15-163-00129-00-00 STATE OF KANSAS STATE CORPORATION COMMISSION ## WELL PLUGGING RECORD | Strike | out | upper | line | |--------|------|---------|------| | when | repo | rting r | lug- | | | | farmat | | | Give All Information Completely Make Required Affidavit Mail or Deliver Report to: Conservation Division State Corporation Commission | T.o. | | | | RECORD | | ting plug-
ormations | | | | |--|--|---|---|--|--------------------|---|---|--|--|--| | 800 Bitting Building
Wichita, Kansas | T. (O) | oks | Coun | ty. Sec. 12. | Twp8. Rge | 20. (35) | (W) | | | | | NORTH | Lease Owner | E4NW4SW4" o
Continent | or footage fro
al Oil | om lines
Company | らで ひで 70種 | | | | | | | | Lease Name | E. B. Sch | neider | | | Well No | 7 | | | | | | Lease Name E. B. Schneider Well No. 1 Office Address Drawer 1267, Ponca City, Oklahoma | | | | | | | | | | | | Character of W | Character of Well (completed as Oil, Gas or Dry Hole) Dry hole Date well completed November 11, 1948 | | | | | | | | | | | Date well comp | leted | | | November | 11, | 19.48 | | | | | | Application for | plugging filedplugging approve | ч
 | | November | | 19.48 | | | | | | | | | | | | | | | | | | Plugging commenced. November 12, 1948 Plugging completed. November 12, 1948 Reason for abandonment of well or producing formation. | | | | | | | | | | | | If a producing | well is abandoned
obtained from the | date of last | production | | | 19 | | | | | Locate well correctly on above | | | | | | | | | | | | Section Plat Name of Conservation Agent who sup | ervised plugging of th | is well | . Rives | Lava. | Kansas | | | | | | | Producing formation | Dept | th to top | Botton | 1 | Total Depth of V | Vell3505 | Feet | | | | | Show depth and thickness of all water, | oil and gas formation | ıs. | * | | - I - I | | | | | | | OIL, GAS OR WATER RECORD | \mathbf{s} | | | | C | SASING RE | CORD | | | | | Formation | Content | T | T | | | | | | | | | | | From | To | Size | Put In | Pulled | | | | | | OTADOGT# | Dry | 34551 | 3505 | 13 3/8" | 364'6" | Non | .e | | | | | | | | | | | *************************************** | | | | | | | | | *************************************** | | | | *************************************** | | | | | | | | *************************************** | | | | | | | | | | | - . | | | | *************************************** | | | | | | | | | | | | | | | | | | Filled hole with he set plug at 250's hole with heavy muto surface. Plugge | ind cemented
id to 15° an | with 20 o | sacks c
vith 10 | ement; fi
sacks ce | lled
ment | | | | | | | Correspondence regarding this we Address. STATE OF. KANSAS F. L. Dunn Deing first duly sworn on oath, says: 7 described well as filed and that the same Subscribed and Sworn to before a | Il should be addressed, COUNT, COUNT, COUNT | e of the facts, stat. So help me Go | F. L. R. F. Lyons RICE Dyce of owner tements, and | Dunn D. #4 , Kansas er) or (owner or or la matters herein NU STA | propertory) of the | above-describence log of the | oed well, | | | | | 1y commission expiresOctober | | | B | ins / | 110 | Notary Pr | ublic. | | | | FLD-AEA 11-16-48 State Corp. Comm. LPC File W. N. Bartlett Deep Rock Oil Corp. 15-163-00129-00-00 PRODUCTION & DRILLING DEPT. ## , NEW WELL COMPLETION AND OR ABANDONMENT RECORD A.F.E. No. 01.08 | 7 | Dist. | | Fie | | in l | · , · , · , · , · · · · · · · · · · · · | Lea | 86 | Z02- | 0.001 | | Y | Vell No | | | |--|---|----------------------|-----------------------|---------------------------------------|---|---|---|--|--|-------------|--|--|---------------------|--|--| | 2 | Co | | _ State | | 0.0 | Contrac | tor | | lo k | 14. | <i>10</i> е т. | D | P.D. | - 196 | ft | | 3 | Landing Flange E | lev.+ | 70 | ft. I | Depth 1 | Measure | l From | | ; Не | ight of N | | int from Land | ling Flange. | <u>4*</u> _ | ft | | 4 | Date: Spudded | 10-26- | *45 | Dri | lling C | Complete | d | - | Te | sted | | Rig | Released | 22-1 | -40 | | | • | ,,, | | | | | | AND TUE | ING RE | CORD | | 31.9 | 110104004 | 7 | | | 5 | SIZE | WT. T | IREAD | S GRAI | E AND | NEW | E. L. | DEPTH | MEA | SUREME | NTS INC. T | HREADS | TOP OF | NO. OF | HOLE | | • | 1 | | . & TY | | AKE | OR
S. H. | L. W.
SMLS. | SET FT. | QUANT | | VTITANU | QUANTITY | LINER | JOINTS | SIZE | | | 3.3 3/8 | 33 | CALIFORNIA DI VICANIA | | dilana adda adda | 請 | 301 | • | SET | tok fith St | | EFT IN HOLE |) | 4% | | | 6 | A 4 4 1 1 3 1 1 1 | (30) | | 49642 | bq¢ | 福港 | 10042 | | 4.7.7 | (a) | 000 | 000.0 | | 9 | | | 7 | | ļ | | ļ | | | | | | | 1 | | | | | | 8 | | | | 1 | | 1 | | | | | | | | | | | 9 | | | | | | - | | | | | | | | | | | 10 | | | | | | 1 | | | · | | 1 | | | | | | 11 | | | | | | 1 | | | | | | | | | | | 12 | 1 | | | | | ĺ | | | 1 | | | 1 | | | | | | 1 | | | | | ł | | | | | 1 | | | | | | 13 | <u> </u> | | | | | | CEMEN | TING REC | | | | | | | | | | | | | | | | CEME | TING REC | | 7 | | | | | | | 14 | METHOD | | EAN | | ACKS | SQUEEZI | | | SLURRY
WT. | HOURS | | DEPTH | | EMARKS: | | | | | TYPE | CEME | NT U | SED | AWAY BATCHES | | ES PRESSURE | LB./GAL. | SET | FROM | FROM TO | | PER, OTH | ER LOGS. | | 15 | | Por | il on | 4 3 | 00 | | | | 1.40 | 20 | 0 | 360 | # 3. m | 0 000 | s of na | | 16 | T choice | 02 | | | 00 | | 1 | | 1.0 | 19601 1960 | 404 | 200 | | | ing men manarantan | | 17 | | | | | 10 | | ely. | | | igen | | Attitut Laufatte, adule. | 30404. Minustration | ne one of the state stat | | | | OVER AND AND AND AND | on software & | 第 4個年刊時間以 | 門高 | AND THE ST | | 486 | | A STATE OF THE STA | Albitride. | Miss. | *** | | | | | 18 | - | | | | | ACIDI | ZATION | AND SHO | TRECC | ORD | <u>'</u> | 1 | | | | | 10 | | PRODUC | TION | OR P. I. | HOW | GAL. | | | PTH | | | T | T | | | | 19 | DATE | BEFORE | | AFTER | TEST | ACID | SHOT - | | | | NAME OF
ZONE | TYPE
FORMATION | REMARKS | | | | | Task . | JETURE | _ | | MADE | - | QTS. | FROM | то | | | | | | | | 20 | Maco | | | ļ | | 1 | 1 | • | | | | | | | | | 21 | | | | İ | | 1 | 1 | | 1 | 1 | | | | | | | 22 | | | | <u> </u> | | | | | | | | | | | | | | | | | | | 9 | SECTIO | N PERFOR | ATED | | | | | | | | 23 | NAME OF | | DE | PTH | | SIZE | HOLE | | | SER | VICE CO. | | | | | | | PAY | FRO | ЭМ | то | TO HOLE | | PER | DAT | E | TYF | OR
PE SLOTS | | REMARKS | | | | 24 | THE WELL AND LANDS | | ******* | | | | *************************************** | | | | | | | | | | | Xono | | | | - 1 | | | | 1 | | | | | | | | 25 | | | | | | | | | | | | 1 | | | | | 26 | | | | l | 1 | | | | | | | İ | | | | | 27 | | | | | 1 | | | | | | | | | | | | 28 | <u> </u> | | | <u> </u> | | | | | | | | <u> </u> | · | | | | | | | | | | P | RODUC | ING EQUI | PMENT | | | | | | | | 29 | RODS: Number | 444 | Size | | in., Nu | umber | | Size | i | n., Total | Singles | | Length | | ft | | 30 | PUMP: Size | qiib) | Ph | unger Dian | n | | , | Make | | | | Trme | - | 31 | PUMPING UNIT: | | | | | | | | | | | | | | | | | PUMPING UNIT: N | Make | | | Ту | /pe | *************************************** | Stroke_ | | in. @ | *** | SPM; Beam | Capacity_ | | | | 32 | Torque @ 20 SPM | Make | in. I | bs.; Gear | Ту
Вож | /pe | H.P., | Stroke | Make | in. @ | | _SPM; Beam | Capacity_ | | | | 32
3 3 | Torque @ 20 SPM
H.P(| Make | in. l
RPl | bs.; Gear | Ту
Вож | /pe | H.P., | Stroke | Make | in. @ | *** | _SPM; Beam | Capacity_ | | | | 32
33
34 | Torque @ 20 SPM
H.P@
GAS ANCHOR _* | Make | in, I
RPI | bs.; Gear
M. Other | Ту
Вож | /pe | H.P., | Stroke | Make | in. @ | | _SPM; Beam | Capacity_ | | | | 32
33
34
35 | Torque @ 20 SPM
H.P(| Make | in, I
RPI | bs.; Gear
M. Other | Ту
Вож | /pe | H.P., | Stroke | Make | in. @ | | _SPM; Beam | Capacity_ | | 110 | | 32
33
34
35
36 | Torque @ 20 SPM H.P | Make | in, I | bs.; Gear
M. Other | Box
Remar | rpe | H.P., | Stroke | Make | in. @ | | _SPM; Beam | Capacity_ | | 110 | | 32
33
34
35
36 | Torque @ 20 SPM
H.P@
GAS ANCHOR _* | Make | in, I | bs.; Gear
M. Other | Box
Remar | rpe | H.P., | Stroke_ | Make | in. @ | | _SPM; Beam | Capacity_ | | | | 32
33
34
35
36
37 | Torque @ 20 SPM H.P | Make | in, I | bs.; Gear
M. Other | BoxRemar | rpe | H.P., | Stroke_Prime Mover | Make | in. @ | | SPM; Beam | Capacity_ | ALSO SEE SK
DN REVERSE | lblb | | 32
33
34
35
36 | Torque @ 20 SPM H.P | Make | in. I | bs.; Gear
M. Other | Box Remar | Pks | PRODU | Stroke Prime Mover JCING STR NET THICKNESS | Make | in. @ | TATE CONTEN | _SPM; Beam | Capacity_ | ALSO SEE SK
N REVERSE | lblb | | 32
33
34
35
36
37 | Torque @ 20 SPM H.P | Make D IPMENT TOF | in, I | bs.; Gear
M. Other | BoxRemar | rpe | H.P., | Stroke_Prime Mover | Make | in. @ | TATE CONTEN | SPM; Beam | Capacity_ | ALSO SEE SK
N REVERSE | lblb | | 32
33
34
35
36
37 | Torque @ 20 SPM H.P | Make D | in, I | bs.; Gear
M. Other | BoxRemar | Pks | PRODU | Stroke Prime Mover JCING STR NET THICKNESS | Make | in. @ | TATE CONTEN | _SPM; Beam | Capacity_ | ALSO SEE SK
N REVERSE | lblb | | 32
33
34
35
36
37 | Torque @ 20 SPM H.P | Make D IPMENT TOF | in, I | bs.; Gear
M. Other | BoxRemar | Pks | PRODU | Stroke Prime Mover JCING STR NET THICKNESS | Make
RATA | in. @ | TATE CONTEN | _SPM; Beam | Capacity_ | ALSO SEE SK
N REVERSE | lblb | | 32
33
34
35
36
37
38 | Torque @ 20 SPM H.P | Make D IPMENT TOF | in, I | bs.; Gear
M. Other | BoxRemar | Pks | PRODU | Stroke_Prime Mover | Make
RATA | in. @ | TATE CONTEN | _SPM; Beam | Capacity_ | ALSO SEE SK
N REVERSE | lblb | | 32
33
34
35
36
37
38 | Torque @ 20 SPM H.P | Make D IPMENT TOF | in. I | bs.; Gear
M. Other | Ty
Box
Remar | ROSITY % | PRODU | Stroke Prime Mover JCING STR HET THICKNESS ft. | Make
REMA | in. @ | TATE CONTEN | TS OF ALL PI | Capacity | ALSO SEE SK
N REVERSE
BTRATA, O. G | ETCH } SIDE } | | 32
33
34
35
36
37
38
39
40
41
42 | Torque @ 20 SPM H.P | Make D IPMENT TOF | in. I | bs.; Gear
M. Other | Ty
Box
Remar | ROSITY % | PRODU | Stroke Prime Mover JCING STR HET THICKNESS ft. | Make
REMA | in. @ | TATE CONTEN | TS OF ALL PI | Capacity | ALSO SEE SK
N REVERSE
BTRATA, O. G | ETCH } SIDE } | | 32
33
34
35
36
37
38
39
40
41
42
43 | Torque @ 20 SPM H.P | (ake | in, l | bs.; Gear
M. Other | Ty
Box
Remar | ROSITY % | PRODU | Stroke Prime Mover JCING STR NET THICKNESS ft. | Make | in. @ | TATE CONTEN | TS OF ALL PID CONTACTS. | Capacity | ALSO SEE SK
ON REVERSE
STRATA, O. C | ETCH } SIDE } | | 32
33
34
35
36
37
38
39
40
41
42
43
44 | Torque @ 20 SPM H.P | Make D IPMENT TOF | in, l | bs.; Gear
M. Other | Ty
Box
Remar | ROSITY % | PRODU | Stroke Prime Mover JCING STR NET THICKNESS ft. | Make
RATA
REMA | in. @ | TATE CONTEN | TS OF ALL PID CONTACTS. | Capacity | ALSO SEE SK
N REVERSE
STRATA, O. G | ETCH } SIDE } | | 32
33
34
35
36
37
38
39
40
41
42
43
44
45 | Torque @ 20 SPM H.P | TOP | in, l | bs.; Gear
M. Other | Ty
Box
Remar | ROSITY % | PRODUPERM. | Stroke Prime Mover JCING STR THICKNESS ft. | Make
RATA
REMA | in. @ | TATE CONTEN | SPM; Beam | Capacity | ALSO SEE SK
N REVERSE
STRATA, O. C | ETCH } SIDE } | | 32
33
34
35
36
37
38
39
40
41
42
43
44
45
46 | Torque @ 20 SPM H.P | Make D TOF | in, I | bs.; Gear
M. Other | Ty
Box
Remar | ROSITY % | PRODUPERM. | Stroke Prime Mover JCING STR THICKNESS ft. | Make
RATA
REMA | in. @ | TATE CONTEN | TS OF ALL PID CONTACTS. | Capacity | ALSO SEE SK
N REVERSE
STRATA, O. G | ETCH } SIDE } | | 32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47 | Torque @ 20 SPM H.P | TOP | in, I | bs.; Gear
M. Other | Ty
Box
Remar | ROSITY % | PRODUPERM. | Stroke Prime Mover JCING STR THICKNESS ft. | Make
RATA
REMA | in. @ | TATE CONTEN | SPM; Beam | Capacity | ALSO SEE SK
N REVERSE
STRATA, O. C | ETCH } SIDE } | | 32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47 | Torque @ 20 SPM H.P | Make D TOF | in, I | bs.; Gear
M. Other | Ty
Box
Remar | ROSITY % | PRODUPERM. | Stroke Prime Mover JCING STR THICKNESS ft. | Make
RATA
REMA | in. @ | TATE CONTEN | TS OF ALL PI | Capacity | ALSO SEE SK
N REVERSE
STRATA, O. C | ETCH } SIDE } | | 32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49 | Torque @ 20 SPM H.P. (GAS ANCHOR | Make D IPMENT TOP | in, I | bs.; Gear
M. Other
ke. | POR | ROSITY % | PRODU
PERM.
md. | Stroke Prime Mover UCING STR HET THICKNESS ft. | Make
RATA
REMA | in. @ | TATE CONTEN | SPM; Beam | Capacity | ALSO SEE SK
N REVERSE
STRATA, O. C | ETCH } SIDE } | | 32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49 | Torque @ 20 SPM H.P | Make D IPMENT TOP | in, I | bs.; Gear
M. Other
ke. | Pos | ROSITY % | PRODU
PERM.
md. | Stroke Prime Mover UCING STR HET THICKNESS ft. | Make
RATA
REMA | in. @ | TATE CONTEN | TS OF ALL PI | Capacity | ALSO SEE SK
N REVERSE
STRATA, O. C | ETCH } SIDE } | | 32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49 | Torque @ 20 SPM H.P. (GAS ANCHOR | Make D IPMENT TOP | in, I | bs.; Gear
M. Other
ke. | Pos | ROSITY % | PRODU
PERM.
md. | Stroke Prime Mover UCING STR HET THICKNESS ft. | Make
RATA
REMA | in. @ | TATE CONTEN | SPM; Beam | Capacity | ALSO SEE SK
N REVERSE
STRATA, O. C | ETCH } SIDE } | | 32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50 | Torque @ 20 SPM H.P. (GAS ANCHOR | Make D TOF | in, I | bs.; Gear
M. Other
ke. | Pos | ROSITY % | PRODU
PERM.
md. | Stroke Prime Mover UCING STR HET THICKNESS ft. | Make
RATA
REMA | in. @ | TATE CONTEN | SPM; Beam | Capacity | ALSO SEE SK
N REVERSE
STRATA, O. C | ETCH } SIDE } | | 32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50 | Torque @ 20 SPM H.P. (GAS ANCHOR | Make D TOF | in, I | bs.; Gear
M. Other
ke | POR | ROSITY % | PRODU
PERM.
md. | Stroke Prime Mover UCING STR HET THICKNESS ft. | Make
RATA
REMA | in. @ | TATE CONTEN | SPM; Beam | Capacity | ALSO SEE SK
N REVERSE
STRATA, O. C | ETCH } SIDE } | | 32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53 | Torque @ 20 SPM H.P. (GAS ANCHOR | Make D IPMENT TOF | in, I | bs.; Gear
M. Other
ke.
BASE | POR | ROSITY % | PRODU
PERM.
md. | Stroke Prime Mover UCING STR HET THICKNESS ft. | Make
RATA
REMA | in. @ | TATE CONTEN | SPM; Beam | Capacity | ALSO SEE SK
N REVERSE
STRATA, O. C | ETCH } SIDE } | | 32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54 | Torque @ 20 SPM H.P. (GAS ANCHOR TOTHER LIFT EQUIPACKER: Set at | Make D IPMENT TOF | in, I | bs.; Gear
M. Other
ke.
BASE | POR | ROSITY % | PRODU
PERM.
md. | Stroke Prime Mover UCING STR HET THICKNESS ft. | Make
RATA
REMA | in. @ | TATE CONTEN | SPM; Beam | Capacity | ALSO SEE SK
N REVERSE
STRATA, O. C | ETCH } SIDE } | | 32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55 | Torque @ 20 SPM H.P. (GAS ANCHOR | Make D IPMENT TOF | in, I | bs.; Gear
M. Other
ke.
BASE | POR | ROSITY % | PRODU
PERM.
md. | Stroke Prime Mover JCING STR HET THICKNESS ft. | Make REMA | in. @ | GIVING FLUI | TS OF ALL PID CONTACTS. | Capacity | STRATA, O. G | ETCH } SIDE } | | 32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
51
52
53
54
55
56 | Torque @ 20 SPM H.P. | Make D IPMENT TOF | in, I | bs.; Gear M. Other BASE Con | POR | ROSITY % | PRODUPERM. md. | Stroke Prime Mover UCING STR THICKNESS ft. Operated b | Make REMA | in. @ | TATE CONTEN | TS OF ALL PID CONTACTS. | Capacity | STRATA, O. C | ietch } side } | | 32
33
34
35
36
37
38
39
40
41
42
43
44
45
50
51
52
53
54
55
56
1 | Torque @ 20 SPM H.P. | Make D TOP | in, l | bs.; Gear M. Other BASE Con Mcf/d | POR | ROSITY % | PRODUPERM. md. | Stroke Prime Mover UCING STR THICKNESS ft. Operated b | Make REMA | in. @ | TATE CONTEN | TS OF ALL PID CONTACTS. | Capacity | STRATA, O. C | ietch } side } | | 32
33
34
35
36
37
38
39
40
41
42
43
44
45
50
51
52
53
54
55
56
57
1 | Torque @ 20 SPM H.P. | Make D TOP | in, l | bs.; Gear M. Other BASE Con Mcf/d | POR | ROSITY % | PRODUPERM. md. | Stroke Prime Mover UCING STR THICKNESS ft. Operated b | Make REMA | in. @ | TATE CONTEN | TS OF ALL PID CONTACTS. | Capacity | STRATA, O. C | ietch } side } | | 32
33
34
35
36
37
38
39
40
41
42
43
44
45
50
51
52
53
54
55
56
1 | Torque @ 20 SPM H.P. | Make D TOP | in, l | bs.; Gear M. Other BASE Con Mcf/d | POR | ROSITY % | PRODUPERM. md. | Stroke Prime Mover UCING STR THICKNESS ft. Operated b | Make REMA | in. @ | TATE CONTEN | TS OF ALL PID CONTACTS. | Capacity | STRATA, O. C | ietch } side } | | 32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
50
51
52
53
54
55
55
57 | Torque @ 20 SPM H.P. | TOP | in, I RPI | bs.; Gear M. Other BASE Con Mcf/d | POR | ROSITY % | PRODU
PERM.
md. | Stroke Prime Mover UCING STR THICKNESS ft. Operated b | Make RATA REMA | in. @ | TATE CONTEN | TS OF ALL PID CONTACTS. | Capacity | STRATA, O. C | ietch } side } | | 32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
57
57
58
60
60
60
60
60
60
60
60
60
60 | Torque @ 20 SPM H.P. (GAS ANCHOR | TOP | in, I RPI | bs.; Gear M. Other BASE Con Mcf/d | POR | ROSITY % | PRODUPERM. md. | Stroke Prime Mover JCING STR THICKNESS ft. Operated by *TP and * | Make REMA | in. @ | TATE CONTEN | TS OF ALL PID CONTACTS. | Capacity | STRATA, O. G | ietch } side } a & w | | 32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
60
61
61
61
61
61
61
61
61
61
61 | Torque @ 20 SPM H.P. | TOP | in, I RPI | bs.; Gear M. Other BASE Con Mcf/d | POR | ROSITY % | PRODU
PERM.
md. | CING STR THICKNESS ft. Operated by *TP and * | Make REMA | in. @ | ATE CONTEN
GIVING FLUI
TOWN | TS OF ALL PID CONTACTS. CS. CESt. DI | Capacity | STRATA, O. G | b lb | | 32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
55
55
55
56
60
61
62
62 | Torque @ 20 SPM H.P | TOP | in, I RPI | bs.; Gear M. Other BASE Con Mcf/d | POR | ROSITY % | PRODUPERM. md. District Division Region | Stroke Prime Mover CING STR THICKNESS ft. Operated by **TP and ** Superintende in Superintende Manager | Make REMA | in. @ | ATE CONTEN
GIVING FLUI
CONTENTS OF THE PROPERTY PROPERT | TS OF ALL PID CONTACTS. CS. CEST. DI | Capacity | STRATA, O. G | b a w | | 32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
61
62
63
63
63
63
63
63
63
63
63
63 | Torque @ 20 SPM H.P. | TOP TOP Well Test | in, I RPI | bs.; Gear M. Other BASE Con Mcf/d s | POR POR | ROSITY % | PRODUPERM. md. District Division Region District | CING STR THICKNESS ft. Operated by **TP and ** Superintended to Superintended Manager Engineer | Make REMA REMA REMA REMA REMA REMA | in. @ | ATE CONTENT GIVING FLUI TOWN Hr. Test Me Mgr. P. Region Others | TS OF ALL PID CONTACTS. CS. Est. DI | Capacity | STRATA, O. G. TC. TTO cct'g | b lb | | 32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
61
62
63
63
63
63
63
63
63
63
63
63 | Torque @ 20 SPM H.P | TOP TOP Well Test | in, I RPI | bs.; Gear M. Other BASE Con Mcf/d s | POR POR | ROSITY % | PRODUPERM. md. District Division Region | CING STR THICKNESS ft. Operated by **TP and ** Superintended to Superintended Manager Engineer | Make REMA REMA REMA REMA REMA REMA | in. @ | ATE CONTENT GIVING FLUI TOWN Hr. Test Me Mgr. P. Region Others | TS OF ALL PID CONTACTS. CGS. TEST. DI | Capacity | STRATA, O. G. TC. TTO cct'g lstrict | b lb | 15-163-00129-00-00 ## E. B. SCHNEIDER NO. 1 | 0
40
175
380 | 40
175
380
595 | Sand and Gravel
Sand and Gravel
Shale and Shells
Shale | |--|-------------------------|---| | 595
755
830 | 755
830
880 | Sand
Shale and Shells | | 880
925 | 925
940 | Shale And Shells and Sand
Shale
Shale | | 940
1030
1165 | 1030
1165
1240 | Shale and Sand
Sand | | 1240
1425 | 1425
1480 | Lime and shale
Shale and Shells
Red Bed | | 1480
1510 | 1510
1620 | Lime
Shells and Red Bed | | 1620
1910
2235 | 1910
2235
2315 | Shale and Shells Lime | | 2315
2420 | 2420
3165 | Lime and Shale
Lime
Lime and Shale | | 3165
3235 | 3235
3275 | Lime
Lime and Shale | | 32 7 5
3 41 5
3457 | 3415
3457
3505 | Lime
Lime and Shale
Lime | I certify that the above is an exact copy of the driller's log. F. L. Dunn Subscribed and sworn before me this 23rd day of November, 1948. Their Mi Shine My commission expires October 21, 1952. PLUGGING PLU 11-26-48 NOV 2 6 1943 ST. CO. A. DON KARRONS