WICHITA, BRANCH

Jung-

This form shall be filed in duplicate with the Kansas Corporation Commission, 200 Colorado Derby Building, Wichita, Kansas 67202, within ten days after the completion of the well, regardless of how the well was completed. Attach separate letter of request if the information is to be held confidential. confidential, only file one copy. Information on side one will be of public record and side two will then be held confidential. Circle one: (Oil, Gas, Dry, SWD, OWWO, Injection. Type and complete ALL sections. Applications must be filed for dual completion, commingling, SWD and injection, T.A. Attach wireline logs (i.e. electrical log, sonic log, gamma ray neutron log, etc.). KCC # (316) 263-3238. (Rules 82-2-105 & 82-2-125) API NO. 15-039-20,633 OPERATOR Overland Energy **COUNTY** Decatur ADDRESS 1640 Grant St. FIELD Jennings Denver. CO 80203 **CONTACT PERSON Richard W. Webb PROD. FORMATION Lansing/Kansas City PHONE 303-830-1200 NOONE LEASE PURCHASER Mobil Oil Corporation well No. 1-25 Twin ADDRESS P. O. Box 900 WELL LOCATION 50' Wof SW SE SE Dallas, TX 7522**1** Ft. from Line and DRILLING Abercrombie Drilling, Inc. CONTRACTOR ____ Ft. from ____ Line of ADDRESS 801 Union Center the SE/4 SEC. 25 TWP. 45 RGE. 27W Wichita, KS 67202 WELL PLAT PLUGGING CONTRACTOR KCC ADDRESS ' KGS / (Office Use) TOTAL DEPTH 3700' PBTD 3630' 25 UD DATE 2/02/82 DATE COMPLETED 2/13/82 ELEV: GR 2506' DF 2513' KB 2514' DRILLED WITH (XABLE) (ROTARY) (AKK) TOOLS Amount of surface pipe set and cemented 176.19' . DV Tool Used? No AFFIDAVIT STATE OF Colorado , COUNTY OF Denver SS, I, Richard W. Webb OF LAWFUL AGE, BEING FIRST DULY SWORN UPON HIS OATH, DEPOSES THAT HE IS President (FOR)(OF) Overland Energy, Inc. OPERATOR OF THE Noone LEASE, AND IS DULY AUTHORIZED TO MAKE THIS AFFIDAVIT FOR AND ON THE BEHALF OF SAID OPERATOR, THAT WELL NO. 1-25 Twin ON SAID LEAST HAS THEN VONDETED AS OF THE 18th DAY OF March , 19 82 , AND THAT

WELL LOG

Show all important gones of perosity and contents thereof; cored intervals, and all drill-stem tests, in-

SHOW GEOLOGICAL MARKERS, LOGS RUN, OR OTHER DESCRIPTIVE INFORMATION.

FORMATION DESCRIPTION, CONTENTS, ETC.	ТОР	воттом	HAME	DEPTH
				25-4-
Top Soil, Sand, & Shale	0	182		
Sand & Shale	182	569		
Shale, Sand & Pyrite	569	1080		
Shale & Sand	1080	1289		
Sand & Sale	1289	1485		
Shale	1485	1628		
Shale & Sand	1628	1820		
Shale	1820	2015		
Anhydrite	2015	2044		
Sand & Shale	2044	2070		
SHale	2070	2385		
Sand & Shale	2385	2459		
_ime & Shale	2459	2700		
Shale & Lime	2700	2924		
Lime & Shale	2924	3492		
Lime	3492	3700		į
Rotary Total Depth		3700		
				1

	ACID	, PRACIOR	E, SHUI, CEMENI	JUULLA	E RECORD		4		
Amount and kind of material used					Depth interval treated				
1500 gal MCA, fo	1 MCA, followed by 3000 gal NE acid					3590.0,	3454.5,	3446.0	
500 gal MCA, followed by 3000 gal NE acid					3156.5,	3095.0,	2806.5	49	
Date of this production Producing method (flowing, pumping, gas lift, etc. 4/21/82 Pumping				it, etc.)	Gravit	32°			
RATE OF PRODUCTION PER 24 HOURS	он 38	bbis.	Ges	MCF	51 %	39 bbls.	s-ell ratio	CFPB	/6.2
Disposition of gas (vented, us					Perforati		0 2806, 3454.		315
		and the second second second			de la distribución de la distrib				4.1

Report of all strings set - surface, intermediate, production, etc. CASING RECORD (New) or (VSEC)								
Purpose of string	Size hele drilled	Size cesing set (in O.D.)	Weight lbs/ft.	Setting depth	Type coment	Socks	Type and percent additives	
Surface	174"	13 3/8"	47#	174'	Common	250		
Intermediate	124"	8 5/8"	24#	2012 ¹	50-50pozmix	800	2% gel, 3% Ca6	
Production	7 7/8"	4 1/2"	11.6#	3682'	60-40pozmix	250	4% gel, 10% Sa	

	LINER RECORD			PERFORATION RECORD			
Top, ft. None Bettom, ft.		Socks coment	Shots per ft.	Size & type	Depth Interval		
:	TUBING RECORD	e e e e e e e e e e e e e e e e e e e	1	3/8"	3590.0, 3454.5 3446.0		
2 3/8"	Setting depth 3625	Pecker set et None	1	3/8"	3156.5, 3095.0 2806.5		