Kansas Corporation Commission OIL & GAS CONSERVATION DIVISION Form ACO-1 September 1999 Form Must Be Typed ### WELL COMPLETION FORM **WELL HISTORY - DESCRIPTION OF WELL & LEASE** Operator: License # 33342 Name: Blue Jay Operating, LLC Phone: (817) 546-0034 License: 33072 Wellsite Geologist: NA Designate Type of Completion: Address: 4916 Camp Bowie Blvd., Suite 204 Contractor: Name: WELL RET-WED DRILLING CU INC City/State/Zip: Fort Worth, TX 76107 Purchaser: Cherokee Basin Pipeline LLC Operator Contact Person: Jens Hansen | County: Wilson | | |--|--| | NW_NW_SE Sec. 11 Twp. 30 | S. R. 14 | | | N (circle one) Line of Section | | | W (circle one) Line of Section | | Footages Calculated from Nearest Outsi | | | (circle one) NE (SE) | w sw | | Lease Name: Willard | Well #: A-6 | | Field Name: Cherokee Basin Coal G | Bas | | Producing Formation: See Ren | | | Elevation: Ground: 926' Ke | | | Total Depth: 1328' Plug Back Total D | | | Amount of Surface Pipe Set and Cemente | | | Multiple Stage Cementing Collar Used? | Yes VN | | If yes, show depth set | | | If Alternate II completion, cement circulat | | | feet depth to surface w/ 1 ALT II WHM 9-23 | | | ALT IT WHM 9-25 | 5-06 | | Drilling Fluid Management Plan (Data must be collected from the Reserve Pit) | | | Chloride content NA ppm F | The last construers and the state of sta | | Dewatering method used Pump | riula volume bbls | | | | | Location of fluid disposal if hauled offsite: | : | | Operator Name: Rick's Tank Truck Servi | ce | | Lease Name: Sheet's Lease A-1 Li | icense No.: 17648-0 | | Quarter NE4 Sec. 11 Twp. 28N | S. R. 13E | | County: Washington,OK Docket | No.: 826163 | | | | | | | ✓ New Well ____ Re-Entry ___ Workover _____SWD _____SIOW _____Temp. Abd. __ ENHR _____ SIGW Gas Dry __ Other (Core, WSW, Expl., Cathodic, etc) If Workover/Re-entry: Old Well Info as follows: Operator:__ Well Name: _ Original Comp. Date: _____ Original Total Depth: ___ _____Re-perf. _ Deepening ____Conv. to Enhr./SWD ____Plug Back Total Depth _ Plug Back_ _ Commingled Docket No.___ _ Dual Completion Docket No.___ _ Other (SWD or Enhr.?) Docket No._ 10/8/04 10/12/04 Spud Date or Date Reached TD Completion Date or Recompletion Date Recompletion Date INSTRUCTIONS: An original and two copies of this form shall be filed with Kansas 67202, within 120 days of the spud date, recompletion, workov Information of side two of this form will be held confidential for a period of 107 for confidentiality in excess of 12 months). One copy of all wireline logs and geologist well report shall be attached with this form. ALL CEMENTING TICKETS MUST BE ATTACHED. Submit CP-4 form with all plugged wells. Submit CP-111 form with all temporarily abandoned wells. All requirements of the rules and regulations promulgated to regulate the oil and gas industry have been fully complied with and the statements herein are complete an the best of my knowledge. Signature; KCC Office Use ONLY DENY Letter of Confidentiality Received If Denied, Yes Date: 10-24-2005 Subscribed and YES Wireline Log Received No __ Geologist Report Received Notary Public: NO UIC Distribution JONNIE V. WALL Date Commission Expires: **NOTARY PUBLIC** STATE OF TEXAS My Courn. Exp. 06-11-2006 KCC WICHITA # 15-205-75854-00-00 Side Two ORIGINAL | ec. 11 Twp. 3 | e Jay Operating, | | | Lease | e Name: _V | Villara | | Well #: A-6 | | |---|---|------------------------------|--------------------------------------|------------------------|-----------------|--|---|-----------------|-------------------------------| | 36 twp | 30 S. R. 14 | | West | Count | ty: Wilson | n | | | | | sted, time tool ope
mperature, fluid re | how important tops a
n and closed, flowing
covery, and flow rate
is surveyed. Attach | g and shut-
s if gas to s | in pressures,
surface test, a | whether s
long with | hut-in pre | ssure reached | static level, hydros | tatic pressur | es, bottom hole | | Drill Stem Tests Taken ☐ Yes ✓ No (Attach Additional Sheets) | | | | | V L | og Format | tion (Top), Depth ar | nd Datum | Sample | | amples Sent to Ge | ological Survey | Ye | s 🗸 No | | Name
Drille | e
er Log Enclo | sed | Тор | Datum | | ores Taken
ectric Log Run
(Submit Copy) | | ☐ Ye | | | | | | | | | st All E. Logs Run: | | | | | | | | | | | High Resolution | on Compensate | ed Densi | ty/Neutror | n Log | | | | | | | | | Repor | | RECORD
conductor, s | | rw 🔲 Used
ermediate, produ | ction, etc. | | | | Purpose of String | Size Hole
Drilled | Siz | e Casing
(In O.D.) | We | eight
s./Ft. | Setting
Depth | Type of
Cement | # Sacks
Used | Type and Percent
Additives | | Surface | 12.25" | 8 5/8" | (111 (3.13.) | 26 |). / I C. | 42' 9" | Portland | 11 | Additives | | Long String | 6.75" | 4 1/2" | | 10.5 | | 1316' | 60/40 PozMix Ce,emt | 180 | See Attached | | | | | | | | | | | | | | | | ADDITIONAL | . CEMENT | TNG / SQL | JEEZE RECOR | ID . | | | | Purpose: —— Perforate —— Protect Casing —— Plug Back TD —— Plug Off Zone | Depth
Top Bottom | Туре | of Cement | #Sack | ks Used | | Type and Pa | ercent Additive | s | | Shots Per Foot | | | D - Bridge Pluç
Each Interval Pei | | e | | acture, Shot, Cement
Amount and Kind of Ma | | ord Depth | | . | Mulky - 915'-91 | 9' | | | | Frac - Mull | ky 12000# 16/30 | sand | | | | Bevier - 966'-96 | 9'; Crowb | ourg 983'-98 | 5' | | Foam Frac: Bevier/Crowburg 10000# 16/30 sand | | | | | , | Flemming - 102 | emming - 1022'-1025' | | | | Foam Frac | - Flemming 600 | 00# 16/30 \$ | sand | | FUBING RECORD | Size | Set At | | Packer | ·At | Liner Run | ✓ Yes No | | | | Date of First, Resume | rd Production, SWD or | Enhr. | Producing Met | hod | Flowing | g 🕢 Pum | | O11 | ner (Explain) | | Estimated Production
Per 24 Hours | Oil | Bbls. | Gas
20 | Mof | Wate
50-7 | | Bbls. G | as-Oil Ratio | Gravity | | Disposition of Gas | METHOD OF | COMPLETIC | N | | | Production Inte | erval | | RECEIVE | KCC WICHITA # 15-205-25854-00-00 ## Well Refined Drilling Company, Inc. 4270 Gray Road - Thayer, KS 66776 Contractor License # 33072 - 620-763-2619/Office; 918-440-0976/Lowell Pocket; 620-432-6170/Jeff Pocket; 620-763-2065/FAX | | | Santas (1965) de la Companya (1965) de la Companya (1965) de la Companya (1965) de la Companya (1965) de la Co | | | CALE BY | esg flood as a side
Sala dignal labor ng | Andrewski (m. 1973)
Andrewski (m. 1974)
Andrewski (m. 1974) | | |--|---|---|--|--|--|--|---|--| | Rig #: 2
API #: 15205-25854-0000 | | | | \$4 ⁰⁰⁰ | S 11 | | | | | The second second second | | | | X | 2 Rig#2) ~ | Location | | | | Operator | | Jay Operating Li | LC | | 4, | County: | Wilsor | | | | | S Camp Bowie | | | ANERO
Rig#2
ANL DIC | | | | | | | Worth, TX 76107 | 1000 May 12 Co. 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 | | | Gas | Tests | Alam Ingili Waling Sangara | | Well #: / | | Lease Name: W | /illard | er Canada (C. Maria | Depth | Pounds | Orfice | flow - MCF | | Location: | | ft. from (N / S) | Line | | 739 | 0# | 1/8" | 0 | | | , 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 | ft. from (E / W) | Line | <u> -</u> , | 814 | 2# | . 1/8" | 3.92 | | Spud Date: | | | | Separate His | 905 | 2# | 1/8" | 3.92 | | Date Comp | | 10/12/2004 | TD: 132 | 8 | 928 | 5# | 1/8" | 6.39 | | Geologis | | Land the second control of the second con- | water is the said | wish to take to | 1039 | 5# | 1/8" | 6.39 | | Casing R | | Surface | Producti | | 1089 | 5# | 1/8" | 6.39 | | Hole Siz | | 12 1/4" | 4 | 6 3/4" | 1114 | 5# | 1/8" | 6.39 | | Casing S | ize | 8 5/8" | Salar of free Sec. 13 | | 1139 | 5# | . 1/8" | 6.39 | | Weight | | 42' 9" | <u> </u> | | 1240 | 5# | 1/8" | 6.39 | | Setting D | | | 19 | | 1325 | 5# | 1/8" | 6.39 | | Cement | Туре | Portland | By Yu | | | Section Constitution | કે જે શ ે. મુંત્રો કે ફેલ્પ કે ના કહેર હું છે. | | | Sacks | 4 4 | 11 W | | | | Compension of the | | Entropy of the control of the state s | | Feet of C | Casing : | 42' 9" C | | 54 (104)
14 (104) | Maria de la compansión de | The state of s | And Wales | V. Salah Baran dan Salah | | 1 1966.3 | 1 1 1/2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | १ मुन्द्रिक्षणाः
विकास | | | | | | Rig Time | } | Work Performed | | | | | | REST VERSON SECTION OF THE | | | 7 117 | | | mar control | and the state of t | | | Carrier School St. | | | لأبرب | | | | | | | Salah graja 35 Magaritan | | | | | 1 | | | | 5.0 | | | | | | | | [2] 1 [24 - 8 (44 4 4) | | 1 | | | 0,0 | 1.0 | | Dellar Barrella | | T. 15/99 STATE | Page No. 15 | 10 m 10 13 m | Lie die Canadillie | | | | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | | Well L | o <u>e</u> | Talah (Sana | | | | | Bottom | Formation | | | OG
Formation | Top | Bottom | Formation | | 0 | 1. 1. | Overburden | Тор
299 | Bottom | 11.7. 30.7. 1.1. 1.1. 1.1. 1.1. 1.1. 1.1. 1.1. | Top
553 | | | | 0
1 | 1. 1. | | Top | Bottom
324 | Formation | | 560 | mg shi/l strks | | 0
1
2 | 1
2
4 | Overburden
clay
clay/l strks | Тор
299 | Bottom
324
329
330 | Formation
snd/shl strks
sand
coal | 553 | 560
574 | | | 0
1
2
4 | 1
2
4
6 | Overburden
clay
clay/l strks
clay/lime | Top
299
324
329
330 | Bottom
324
329
330
342 | Formation
snd/shl strks
sand
coal
g shl/l strks | 553
560 | 560
574
606 | mg shl/l strks
dg shl/l strks
lime | | 0
1
2
4
6 | 1
2
4
6
10 | Overburden
clay
clay/l strks
clay/lime
shale/lime | Top
299
324
329 | Bottom
324
329
330
342
345 | Formation snd/shl strks sand/ coal g shl/l strks | 553
560
574 | 560
574
606
608 | mg shl/l strks
dg shl/l strks
lime
black shale | | 0
1
2
4
6
10 | 1
2
4
6
10
13 | Overburden clay clay/I strks clay/Iime shale/Iime lime | Top
299
324
329
330
342
345 | Bottom
324
329
330
342
345
352 | Formation snd/shi strks sand coal g shi/i strks lime mg shi/i strks | 553
560
574
606 | 560
574
606
608
622 | mg shl/l strks
dg shl/l strks
lime
black shale
dg shl/l strks | | 0
1
2
4
6
10 | 1
2
4
6
10
13
27 | Overburden
clay.
clay/I strks
clay/Iime
shale/Iime
lime | Top
299
324
329
330
342
345
352 | Bottom
324
329
330
342
345
352
415 | Formation snd/shl strks sand coal g shl/l strks lime mg shl/l strks | 553
560
574
606
608 | 560
574
606
608
622
624 | mg shl/l strks
dg shl/l strks
Jime
black shale
dg shl/l strks
lime | | 0
1
2
4
6
10
13
27 | 1
2
4
6
10
13
27
68 | Overburden clay. clay/l strks. clay/lime shale/lime lime lime/shale | Top
299
324
329
330
342
345
352
415 | Bottom
324
329
330
342
345
352
415
420 | Formation snd/shi strks sand coal g shi/i strks lime mg shi/i strks lime dg shi/i strks | 553
560
574
606
608
622 | 560
574
606
608
622
624
632 | mg shl/l strks
dg shl/l strks
lime
black shale
dg shl/l strks | | 0
1
2
4
6
10
13
27
68 | 1
2
4
6
10
13
27
68
107 | Overburden clay. clay/l strks. clay/lime shale/lime lime lime/shale lime l/shale strks | Top
299
324
329
330
342
345
345
415
420 | Bottom
324
329
330
342
345
352
415
420
421 | Formation sne/shi strks sand coal g shi/i strks lime mg shi/i strks lime dg shi/i strks | 553
560
574
606
608
622
624 | 560
574
606
608
622
624
632
633 | mg shi/l strks dg shi/l strks lime black shale dg shi/l strks lime dg shi/l strks | | 0
1
2
4
6
10
13
27
68
107 | 1
2
4
6
10
13
27
68
107
125 | Overburden clay. clay/l strks. clay/lime shale/lime lime lime lime lime l/shale strks lime | Top
299
324
329
330
342
345
352
415
420
421 | Bottom
324
329
330
342
345
352
415
420
421 | Formation snd/shi strks Sand coal g shi/i strks lime mg shi/i strks lime dg shi/i strks lime dg shi/i strks | 553
560
574
606
608
622
624
632 | 560
574
606
608
622
624
632
633
650 | mg shi/l strks
dg shi/l strks
lime
black shale
dg shi/l strks
lime
dg shi/l strks
lime/shi/l strks | | 0
1
2
4
6
10
13
27
68
107 | 1
2
4
6
10
13
27
68
107
125
127 | Overburden clay. clay/l strks. clay/lime shale/lime lime lime lime l/shale strks lime g shi/l strks | Top
299
324
329
330
342
345
352
415
420
421 | Bottom
324
329
330
342
345
352
415
420
421
422
492 | Formation snd/shl strks sand coal g shl/l strks lime mg shl/l strks lime dg shl/l strks lime dg shl/l strks | 553
560
574
606
608
622
624
632
633 | 560
574
606
608
622
624
632
633
650
653 | mg shi/l strks dg shi/l strks lime black shale dg shi/l strks lime dg shi/l strks lime/shi strks g shi/l strks | | 0
1
2
4
6
10
13
27
68
107
125
127 | 1
2
4
6
10
13
27
68
107
125
127 | Overburden clay. clay/I strks clay/lime shale/lime lime lime/shale lime l/shale strks lime g shl/I strks | Top
299
324
329
330
342
345
352
415
420
421
422
492 | Bottom
324
329
330
342
345
352
415
420
421
422
492
497 | Formation snd/shl strks sand coal g shl/l strks lime mg shl/l strks lime dg shl/l strks lime dg shl/l strks lime dg shl/l strks | 553
560
574
606
608
622
624
632
633
650 | 560
574
606
608
622
624
632
633
650
653 | mg shi/l strks dg shi/l strks lime black shale dg shi/l strks lime dg shi/l strks iime/shi strks g shi/l strks | | 0
1
2
4
6
10
13
27
68
107
125
127 | 1
2
4
6
10
13
27
68
107
125
127
134
148 | Overburden clay. clay/l strks clay/lime shale/lime lime lime/shale lime l/shale strks lime g shl/l strks lime g shl/l strks | Top
299
324
329
330
342
345
352
415
420
421
422
492
497 | Bottom
324
329
330
342
345
352
415
420
421
422
492
497
504 | Formation sno/shi strks sand coal g shi/i strks lime mg shi/i strks lime dg shi/i strks lime dg shi/i strks lime dg shi/i strks lime dg shi/i strks | 553
560
574
606
608
622
624
632
633
650
653 | 560
574
606
608
622
624
632
633
650
653
656 | mg shl/l strks dg shl/l strks lime black shale dg shl/l strks lime dg shl/l strks lime/shl strks g shl/l strks lime g shl/l strks | | 0
1
2
4
6
10
13
27
68
107
125
127
134
148 | 1
2
4
6
10
13
27
68
107
125
127
134
148
154 | Overburden clay. clay/[strks. clay/lime shale/lime lime lime/shale lime l/shale strks lime g shl/l strks lime g shl/l strks | Top 299 324 329 330 342 345 352 415 420 421 422 492 497 504 | Bottom
324
329
330
342
345
352
415
420
421
492
497
504
509 | Formation snd/shi strks sand coal g shi/i strks lime mg shi/i strks lime dg shi/i strks lime dg shi/i strks lime dg shi/i strks lime mg shi/i strks lime mg shi/i strks | 553
560
574
606
608
622
624
632
633
650
653
656 | 560
574
606
608
622
624
632
633
650
653
656
669 | mg shi/l strks dg shi/l strks lime black shale dg shi/l strks lime dg shi/l strks lime/shi strks g shi/l strks lime g shi/lime | | 0
11
2
4
6
10
13
27
68
107
125
127
134
148
154 | 1
2
4
6
10
13
27
68
107
125
127
134
148
154 | Overburden clay. clay/l strks. clay/lime shale/lime lime lime lime l/shale strks lime g shi/l strks lime g shi/l strks lime | Top 299 324 329 330 342 345 352 415 420 421 422 492 497 504 509 | Bottom
324
329
330
342
345
352
415
420
421
422
497
504
509
515 | Formation snd/shi strks sand coal g shi/i strks lime mg shi/i strks lime dg shi/i strks lime dg shi/i strks lime dg shi/i strks lime mg shi/i strks lime mg shi/i strks shiy sand | 553
560
574
606
608
622
624
632
633
650
653
656 | 560
574
606
608
622
624
632
633
650
653
656
669
680
684 | mg shi/l strks dg shi/l strks lime black shale dg shi/l strks lime dg shi/l strks lime/shl strks g shi/l strks lime/ g shi/lime lime g shi/l strks lime | | 0
1
2
4
6
10
13
27
68
107
125
127
134
148
154 | 1
2
4
6
10
13
27
68
107
125
127
134
148
154
154 | Overburden clay. clay/l strks. clay/lime shale/lime lime lime lime l/shale strks lime g shl/l strks lime g shl/l strks lime mg shl/l strks lime | Top 299 324 329 330 342 345 352 415 420 421 422 492 497 504 509 | Bottom
324
329
330
342
345
352
415
420
421
422
497
504
509
515 | Formation sne/shi strks sand coal g shi/i strks lime mg shi/i strks lime dg shi/i strks lime dg shi/i strks lime mg shi/i strks lime mg shi/i strks lime mg shi/i strks shiy sand mg sndy shale | 553
560
574
606
608
622
624
632
633
650
656
656
669 | 560
574
606
608
622
624
632
633
650
653
656
669
680
684 | mg shi/l strks dg shi/l strks lime black shale dg shi/l strks lime dg shi/l strks lime/shi strks g shi/l strks lime g shi/lime lime g shi/l strks | | 0
1
2
4
6
10
13
27
68
107
125
127
134
148
154 | 1 2
4 6
10
13
27
68
107
125
127
134
148
154
159
162
195 | Overburden clay. clay/l strks. clay/lime shale/lime lime lime lime l/shale strks lime g shi/l strks lime g shi/l strks lime | Top 299 324 329 330 342 345 352 415 420 421 422 492 497 504 509 | Bottom
324
329
330
342
345
352
415
420
421
492
497
504
509
515
525
530 | Formation snd/shi strks sand coal g shi/i strks lime mg shi/i strks lime dg shi/i strks lime dg shi/i strks lime dg shi/i strks lime mg shi/i strks lime mg shi/i strks shiy sand | 553
560
574
606
608
622
624
632
633
650
653
656
669
680
684 | 560
574
606
608
622
624
632
633
650
653
656
669
680
684
686 | mg shi/l strks dg shi/l strks lime black shale dg shi/l strks lime dg shi/l strks lime/shi strks g shi/l strks lime g shi/l strks lime lime g shi/l strks lime | RECEIVED OCT 1 7 2005 KCC WICHITA | Top | Bottom | Perating Formation | Top | Bottom | d
Formation | | A-6
Bottom | pag | |------|--------|--------------------|------|---------------------------------------|-------------------------|---------------------------------------|---------------|--| | 726 | | mg shl/l strks | | | mg sdy shale | 1.00 | Bottom | Formation | | 735 | | coal | 1057 | 1057 | mg shi/shd strks | | | asilisis and air is danisha and a | | 736 | | g shl/l strks | 1058 | | coal/blk shi strks | ļ | | *************************************** | | 741 | | sand | 1059 | | dg shale | | | | | 746 | | lam snd/shale | 1061 | 455 | mg shale | | | | | 750 | | g sdy shale | 1063 | | g shl/snd strks | | ļ | - | | 760 | 805 | mg sdy shale | 1087 | | mg sdy shale | - | | | | 805 | | mg shl/l strks | 1105 | 1114 | Bartlesville mg shl snd | | | 10 g | | 811 | 814 | lime | 1105 | | slight oil odor | | 1 (1) | *************************************** | | 814 | | Mulberry coal | 1114 | manufacture of the second | mg sdy shale | | | · · · · · · · · · · · · · · · · · · · | | 815 | | lime/shl strks | 1139 | 1147 | mg shly sand | | † | | | 818 | | Pink lime | 1147 | | mg sdy shale | | | | | 840 | | dg shale | 1152 | | mg shi/snd strks | 28/17 | | | | 865 | | g shi/l strks | 1156 | 1162 | sdy shale | | | | | 871 | | mg shl/l strks | 1162 | 1167 | sand | | | | | 876 | | lime | 1167 | | sand/coal strks | | | | | 891 | 899 | lime/shl strks | 1181 | 1 76 1 90 15 | mg sdy shale | - | L | - | | 899 | | dg shale | 1185 | 1188 | sand | | | | | 904 | 915 | lime | 1188 | | sdy g shale | | | | | 915 | 917 | dg shale | 1192 | 1198 | g shl/shd strks | | | | | 917 | 919 | Mulky blk shale | 1198 | | dg shl/l strks | | | | | 919 | 920 | coal | 1219 | 1220 | coal | | | | | 920 | 928 | g shi/l strks | 1220 | | g shale | · · · · · · · · · · · · · · · · · · · | | | | 928 | | mg shl/l strks | 1223 | | Mississippi chert | | | | | 935 | 964 | dg shi/l strks | | | /chat I strks | - | | | | 964 | | mg shl/l strks | 1228 | 1252 | | | | | | 968 | 969 | coal | 1252 | | tan/lime | | | | | 969 | 979 | mg shi/i strks | 1274 | | g w chert/lime | | | *************************************** | | 979 | 981 | ime | 1286 | | g chert/l strks | | | | | 981 | 985 | dg shale | 1310 | | tan/lime | | | 7. | | 985 | 1002 | shi/i strks | 1325 | | Total Depth | | | ** | | 1002 | 1021 | ng shi/i strks | | | | | | | | 1021 | 1023 | coal | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | 1023 | 1033 | sdy shale | | | | | | | | 1033 | | ng shl/l strks | | | | - 1 | | | 04LJ-101204-R2-066-Willard A-6 Blue Jay Operating Abbreviations used: d=dark, g=gray,sh or shl=shale, snd or sd=sand,m=med,br=brown,chrt=chert, cht=chat, /=with, l=lime, w=white, strks or stks =streaks, lam=laminated, grn=green, mg=medium gray b or blk=black, dg=dark gray, sdy=sandy, shly=shaley, Keep Duilling - We're Willing! RECEIVED 0CT 1 7 2005 KCC WICHITA 620-431-9210 OR 800-467-8676 **FOREMAN** CONSOLIDATED OIL WELL SERVICES, INC. **211 W. 14TH STREET, CHANUTE, KS 66720** 15-205-25854-0000 TICKET NUMBER Eure Ka LOCATION TRÉATMENT REPORT & FIELD TICKET | C | F | М | | VТ | |---|---|-----|---|----| | | _ | BVI | _ | •• | | DATE | CUSTOMER# | WE | LL NAME & NUM | BER | SECTION | TOWNSHIP | RANGE | COUNTY | |---------------|---------------|------------|-------------------|------------|---------------------------------------|---|-----------------|---------------| | 10-13-04 | | Willar | d # A-6 | | // | 30s | 14= | Wilson | | CUSTOMER | | _ | | | | S. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | | | | Blue | Jay Operat | 45 | | _ | TRUCK# | DRIVER | TRUCK# | DRIVER | | MAILING ADDRI | ES9 / | <i>y</i> | | | 446 | Rick | | | | 4916 C | amp Bowie Blu | d. Suite 2 | 104 | | 441 | AnThony | | | | CITY | | STATE | ZIP CODE | | 434 | Jim | | | | ForTwoiT | h | Tx | 76107 | | 437 | Rondy | | | | OB TYPE | angsteing | HOLE SIZE | 63/4 | HOLE DEPTH | 1325 | CASING SIZE & W | /EIGHT41/2 | "- 10.5 # | | ASING DEPTH | 1316 | DRILL PIPE | | TUBING | · · · · · · · · · · · · · · · · · · · | | OTHER | | | SLURRY WEIGH | HT /33/6 | SLURRY VOL | | | <u></u> | CEMENT LEFT in | | | | DISPLACEMEN' | T 21 Bbls. | DISPLACEME | NT PSI <u>400</u> | 901 | D Lorded Hug | RATE31 | 3811 | | | REMARKS: 5 | aleTy Merting | | | | | 10BH. GeLFA | | ater. | | 10BW. Due | water Mixe | d 1805Ks. | 60/40 Poz | mix census | w/ 27 Gel 3 | 725ALT 5# PY | k Gilsonite 14# | Florele mixes | 133/bs. Ph/GAL ShuTdown - washout pump & Lines - Release Plug - Displace Plug with 2/ Bbls water. Final pumping at 400 PSI - Rumped Plug To 900 PSI - wait 2 min. - Release Pressure Float Held- close casing in with OPSI. Job complete- Tear about Good Cement FeTwas to Swifere with 9 Rbl. Slully ## "Thank you" | ACCOUNT
CODE | QUANITY or UNITS | DESCRIPTION of SERVICES or PRODUCT | UNIT PRICE | TOTAL | |-----------------|------------------|------------------------------------|-------------|---------| | 5401- | | PUMP CHARGE | 710.00 | 7/0.00 | | 5406 | 60 | MILEAGE | 2.35 | 141.00 | | //3/ | 180 sks. | 60/40 Pozmix Cement | 7.30 | 1314.00 | | 1110 | | Gilsonite 5# PYSK | 20.35 | 366.30 | | (111 | 450 16s. | SALT 52 | 126 16. | 117.00 | | 1118 | <u> </u> | Gel 27. | 12.40 | 37.20 | | 1107 | 2 SKs. | Flocele 14" PYSK. | 40.00 | 80.00 | | 5407 | 7.94 TON | 60 miles - Bulk Truck | M/c | 225.00 | | 1118 | 2 SKs. | Geh-Flush | 12.40 | 24.80 | | 5502 C | 3 His. | 80 Bbl. VAC TIMEK | 78.00 | 234,00 | | 502 C | 3 His. | 80 Bbl. VAC Truck | 78.00 | 234.00 | | 1123 | 5880 GAI | Citywater | 11.50 P/100 | 67.62 | | 4129.40 | | 41/2" Centralizar | 26,00 | 26.00 | | 4156.40 | 7 | 442" Floatshoe | 115.00 | 115.00 | | 4404 | 1 | 4'b" Top Rubber Plug | 35.00 | 35,00 | | | | 6,3% | SALES TAX | 137.52 | | | <i>A</i> |) | ESTIMATED | 20/11/ | ol Ma- Neu OCT 17 2005 15-205-25854.00-00 BLUE JAY OPERATING - THE WOODLANDS, TEXAS Coal Seam Frac Project March 23, 2005 Blue Jay - Willard #6 - Stage C Mulky (915'-919', 4 spf), 20 shots total. Started pump in with 420 gals gelled water, formation did not break down. During pump in, shut down twice to dump bail 20 gals of 20% HCl. Followed pump in with 500 gals of 7.5% HCl. Started treatment with a pad of 5000 gallons of MavFoam C70, followed by 6000 gals of MavFoam C70 carrying 12000 lbs 16/30 Brady Sand at 1.0 to 3.0 ppg down hole. The treatment was flushed to the top perforation with 610 gal gelled water. A total of 138,000 SCF of N_2 was used. Started acid @ 2 bpm, STP-3725, BH-3840. Started Flush, STP-2957, BH-3154. Formation broke down at 3919 psi. Started Pad, STP-943, BH-1247. Initial FQ was 54. Sand stages are as follows: Start 1#, STP-1333, BH-1404, FQ-71. Start 2#, STP-1429, BH-1542, FQ-74. Start 3#, STP-1364, BH-1500, FQ-73. Start Flush, STP-1344, BH-1493, FQ-72. Pad through sand stages were pumped @ 15-18 BPM downhole. FQ averaged 72Q. Max pressure was 3919. Average rate was 17 bpm at 1376 psi surface (1484 psl bottomhole). ISIP was 818 psi; 5 min - 749 psi, 10 min - 731 psi, 15 min - 715 psi. RECEIVED 0CT 1 7 2005 KCC WICHITA 15-205-25854-0000 # BLUE JAY OPERATING - THE WOODLANDS, TEXAS Coal Seam Frac Project March 23, 2005 #### Blue Jay - Willard #6 - Stage B Crowburg (983'-985', 4 spf), Bevier (966'-969', 4 spf), 20 shots total. Started pump in with 126 gals of gelled water, followed by 500 gals of 7.5% HCl. Followed with 546 gal gelled water flush. Started treatment with a pad of 5000 gallons of MavFoam C70, followed by 4500 gals of MavFoam C70 carrying 10000 lbs 16/30 Brady Sand at 1.0 to 3.0 ppg down hole. The treatment was flushed to the top perforation with 647 gal gelled water, then overflushed with 42 gal. A total of 122,000 SCF of N₂ was used. Started acid @ 2.5 bpm, STP-2498, BH-2651. Started Flush, STP-2476, BH-2571. Formation broke down at 3579 psi. Started Pad, STP-2471, BH-2560. Initial FQ was 51. Sand stages are as follows: Start 1#, STP-1427, BH-1515, FQ-71. Start 2#, STP-1418, BH-1535, FQ-72. Start 3#, STP-1440, BH-1578, FQ-72. Start Flush, STP-1204, BH-1464, FQ-73. Pad through sand stages were pumped @ 15-19 BPM downhole. FQ averaged 72Q. Max pressure was 3579 psi. Average rate was 18 bpm at 1420 psi surface (1564 psi bottomhole). ISIP was 787 psi; 5 min - 674 psi, 10 min - 653 psi, 15 min - 637 psi. RECEIVED OCT 1 7 2005 KCC WICHITA 15-205.25854-02-00 BLUE JAY OPERATING - THE WOODLANDS, TEXAS Coal Seam Frac Project March 23, 2005 Blue Jay - Willard #6 - Stage A Flemming (1022'-1025', 4 spf), 12 shots total. Started with 500 gals of 7.5% HCl. Followed with 462 gal gelled water flush. Started treatment with a pad of 5000 gallons of MavFoam C70, followed by 3000 gals of MavFoam C70 carrying 6000 lbs 16/30 Brady Sand at 1.0 to 3.0 ppg down hole. The treatment was flushed to the top perforation with 672 gal gelled water, then overflushed with 42 gal. A total of 98,000 SCF of N₂ was used. Started acid @ 10 bpm, STP-0, BH-41. Started Flush, STP-0, BH-51. Formation broke down at 1653 psi. Started Pad, STP-1314, BH-1663. Initial FQ was 53. Sand stages are as follows: Start 1#, STP-1200, BH-1287, FQ-71. Start 2#, STP-1191, BH-1303, FQ-73. Start 3#, STP-1223, BH-1368, FQ-72. Start Flush, STP-1206, BH-1443, FQ-71. Pad through sand stages were pumped @ 15-18 BPM downhole. FQ averaged 72Q. Max pressure was 1653. Average rate was 18 BPM at 1195 psi surface (1329 psi bottomhole). ISIP was 819 psi; 5 min – 627 psi, 10 min – 584 psi, 15 min - 557 psi.