0.388		
1400	0.416	0.0149	27.9
1200	0.438	0.0142	30.8
900	0.475	0.0132	36.0
600	0.525	0.0123	42.7
300	0.600	0.0114	52.6
150	0.666	0.0106	62.8
0	1.390	0.0079	175.9

Petroleum Reservoir Engineering DALLAS, TEXAS

Page_	of	11	
File _	RFL 79352		
Wall	G.C. Lemon	No. 6	

SEPARATOR TESTS OF Reservoir Fluid SAMPLE

SEPARATOR PRESSURE, PSI GAUGE	SEPARATOR TEMPERATURE, * F.	GAS/OIL RATIO	GAS/OIL RATIO	STOCK TANK GRAVITY, * API @ 80° F.	FORMATION VOLUME FACTOR (3)	SEPARATOR VOLUME FACTOR (4)	SPECIFIC- GRAVITY OF PLASHED GAS
15	70	787	801			1.018	0.988*
to						1.010	0.500
0	70	21	21	43.8	1.443	1.005	1.342
40	70	677	705			1.041	0.916*
to							•
0	70	58	58	45.2	1.405	1.005	1.471
60	70	624	660			1.058	0.875*
to							
0	70	86	86	45.6	1.394	1.005	1.491
100	70	560	608			1.086	0.824*
to						1.000	0.024
0	70	130	131	45.8	1.390	1.005	1.483

^{*}Collected and analyzed for hydrocarbons, in the laboratory.

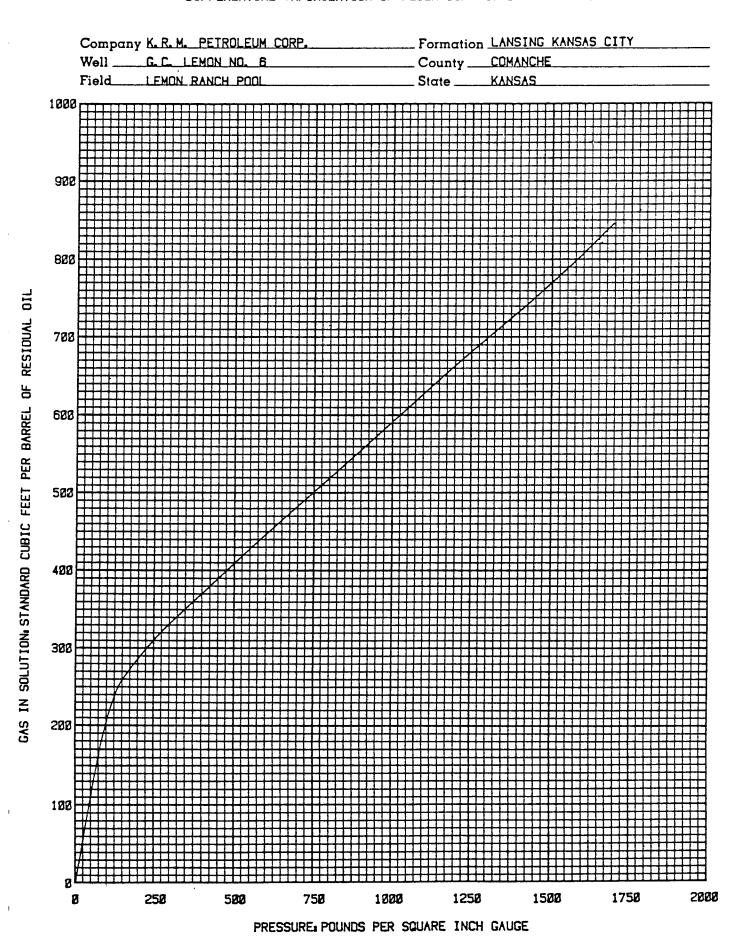
^{, (1)} Gas/Oil Ratio in cubic feet of gas @ 60° F. and 14.65 PSI absolute per barrel of oil @ indicated pressure and temperature.

⁽²⁾ Gas Oil Ratio in cubic feet of gas @ 60° F. and 14.65 PSI absolute per barrel of stock tank oil @ 60° F.

⁽³⁾ Formation Volume Factor is barrels of saturated oil @ 1695 PSI gauge and 125 • F. per barrel of stock tank oil @ 60° F.

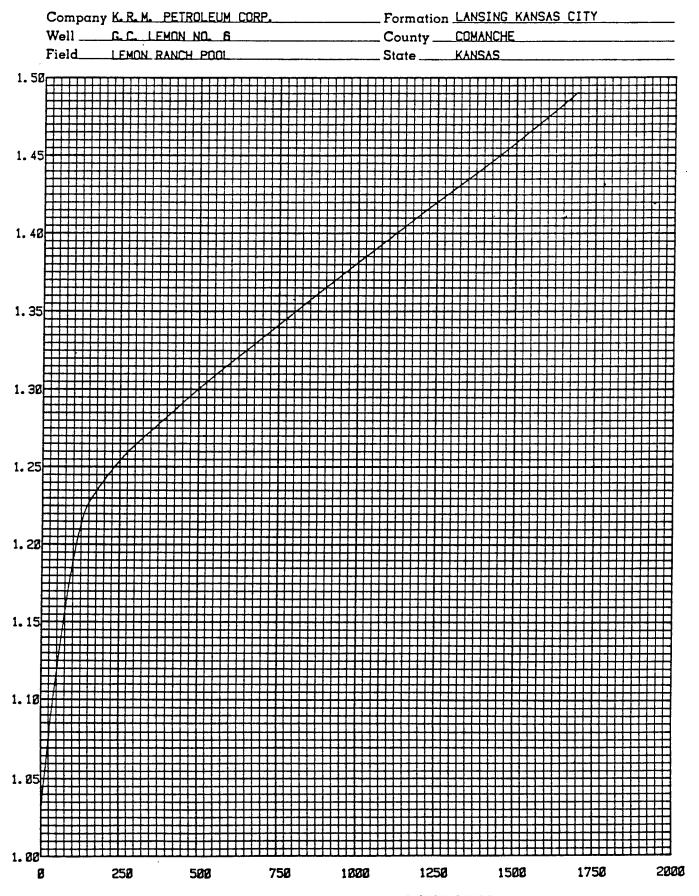
⁽⁴⁾ Separator Volume Factor is barrels of oil @ indicated pressure and temperature per barrel of stock tank oil @ 60° F.

These analyses, opinions or interpretations are based on observations and material supplied by the client to whose, and for whose exclusive and confidentful use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and amployees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other miseral well or and in connection with which such report is used or relied upon.

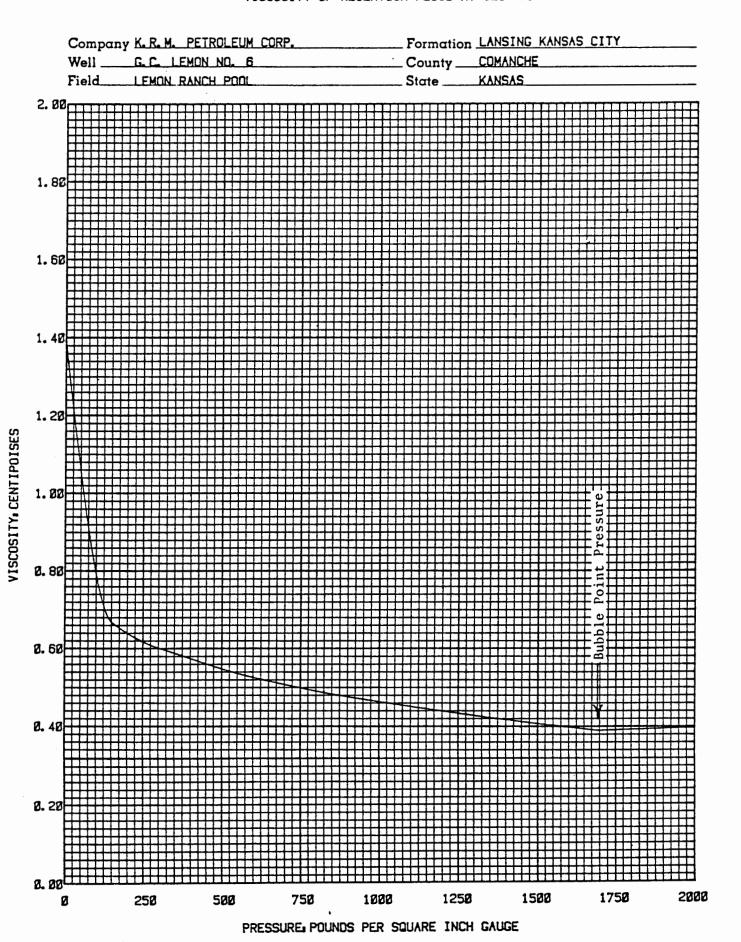

Page	<u>8</u>	of	1	1
File	RFL	79352		
le11	G.C.	Lemon	No.	6

Hydrocarbon Analyses of Separator Gas Samples

Separator Conditions: 15 PSIG and 70 °F.		40 PSIG and 70 °F.		60 PSIG and 70 °F.		100 PSIG and 70 °F.		
Component	Mol Percent	GPM	Mol Percent	GPM	Mol Percent	GPM	Mol Percent	GPM
Hydrogen Sulfide Carbon Dioxide Nitrogen Methane	Nil 1.92 2.57 56.47		Nil 2.05 2.84 61.12		Nil 2.12 3.01 63.83		Nil 2.18 3.27 67.95	
Ethane Propane iso-Butane n-Butane iso-Pentane n-Pentane Ilexanes Ileptanes plus	10.81 16.27 2.26 6.47 1.23 1.16 0.52 0.32 100.00	2.874 4.451 0.735 2.028 0.448 0.418 0.211 0.144 11.309	11.15 14.64 1.73 4.58 0.75 0.68 0.29 0.17	2.965 4.006 0.563 1.435 0.273 0.245 0.118 0.077 9.682	11.13 13.31 1.44 3.71 0.58 0.52 0.22 0.13 100.00	2.960 3.642 0.468 1.163 0.211 0.187 0.089 0.059 8.779	10.73 11.07 1.08 2.71 0.40 0.36 0.16 0.09 100.00	2.853 3.029 0.351 0.849 0.146 0.130 0.065 <u>0.041</u> 7.464
Calculated gas gravity(Air=1.000): 0.988		0.916		0.875		0.824		
Calculated gross heating value (BTU per cubic foot of dry gas at 14.65 psia and 60°F.):		1589	1	465	1	402	1	317


Page 9 of 11 File RFL 79352

DIFFERENTIAL VAPORIZATION OF RESERVOIR FLUID AT 125 °F.


Page ____10 of ___11 File ____ RFL 79352 ____

DIFFERENTIAL VAPORIZATION OF RESERVOIR FLUID AT 125 °F.

Page 11 of 11 File RFL 79352

VISCOSITY OF RESERVOIR FLUID AT 125 °F.

