Form ACO-1 September 1999 Form Must Be Typed # WELL COMPLETION FORM WELL HISTORY - DESCRIPTION OF WELL & LEASE | Operator: License # 33342 | API No. 15 - 205-25850-0000 DDD | |---|--| | Name: Blue Jay Operating, LLC | County: Wilson | | Address: 4916 Camp Bowie Blvd., Suite 204 | SE_SE_NWSec. 12 Twp. 30 S. R. 14 | | City/State/Zip: Fort Worth, TX 76107 | 2310' feet from S / (N) (circle one) Line of Section | | Purchaser: Cherokee Basin Pipeline LLC | 2310' feet from E / (W)(circle one) Line of Section | | Operator Contact Person: Shannan Shinkle | Footages Calculated from Nearest Outside Section Corner: | | Phone: (620) 378-3650 | (circle one) NE SE NW SW | | Contractor: Name: Cherokee Wells, LLC | Lease Name: Well #: A-1 | | License: 33539 | Cherokee Basin Coal Gas Area | | Wellsite Geologist: NA | Producing Formation: See Perforating Record | | Designate Type of Completion: | Elevation: Ground: 930' Kelly Bushing: NA | | New Well Re-Entry Workover | Total Depth: 1316' Plug Back Total Depth: | | OilSWDSIOWTemp. Abd. | Amount of Surface Pipe Set and Cemented at 40'8" Feet | | ✓ Gas ENHR SIGW | Multiple Stage Cementing Collar Used? | | Dry Other (Core, WSW, Expl., Cathodic, etc) | If yes, show depth setFeet | | If Workover/Re-entry: Old Well Info as follows: | If Alternate II completion, cement circulated from bottom casing | | Operator: Blue Jay Operating, LLC | feet depth to_surfacew/_145sx cmt. | | Well Name: Jantz A-1 | | | Original Comp. Date: 2/4/05 Original Total Depth: 1316' | Drilling Fluid Management Plan (Data must be collected from the Reserve Pit) | | Deepening Re-perf Conv. to Enhr./SWD | (Data must be collected from the Reserve Pit) Chloride content NA ppm Fluid volume bbls | | Plug Back Plug Back Total Depth | Dewatering method used Pump | | —··· • | | | | Location of fluid disposal if hauled offsite: | | | Operator Name: Hurricane Truck Services, Inv # MC 156212 | | Other (SWD or Enhr.?) Docket No. | Lease Name: Curry SWD #5 License No.: 30776 | | 3/28/05 3/30/05 5/31/05 Spuid Date or Date Reached TD Completion Date or | Quarter_SE4 Sec. 15 Twp. 22 S. R. 11 📝 East 🗌 West | | Spud Date or Recompletion Date Date Reached TD Completion Date or Recompletion Date | County: Greenwood, KS Docket No.: 26554 | | | • | | Kansas 67202, within 120 days of the spud date, recompletion, works | ith the Kansas Corporation Commission, 130 S. Market - Room 2078, Wichita, over or conversion of a well. Rule 82-3-130, 82-3-106 and 82-3-107 apply. If 12 months if requested in writing and submitted with the form (see rule 82-3-gs and geologist well report shall be attached with this form. ALL CEMENTING IIIs. Submit CP-111 form with all temporarily abandoned wells. | | All requirements of the statutes, rules and regulations promulgated to regu | ulate the oil and gas industry have been fully complied with and the statements | | herein are complete and correct to the best of my knowledge. | | | Signature: Kansem Augla | KCC Office Use ONLY | | Title: Administrative Assistant Date: 8/10/07 | Letter of Confidentiality Received | | 12 A. 211 | If Denied, Yes Date: | | Subscribed and sworn to before me this 10 day of 700 | Wireline Log Received | | 20 07 | Geologist Report Received RECEIVED KANSAS CORPORATION COMI | | MARANNINA A TRAC' | Y MILLER UIC Distribution KANSAS CORPORATION COM | | Notary Public | - State of Kansas AUG 1 4 2007 | | Date Commission Expires: 12/1/2010 My Appt. Expires /2 | 2/1/2010 | | | CONSERVATION DIVISION WICHITA KS | | Operator Name: Blue | Jay Operating, LLC | | | Lease | Name: Ja | ıntz | | Well #: A-1 | | | |---|--|----------------------------|----------------------------------|--|---------------------------|------------------|------------------------|-----------------|---------------------|-----------------------| | Sec. 12 Twp. 30 | | | ☐ West | County | : Wilson | | | | | | | NSTRUCTIONS: Shested, time tool open
emperature, fluid rec
Electric Wireline Logs | n and closed, flowing
overy, and flow rates | and shut-in
if gas to s | n pressures, v
urface test, a | enetrated.
whether sh
long with fi | Detail all
nut-in pres | sure reached | l static level, hydros | tatic pressure | es, bottom | noie | | Orill Stem Tests Take | | Yes | s √ No | | √ Lo | g Forma | tion (Top), Depth an | | | ample | | Samples Sent to Geo | ological Survey | Yes | s ✓ No | | Name
Driller L | | th 4/15/05 ACO-1 | Тор | U | atum | | Cores Taken
Electric Log Run
(Submit Copy) | | ☐ Yes | | | | | | | | | | ist All E. Logs Run: | | | | | | | | | | | | Electric Log S | ubmitted with | 4/15/05 | | RECORD | ✓ Ne | w 🔲 Used | | | | | | | | Report | all strings set- | conductor, s | urface, inte | | | T | T = | | | Purpose of String | Size Hole
Drilled | | Casing
(In O.D.) | Wei
Lbs. | | Setting
Depth | Type of
Cement | # Sacks
Used | | nd Percent
ditives | | Surface | 12.25" | 8 5/8" | | 26 | | 41' | Portland | 8 | | | | Production | 6.75" | 4 1/2" | | 10.5 | | 1312' | 60/40 POZMIX | 145 | See Atta | ached | | <u> </u> | | | | | | | | | | | | | | 1 | ADDITIONAL | CEMENT | ING / SQU | EEZE RECOF | | | | | | Purpose: Perforate Protect Casing | Depth
Top Bottom | Туре | of Cement | #Sacks | s Used | | Type and Po | ercent Additive | s
 | | | Plug Back TD
Plug Off Zone | | | | | | | | | | | | | PERFORAT | ION RECOR | D - Bridge Plu | gs Set/Type | • | Acid, F | racture, Shot, Cement | Squeeze Reco | ord | | | Shots Per Foot | Specify | Footage of E | ach Interval Pe | rforated | | | (Amount and Kind of Ma | terial Used) | | Depth | | 4 | Mulky - 902'-905' | | | | | | 9000# 16/30 sand | | | | | 4 | Bevier 950'-952'; C | Croweburg | 968'-970' | | | | 6000# 16/30 sand | | | | | 4 | Mineral 1007'-101 | 1'; Tebo 10 | 58'-1061' | | | Foam Frac: | 5000# 16/30 sand | | | | | | | | | | | | | | | | | TUBING RECORD | Size | Set At | | Packer | At | Liner Run | ✓ Yes | | | | | Date of First, Resume
6/1/05 | erd Production, SWD or | Enhr. | Producing Me | ethod | Flowin | g 🕢 Pur | nping Gas Lit | t Ot | her (Explain |) | | Estimated Production
Per 24 Hours | Oil | Bbls. | Gas
20 | Mcf | Wat
50-75 | | Bbis. (| Bas-Oil Ratio | | Gravity | | Disposition of Gas | METHOD OF | COMPLETIC |)N | | | Production In | nterval | | | | | Vented ✓ Solo | d Used on Lease | | Open Hole | | erf. | Dually Comp. | Commingled _ | KANSAS CO | RECEIV
DRPORATIO | ED
N COMMISS | AUG 1 4 2007 JUL 18 2005 Well Refined Duilling Company, Inc 4270 Gray Road - Thayer, KS 66776 Contractor License # 33072 - FEIN # KCC WICHITA 620-763-2619/Office; 918-440-0976/Lowell Pocket; 620-432-6170/Jeff Pocket; 620-763-2065/FAX S 12 T 30 R 14E Rig #: Location SE, SE, NW API#: 15-205-25856-0000 County: Wilson Operator: Blue Jay Operating LLC 4916 Camp Bowie | Ţ | 4916 | Camp Bowle | | | | | | | |---|---|---|--|---|---|--|--|--| | 10.5 | Fort \ | Worth, TX 76107 | | | | Gas 1 | ests | | | Vell #: | | Lease Name: Jai | ntz | | Depth | 12 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16 | Orfice | flow - MCF | | ocation: | | ft. from (N / S) | Line | | 489 | 21" | 1/8" | 2.4 | | | | ft. from (E / W) | Line | an e | 739 | 4" | 1/4" | 3,37 | | pud Date | | 9/15/2004 | | 7 9 9 | 814 | 6" | 1/4" | 4,12 | | ate Comp | | 9/17/2004 | TD: 131 | 6 | 839 | 11" | 1/4" | 5.6 | | Seologi | | | | | 900 | 4" | 3/8" | 7.14 | | asing f | · | Surface | Product | on | 915 | 5" | 3/4" | 31.6 | | lole Siz | | 12 1/4" | | 6 3/4" | 990 | 6" | 3/4" | 34.7 | | Casing | | 8 5/8" | | | 1015 | 4" | 1" | 51.6 | | Veight | | | | | 1316 | 6" | 3/4" | 34.7 | | Setting | Depth | 40' 8" | | | | | * ** *** *** *** *** *** *** *** *** * | | | Cement | | Portland | | राज्य स्टब्स्
इ.स.च्या | kistakta ki mada kilata | | | | | Sacks | 750 | 11 W | | | | | Į. | | | | Casing | 40' 8" C | ***** | | | | | | | | <u> </u> | | | | 7 | | | | | Rig Tim | P | Work Performed | | ANT TO THE ST | | | | | | (ig i iii | | | | ···· | | | | | | | | | 7.8 | <u> </u> | Well L | og | | | | | Тор | Bottom | Formation | Тор | Bottom | Formation | Top | Bottom | Formation | | 0 | | Overburden | 266 | 273 | g shly sand | 472 | 475 | dg shl/l strks | | 1 | | clay | 273 | | sand/shi strks | 475 | 478 | blk shale | | 3 | | g shl/l strks | 279 | | sand | 476 | | water | | 4 | | g shl/lime | 280 | | wet | 478 | 481 | dg shale | | 6 | | lime | 288 | | sand/shl strks | 481 | 482 | coal | | 47 | | dg shale | 318 | | coal | 482 | 485 | g sdy shl/lime | | 50 | | lime/dg shale | 319 | | g shl/l strks | 485 | 488 | lime/g sdy shale | | 55 | | | | 7,10,315 | mg sht/lime | 488 | 498 | g shily sand | | | 1 62 | lda shl/i strks | 11 334 | 33/ | ing stiville | 11 255 | | | | 62 | | dg shl/l strks | 334
337 | | | 488 | | increased water | | 62
115 | 115 | lime | 337 | 352 | mg shl/snd strks | | | Contract of the second | | 115 | 115
120 | lime
lime/shl strks | 337
352 | 352
385 | rng shl/snd strks
mg shl/l strks | 488 | 499 | Contract of the second | | 115
120 | 115
120
140 | lime
lime/shl strks
mg shl/l strks | 337
352
385 | 352
385
388 | mg shl/snd strks
mg shl/l strks
lime/mg shale | 488
498 | 499
517 | coal
g shale/l strks | | 115
120
140 | 115
120
140
143 | lime
lime/shl strks
mg shl/l strks
lime/mg shale | 337
352
385
388 | 352
385
388
401 | mg shl/snd strks
mg shl/l strks
lime/mg shale
lime | 488
498
499 | 499
517
535 | coal
g shale/l strks | | 115
120
140
143 | 115
120
140
143
172 | lime
lime/shl strks
mg shl/l strks
lime/mg shale
mg shl/snd strks | 337
352
385
388
401 | 352
385
388
401
405 | mg shl/snd strks
mg shl/l strks
lime/mg shale
lime
mg shl/l strks | 488
498
499
517 | 499
517
535
570 | coal
g shale/l strks
lime | | 115
120
140
143
172 | 115
120
140
143
172
2 250 | lime lime/shl strks mg shl/l strks lime/mg shale mg shl/snd strks mg shale | 337
352
385
388
401
405 | 352
385
388
401
405
406 | mg shl/snd strks
mg shl/l strks
lime/mg shale
lime
mg shl/l strks
lime/shl/strks | 488
498
499
517
535 | 499
517
535
570
585 | coal
g shale/I strks
lime
mg shl/I strks | | 115
120
140
143
172
250 | 115
120
140
143
172
2 250
0 253 | lime lime/shl strks mg shl/l strks lime/mg shale mg shl/snd strks mg shale mg shl/lime | 337
352
385
388
401
405
406 | 352
385
388
401
405
406
408 | mg shl/snd strks mg shl/l strks lime/mg shale lime mg shl/l strks lime/shl strks dg shl/l strks | 488
498
499
517
535
570 | 499
517
535
570
585
588 | coal
g shale/I strks
lime
mg shl/I strks
lime/shl strks | | 115
120
140
143
172
250
253 | 115
120
140
143
172
2 250
2 253
3 256 | lime lime/shl strks mg shl/l strks lime/mg shale mg shl/snd strks mg shale mg shl/lime lime | 337
352
385
388
401
405
406
408 | 352
385
388
401
405
406
408
417 | mg shl/snd strks mg shl/l strks lime/mg shale lime mg shl/l strks lime/shl strks dg shl/l strks | 488
498
499
517
535
570
585 | 499
517
535
570
585
588
590 | coal g shale/I strks lime mg shl/I strks lime/shl/ strks dg shl/I strks dg blk shl/pyrite strks blk shl/pyrite strks | | 115
120
140
143
172
250 | 115
120
140
143
172
2 250
2 253
3 256
6 260 | lime lime/shl strks mg shl/l strks lime/mg shale mg shl/snd strks mg shale mg shl/lime | 337
352
385
388
401
405
406 | 352
385
388
401
405
406
408
417
418 | mg shl/snd strks mg shl/l strks lime/mg shale lime mg shl/l strks lime/shl strks dg shl/l strks | 488
498
499
517
535
570
585
588 | 499
517
535
570
585
588
590
592 | coal g shale/I strks lime mg shl/I strks lime/shl strks dg shl/I strks dg blk shl/pyrite strks blk shl/pyrite strks | AUG 1 4 2007 ### KCC JUL 0 7 2005 CONTINENTIAL # ORIGINAL | erator: | Blue Jay C | perating | Lease Nar | ne: Jantz | | "Well#" | 30,70,70 | pag | |---------|--------------------------------|-------------------|-----------|---------------|--------------------|---------|-----------------|---------------------| | Top | Bottom | Formation | Тор | Bottom | Formation | Top . | | Formation | | 607 | 612 | dg shl/l strks | 886 | 887 | dg blk shl/lime | 1144 | | fime/coal | | 612 | 613 | coal | 887 | 891 | Summit blk shale | 1146 | 1149 | g shl/l strks | | 613 | 616 | dg shale | 891 | 895 | dg shl/l strks | 1149 | 1163 | mg shl/snd strks | | 616 | 621 | lime | 895 | 906 | lime | 1163 | 1164 | Rowe coal | | 621 | 627 | g shale | 906 | 907 | dg shl/i strks | 1164 | 1176 | Tucker sand | | 627 | 636 | dg shale | 907 | 910 | Mulky blk shale | 1164 | 8 | water | | 636 | 637 | | 910 | 911 | coal | 1176 | 1182 | mg shale | | 637 | 640 | g shale/lime | 911 | 915 | g shl/lime | 1182 | | mg shl/lam snd | | 640 | | lime/g shale | 915 | | dg shl/l strks | 1192 | | dg mg shale | | 655 | | g shi/i strks | 961 | | g shl/l strks | 1198 | | gm g shl/l strks | | 660 | - 12 | mg shale | 963 | 971 | dg shl/li strks | 1201 | 1206 | g sdy shl/l strks | | 664 | | lime/shl strks | 971 | 972 | Croweburg coal | 1206 | 1212 | mg shi/lam sand | | 679 | | lime | 972 | 980 | lime | 1212 | 1214 | g shl/l/chert strks | | 685 | | lime/g shale | 980 | 1005 | dg shi/l strks | 1214 | 1220 | Mississippi chert | | 693 | | g sdy shale | 1005 | 1009 | mg shl/l strks | | gerra alem
Z | chat/shl strks | | 699 | | mg shl/snd strks | 1009 | | Mineral coal | 1220 | 1234 | chert/l strks | | 706 | | mg sdy shale | 1010 | | lime/shl strks | 1234 | 1240 | tan l/g w chert | | 712 | | mg shale | 1013 | 1030 | mg shl/l strks | 1240 | 1260 | w g chert/l strks | | 721 | 722 | | 1030 | 1038 | mg shi/snd strks | 1240 | | water | | 722 | | g sdy shale | 1038 | 1046 | mg br shly snd | 1260 | 1284 | tan I/g chat strks | | 730 | | g shl/lam sand | 1046 | | dg shi/snd strks | 1284 | | chert/l strks | | 738 | | g shly sand | 1052 | 1061 | dg shl/l strks | 1298 | 1316 | tan Vchert strks | | 745 | | sand | 1061 | | dg blk shl/l strks | 1316 | | Total Depth | | 780 | 789 | mg shl/snd strks | 1062 | 1063 | Bluejacket coal | | | | | 789 | | mg sh/l strks | 1063 | | g shl/l strks | | | | | 800 | | lime/shale | 1073 | | mg shl/l strks | | | | | 802 | | Mulberry coal | 1088 | | mg shl/ snd strks | | | | | 804 | | Pawnee lime | 1095 | | Bartlesville mg br | | | | | 827 | | Lexington blk shl | | | shi snd/coal strks | | | | | 832 | | dg shi/l strks | 1110 | 1124 | br snd/shl strks | | | | | 836 | | mg shi/lime | 1110 | | water | | | | | 839 | to a series and the series and | g mg shi/l strks | 1124 | 1132 | mg sdy shale | 1 | I | | | 867 | | Oswego lime | 1132 | | water | 1 | 1 | | | 870 | | oil odor | 1132 | 1141 | br snd/coal strks | 1 | 1 | | | 885 | | dg shl/l strks | 1141 | | mg sdy shale | 1 | | | Notes: JUL 18 2005 CEIVED KCC WICHITA 04LI-091704-R2-060- Jantz A-1 Blue Jay Operating Abbreviations used: d=dark, g=gray,sh or shl=shale, snd or sd=sand,m=med,br=brown,chrt=chert, cht=chat, /=with, l=lime, w=white, strks or stks =streaks, lam=laminated, gm=green, mg=medium gray b or blk=black, dg=dark gray, sdy=sandy, shly=shaley, Keep Drilling - We're Willing! RECEIVED KANSAS CORPORATION COMMISSION AUG 1 4 2007 ORIGINAL KCC JUL 0 7 2005 CONFIDENTIAL 12701 ENERGY RD · FT. MORGAN, CO. 80701 · PH (970) 887-2788 · FAX (970) 887-5922 BLUE JAY OPERATING - FORT WORTH, TEXAS Coal Seam Frac Project May 31, 2005 Blue Jay - Jantz A#1 - Return Trip Mulky (902'-905', 4 spf), 12 shots total. Started with 500 gals of 7.5% HCl. Followed with 672 gal gelled water flush. Started treatment with a pad of 5000 gallons of MavFoam C70, followed by 4500 gals of MavFoam C70 carrying 9000 lbs 16/30 Arizona Sand at 1.0 to 3.0 ppg down hole. The treatment was flushed to the top perforation with 601 gal gelled water. A total of 123,000 SCF of N_2 was used. Started acid @ 5 bpm, STP-184, BH-212. Started Flush, STP-972, BH-901. Formation broke down at 1289 psi. Started Pad, STP-1241, BH-1573. Initial FQ was 61. Sand stages are as follows: Start 1#, STP-1397, BH-1480, FQ-70. Start 2#, STP-1492, BH-1615, FQ-70. Start 3#, STP-1601, BH-1737, FQ-71. Start Flush, STP-1566, BH-1723, FQ-71. Pad through sand stages were pumped @ 15-18 BPM downhole. FQ averaged 70Q. Max pressure was 1601. Average rate was 18 bpm at 1496 psi surface (1656 psi bottomhole). ISIP was 896 psi; 5 min - 721 psi, 10 min - 699 psi, 15 min - 688 psi. RECEIVED JUL 18 2005 KCC WICHITA RECEIVED KANSAS CORPORATION COMMISSION AUG 1 4 2007 CONSERVATION DIVISION WICHITA, KS ### **RECEIVED** JUL 18 2005 # Kansas Corporation Commission Oil & Gas Conservation Division Form ACO-1 September 1999 Form Must Be Typed ### **WELL COMPLETION FORM WELL HISTORY - DESCRIPTION OF WELL & LEASE KCC WICHITA** ORIGINAL | NOC WICHTIAN PARIFIANTIAN | URIGINAL | |---|---| | Operator: License # 33342 | API No. 15 - 205-25856-000 | | Name: Blue Jay Operating, LLC | County: Wilson | | Address: 4916 Camp Bowie Blvd., Suite 204 | SE _SE _ NW Sec. 12 Twp. 30 S. R. 14 | | City/State/Zip: Fort Worth, TX 76107 | 2310' feet from S (N (bircle one) Line of Section | | Purchaser: Cherokee Basin Pipeline LLC | 2310' feet from E (W)circle one) Line of Section | | Operator Contact Person: Jens Hansen | Footages Calculated from Nearest Outside Section Corner: | | Phone: (817) 546-0034 | (circle one) NE SE NW SW | | Contractor: Name: Well Refined Drilling Co., Inc. JUL V / 2007 | Lease Name: Jantz Well #: A-1 | | License: 33072 CONFIDENTIA | Field Name: Cherokee Basin Coal Gas | | Wellsite Geologist: NA | Producing Formation: See Perforating Record | | Designate Type of Completion: | Elevation: Ground: 930' Kelly Bushing: NA | | New Well Re-Entry Workover | Total Depth: 1316' Plug Back Total Depth: | | Oil SWD SIOWTemp. Abd. | Amount of Surface Pipe Set and Cemented at 40'8" Feet | | ✓ Gas ENHR SIGW | Multiple Stage Cementing Collar Used? ☐ Yes ✓ No | | Dry Other (Core, WSW, Expl., Cathodic, etc) | If yes, show depth setFeet | | If Workover/Re-entry: Old Well Info as follows: | If Alternate II completion, cement circulated from bottom casing | | Operator: Blue Jay Operating, LLC | feet depth to surface w/ 145 sx cmt. | | Well Name: Jantz A-1 | oot dopin to | | Original Comp. Date: 2.4405-2-4-07ginal Total Depth: 1316' | Drilling Fluid Management Plan (Data must be collected from the Reserve Pit) August 12 Withward 12 Control of the Reserve Pit) | | Deepening Re-perf Conv. to Enhr./SWD | | | Plug BackPlug Back Total Depth | Chloride content NA ppm Fluid volume bbls | | Commingled Docket No | Dewatering method used_Pump | | Dual Completion Docket No | Location of fluid disposal if hauled offsite: | | Other (SWD or Enhr.?) Docket No | Operator Name: Hurricane Truck Services, Inv # MC 156212 | | | Lease Name: Curry SWD # 5 License No.: 30776 | | 3/28/05 3/30/05 5/31/05 Spud Date or Date Reached TD Completion Date or | Quarter SE4 Sec. 15 Twp. 22 S. R. 11 Fast West | | Recompletion Date Recompletion Date | County: Greenwood, KS Docket No.: 26554 | | : | | | | | | INSTRUCTIONS: An original and two copies of this form shall be filed with
Kansas 67202, within 120 days of the spud date, recompletion, workove
Information of side two of this form will be held confidential for a period of 12 | r or conversion of a well. Rule 82-3-130, 82-3-106 and 82-3-107 apply. | | 107 for confidentiality in excess of 12 months). One copy of all wireline logs a | and geologist well report shall be attached with this form. ALL CEMENTING | | TICKETS MUST BE ATTACHED. Submit CP-4 form with all plugged wells. | Submit CP-111 form with all temporarily abandoned wells. | | All requirements of the statutes, rules and regulations promulgated to regular | te the oil and gas industry have been fully complied with and the statements | | herein are complete and compet to the best of my knowledge. | , , , , | | | KCC Office Use ONLY | | Signature: 7-1/-9C | 169 | | Title: Date: | Letter of Confidentiality Received | | Subscribed and sworn to before me thisday of | If Denied, Yes Date: | | 20 | Wireline Log Received | | Notary Public: | Geologist Report Received | | | UIC Distribution | | Data Commission Evoiras: | | ### CONFIDENTIAL Side Two ORIGINAL | Operator Name: Diu | e Jay Operating, | LLC | Lease N | ame: Jantz | ·- ·- · · · · · · · · · · · · · · · · · | . Well #: _A-1 | <u> </u> | |--|--|--|--|-------------------------|--|--|------------------------| | Sec. 12 Twp. 3 | 30 S. R. 14 | ✓ East 🗌 West | | | | | | | ested, time tool ope
emperature, fluid rei | n and closed, flowing
covery, and flow rate | and base of formation
g and shut-in pressur
s if gas to surface te
inal geological well s | res, whether shut
st, along with fina | i-in pressure reache | d static level, hydros | static pressui | res, bottom hole | | Drill Stem Tests Take | | ☐ Yes ☑ No |) | √ Log Forma | ition (Top), Depth ar | nd Datum | Sample | | Samples Sent to Ge | • | ☐ Yes 🗸 No | , | Name | | Тор | Datum | | Cores Taken
Electric Log Run
(Submit Copy) | | ☐ Yes ☑ No ☑ Yes ☐ No | | Driller Log Submitted w | ith 4/15/05 ACO-1 | | RECEIVED | | List All E. Logs Run:
Electiric Logs | | 4/15/05 - ACC | D-1 | JŮI | O 7 2005
FIDENTIAL | KC | JL 18 2005
CWICHITA | | | | | ING RECORD | New Used | iction etc | | | | Purpose of String | Size Hole
Drilled | Size Casing
Set (In O.D.) | Weight | Setting | Type of | # Sacks | Type and Percent | | Surface | 12.25" | 8 5/8" | 26 | t. Depth 41' | Portland | Used
8 | Additives | | Production | 6.75" | 4 1/2" | 10.5 | 1312' | 60/40 POZMIX | 145 | See Attached | | | | ADDITIO | NAL CEMENTING | / SQUEEZE RECOF | RD. | | | | Purpose: —— Perforate —— Protect Casing —— Plug Back TD —— Plug Off Zone | Depth
Top Bottom | Type of Cement | #Sacks U | | · · · · · · · · · · · · · · · · · · · | ercent Additive | S . | | Shots Per Foot | | ION RECORD - Bridge
Footage of Each Interva | | | racture, Shot, Cement
Amount and Kind of Ma | | ord Depth | | 4 | Mulky - 902' - 90 | | | | c: 9000# 16/30 s | | - Dopin | | 4 | | ; Crowburg 968'-9 | 970' | | c: 6000# 16/30 s | ······································ | | | 4 | | 1011';Tebo 1058'- | | | c: 5000# 16/30 s | | | | TUBING RECORD | Size | Set At | Packer At | Liner Run | ✓ Yes | | .! | | Date of First, Resume
6/1/05 | rd Production, SWD or E | Enhr. Producing | Method | Flowing Pun | nping Gas Lift | ı 🗌 OII | her (Explain) | | Estimated Production
Per 24 Hours | Oil | Bbls. Gas | Mcf | Water 50-75 | Bbis. G | as-Oil Ratio | Gravity | | Disposition of Gas | METHOD OF | COMPLETION | | Production In | terval | | | | Disposition of Gas ☐ Vented ✓ Sold | _ | COMPLETION Open F | Hole Perf. | | terval | | | KCC JUL 0 7 2005 JUL 18 2005 Welli Refined Dnilling Company, Inc. 4270 Gray Road - Thayer, KS 66776 Contractor License # 33072 - FEIN # 620-763-2619/Office; 918-440-0976/Lowell Pocket; 620-432-6170/Jeff Pocket; 620-763-2065/FAX CONFIDENTIAL KCC WICHITA | Rig #: | 2 | | | | NEW | | Г 30 | R 14E | |--|--|--|---|---|---|--|---|---| | API#: 1 | 5-205-2 | 5856-0000 | | | Rion#2) | Location | | , NW | | Operator | : Blue | Jay Operating Ll | _C | | | County: | Wilson | | | · · | | Camp Bowie | | | ALL DIE | | | | | | | Worth, TX 76107 | | | | Gas T | ests | | | Well #: A | | Lease Name: Ja | | | Depth | Oz. | Orfice | flow - MCF | | Location: | | ft. from (N / S) | Line | an are seen | 489 | 21" | 1/8" | 2.4 | | D212275 | 1 2 2 2 2 2 2 | ft. from (E / W) | Line | 44,375 | 739 | 4" | 1/4" | 3.37 | | Spud Date: | | 9/15/2004 | | 2 2 2 2 2 2 | 814 | 6" | 1/4" | 4.12 | | Date Compl | | 9/17/2004 | TD: 131 | 6 | 839 | 11" | 1/4" | 5.6 | | Geologis | | | | | 900 | 4" | 3/8" | 7.14 | | Casing R | | Surface | Producti | ion | 915 | 5" | 3/4" | 31.6 | | Hole Size | | 12 1/4" | | 6 3/4" | 990 | 6" | 3/4" | 34.7 | | Casing S | | 8 5/8" | | | 1015 | 4" | 1" | 51.6 | | Weight | | | | | 1316 | 6" | 3/4" | 34.7 | | Setting C | Depth | 40' 8" | | | | | | | | Cement | | Portland | | | | | | | | Sacks | | 11 W | | | | | | | | Feet of C | Casing | 40' 8" C | | | | | | | | | ···· | | | | | | | 1.5% | | Rig Time | e | Work Performed | 1 | | | | | | | | - | ــــــــــــــــــــــــــــــــــــــ | | | | | | | | | | | | | Well L | og | | | | | Top | Bottom | Formation | II Top | 13.5 | Oğ
Formation | ll Top | Bottom | Formation | | | Bottom
1 | Formation
Overburden | Top
 266 | Bottom | Formation . | Top
 472 | No. 1. Control of the Control | Formation
dg shi/i strks | | 0 | 1 | Overburden | 266 | Bottom
273 | Formation
g shly sand | 1 200 000 0000 | 475 | and the second second | | 0 | 1
3 | Overburden
clay | | Bottom
273
279 | Formation . | 472 | 475 | dg shl/l strks | | 0
1
3 | 1
3
4 | Overburden
clay
g shl/l strks | 266
273 | Bottom
273
279
288 | Formation
g shly sand
sand/shl strks | 472
475 | 475
478 | dg shi/i strks
blk shale | | 0
1
3
4 | 1
3
4
6 | Overburden
clay
g shl/l strks
g shl/lime | 266
273
279 | Bottom
273
279
288 | Formation
g shly sand
sand/shl strks
sand | 472
475
476 | 475
478
481
482 | dg shi/l strks
blk shale
water
dg shale
coal | | 0
1
3
4
6 | 1
3
4
6
47 | Overburden
clay
g shl/l strks
g shl/lime
lime | 266
273
279
280 | 273
279
288
318 | Formation
g shly sand
sand/shl strks
sand
wet | 472
475
476
478 | 475
478
481
482
485 | dg shi/l strks
blk shale
water
dg shale
coal
g sdy shi/lime | | 0
1
3
4 | 1
3
4
6
47
50 | Overburden
clay
g shl/l strks
g shl/lime
lime
dg shale | 266
273
279
280
288 | 273
279
288
318
319 | Formation g shly sand sand/shl strks sand wet sand/shl strks coal | 472
475
476
478
481 | 475
478
481
482
485 | dg shi/l strks
blk shale
water
dg shale
coal | | 0
1
3
4
6
47
50 | 1
3
4
6
47
50 | Overburden clay g shl/l strks g shl/lime lime dg shale lime/dg shale | 266
273
279
280
288
318 | 273
279
288
318
319
334 | Formation g shly sand sand/shl strks sand wet sand/shl strks | 472
475
476
478
481
481 | 475
478
481
482
485
488 | dg shi/l strks
blk shale
water
dg shale
coal
g sdy shi/lime | | 0
1
3
4
6
47
50 | 1
3
4
6
47
50
55
62 | Overburden clay g shl/l strks g shl/lime lime dg shale lime/dg shale dg shl/l strks | 266
273
279
280
288
318
319 | 80ttom
273
279
288
318
319
334
337 | Formation g shly sand sand/shl strks sand wet sand/shl strks coal g shl/l strks | 472
475
476
478
481
482
485 | 475
478
481
482
485
488
498 | dg shi/l strks blk shale water dg shale coal g sdy shi/lime lime/g sdy shale | | 0
1
3
4
6
47
50
55
62 | 1
3
4
6
47
50
55
62
115 | Overburden clay g shl/l strks g shl/lime time dg shale time/dg shale dg shl/l strks | 266
273
279
280
288
318
319
334 | 80ttom
273
279
288
318
319
334
337
352 | Formation g shly sand sand/shl strks sand wet sand/shl strks coal g shl/l strks mg shl/lime | 472
475
476
478
481
482
485
488 | 475
478
481
482
485
488
498 | dg shi/l strks blk shale water dg shale coal g sdy shi/lime lime/g sdy shale g shly sand | | 0
1
3
4
6
47
50
55
62
115 | 1
3
4
6
47
50
55
62
115 | Overburden clay g shl/l strks g shl/lime lime dg shale lime/dg shale dg shl/l strks lime lime | 266
273
279
280
288
318
319
334
337 | Bottom
273
279
288
318
319
334
337
352
385 | Formation g shly sand sand/shl strks sand wet sand/shl strks coal g shl/l strks mg shl/lime mg shl/snd strks | 472
475
476
478
481
482
485
488
488
498 | 475
478
481
482
485
488
498
499
517 | dg shi/l strks blk shale water dg shale coal g sdy shi/lime lime/g sdy shale g shiy sand increased water coal g shale/l strks | | 0
1
3
4
6
47
50
55
62
115 | 1
3
4
6
47
50
55
62
115
120 | Overburden clay g shl/l strks g shl/lime time dg shale time/dg shale dg shl/l strks lime time/shl strks mg shl/l strks | 266
273
279
280
288
318
319
334
337
352 | 80ttom
273
279
288
318
319
334
337
352
385
388 | Formation g shly sand sand/shl strks sand wet sand/shl strks coal g shl/l strks mg shl/lime mg shl/snd strks mg shl/s strks | 472
475
476
478
481
482
485
488
488
488 | 475
478
481
482
485
488
498
517
535 | dg shi/l strks blk shale water dg shale coal g sdy shi/lime lime/g sdy shale g shly sand increased water coal g shale/l strks lime | | 0
1
3
4
6
47
50
55
62
115
120 | 1
3
4
6
47
50
55
62
115
120
140 | Overburden clay g shl/l strks g shl/lime time dg shale time/dg shale dg shl/l strks time time/shl strks time time/shl strks | 266
273
279
280
288
318
319
334
337
352
385 | 80ttom
273
279
288
318
319
334
337
352
385
388
401 | Formation g shly sand sand/shl strks sand wet sand/shl strks coal g shl/l strks mg shl/lime mg shl/snd strks mg shl/l strks | 472
475
476
478
481
482
485
488
488
499
517
535 | 475
478
481
482
485
488
498
517
535
570 | dg shi/l strks blk shale water dg shale coal g sdy shi/lime lime/g sdy shale g shly sand increased water coal g shale/l strks lime mg shi/l strks | | 0
1
3
4
6
47
50
55
62
115
120
140 | 1
3
4
6
47
50
55
62
115
120
140
143 | Overburden clay g shl/l strks g shl/lime time dg shale time/dg shale dg shl/l strks time time/shl strks time shl/l strks mg shl/l strks time/mg shale mg shl/snd strks | 266
273
279
280
288
318
319
334
337
352
385
388 | 318
319
334
335
388
401
405 | Formation g shly sand sand/shl strks sand wet sand/shl strks coal g shl/l strks mg shl/lime mg shl/snd strks mg shl/l strks lime/mg shale lime | 472
475
476
478
481
482
485
488
488
499 | 475
478
481
482
485
488
498
517
535
570 | dg shl/l strks blk shale water dg shale coal g sdy shl/lime lime/g sdy shale g shly sand increased water coal g shale/l strks lime | | 0
1
3
4
6
47
50
55
62
115
120
140
143 | 1
3
4
6
47
50
55
62
115
120
140
143
172
250 | Overburden clay g shl/l strks g shl/lime lime dg shale lime/dg shale dg shl/l strks lime lime/shl strks mg shl/l strks lime/mg shale mg shl/snd strks mg shl/snd strks | 266
273
279
280
288
318
319
334
337
352
385
388
401 | 80ttom
273
279
288
318
319
334
337
352
385
388
401
405
406 | Formation g shly sand sand/shl strks sand wet sand/shl strks coal g shl/l strks mg shl/lime mg shl/snd strks mg shl/l strks ime/mg shale lime mg shl/l strks | 472
475
476
478
481
482
485
488
498
499
517
535
570
585 | 475
478
481
482
485
488
498
517
535
570
585
588 | dg shi/l strks blk shale water dg shale coal g sdy shi/lime lime/g sdy shale g shiy sand increased water coal g shale/l strks lime mg shi/l strks lime/shi/l strks dg shi/l strks | | 0
1
3
4
6
47
50
55
62
115
120
140
143
250 | 1
3
4
6
47
50
55
62
115
120
140
143
172
250
253 | Overburden clay g shl/l strks g shl/lime lime dg shale lime/dg shale dg shl/l strks lime lime/shl strks mg shl/l strks lime/mg shale mg shl/snd strks mg shl/snd strks | 266
273
279
280
288
318
319
334
337
352
385
388
401
405 | Bottom
273
279
288
318
319
334
337
352
385
401
405
406
408 | Formation g shly sand sand/shl strks sand wet sand/shl strks coal g shl/l strks mg shl/lime mg shl/sind strks ime/mg shale lime mg shl/l strks lime/mg shale lime mg shl/l strks | 472
475
476
478
481
482
485
488
498
499
517
535
570
585 | 475
478
481
482
485
488
498
517
535
570
585
588
590 | dg shi/l strks blk shale water dg shale coal g sdy shi/lime lime/g sdy shale g shiy sand increased water coal g shale/l strks lime mg shi/l strks lime/shi strks dg shi/l strks | | 0
1
3
4
6
47
50
55
62
115
120
140
143 | 1
3
4
6
47
50
55
62
115
120
140
143
172
250
253
256 | Overburden clay g shl/l strks g shl/lime lime dg shale lime/dg shale dg shl/l strks lime lime/shl strks mg shl/l strks lime/mg shale mg shl/snd strks mg shl/snd strks | 266
273
279
280
288
318
319
334
337
352
385
388
401
405
406 | Bottom
273
279
288
318
319
334
337
352
385
401
405
406
408 | Formation g shly sand sand/shl strks sand wet sand/shl strks coal g shl/l strks mg shl/lime mg shl/snd strks mg shl/l strks lime/mg shale lime mg shl/l strks lime/shl strks dg shl/l strks | 472
475
476
478
481
482
485
488
498
499
517
535
570
585 | 475
478
481
482
485
488
498
517
535
570
588
590
592 | dg shi/l strks blk shale water dg shale coal g sdy shi/lime lime/g sdy shale g shiy sand increased water coal g shale/l strks lime mg shi/l strks lime/shi/l strks | ## CONTICUTAL ### KCC JUL 0 7 2005 # ORIGINAL | mtor. | Blue Jay O | nerating | Lease Nar | me lant- | N. CO. CE POI | DEAT
Well# | | no. | je 2 | |-------|--|----------------------|-----------|---|--------------------|---------------|--|---------------------|-------------| | | Bottom | | Top | | Formation | Top | Bottom | Formation | | | 607 | | dg shl/l strks | 886 | | dg blk shl/lime | 1144 | C15.10(1.10(1.10(1.10(1.10(1.10(1.10(1.10 | lime/coal | | | 612 | | coal | 887 | | Summit blk shale | 1146 | | g shl/l strks | | | 613 | | dg shale | 891 | | dg shl/l strks | 1149 | | mg shl/snd strks | | | 616 | | | 895 | 906 | | 1163 | | Rowe coal | | | 621 | | g shale | 906 | 11.0 | dg shl/l strks | 1164 | | Tucker sand | | | 627 | | g snale
idg shale | 907 | | Mulky blk shale | 1164 | S TIPO | water | | | 636 | | | 910 | | coal | 1176 | 1182 | mg shale | | | 637 | • | g shale/lime | 911 | | g shl/lime | 1182 | | mg shi/lam snd | | | 640 | | lime/g shale | 915 | | dg shl/l strks | 1192 | | dg mg shale | | | 655 | | g shl/l strks | 961 | | g shi/i strks | 1198 | A | grn g shl/l strks | | | 660 | | mg shale | 963 | | dg shl/l strks | 1201 | 6 2. B.A. C. B.A. C. | g sdy shl/i strks | • • | | 664 | | lime/shl strks | 971 | 40.11.11.11.11.11.11.11.11.11.11.11.11.11 | Croweburg coal | 1206 | | mg shl/lam sand | | | 679 | | lime | 972 | | lime | 1212 | | g shl/l/chert strks | | | 685 | | lime/g shale | 980 | | dg shi/i strks | 1214 | and the same of the same of the | Mississippi cher | | | 693 | | g sdy shale | 1005 | | mg shl/l strks | | 3 | chat/shl strks | | | 699 | | mg shl/snd strks | 1009 | 14. | Mineral coal | 1220 | 1234 | chert/l strks | | | 706 | | mg sdy shale | 1010 | and the second second | lime/shl strks | 1234 | 20, 11, 11,111,111, | tan I/g w chert | | | 712 | | mg shale | 1013 | 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | mg shi/i strks | 1240 | | w g chert/l strks | | | 721 | | coal | 1030 | | mg shl/snd strks | 1240 | | water | | | 722 | | g sdy shale | 1038 | 1 | mg br shly snd | 1260 | | tan I/g chat strks | | | 730 | | g shi/lam sand | 1046 | | dg shi/snd strks | 1284 | | chert/l strks | | | 738 | | g shiy sand | 1052 | | dg shl/l strks | 1298 | | tan I/chert strks | | | 745 | | sand | 1061 | The state of the section of the | dg blk shl/l strks | 1316 | | Total Depth | | | 780 | | mg shl/snd strks | 1062 | 14.34.77.11 | Bluejacket coal | 19.9 | | | | | 789 | | mg sh/l strks | 1063 | | g shi/i strks | | | | | | 800 | | lime/shale | 1073 | | mg shi/l strks | 1 | | | ٠. | | 802 | | Mulberry coal | 1088 | 3 1.0 1.7 4 10.000.3 | mg shl/ snd strks | | | | | | 804 | _ | Pawnee lime | 1095 | | Bartlesville mg br | | <u> </u> | | | | 827 | | Lexington blk shl | | | shi snd/coal strks | | | | | | 832 | 4 | dg shi/i strks | 1110 | 1124 | br snd/shi strks | | | | | | 836 | | mg shl/lime | 1110 | | water | | 0.5 | | | | 839 | 140-340-340-340-340-340- | g mg shl/l strks | 1124 | | mg sdy shale | | | | | | 867 | the second secon | Oswego lime | 1132 | | water | 1 | 1 | | | | 870 | | oil odor | 1132 | | br snd/coal strks | | | | | | 885 | | dg shi/l strks | 1141 | | mg sdy shale | | | | R | Notes: JUL 1 8 2005 KCC WICHITA 04LI-091704-R2-060- Jantz A-1 Blue Jay Operating Abbreviations used: d=dark, g=gray,sh or shl=shale, snd or sd=sand,m=med,br=brown,chrt=chert, cht=chat, /=with, l=lime, w=white, strks or stks =streaks, lam=laminated, grn=green, mg=medium gray b or blk=black, dg=dark gray, sdy=sandy, shly=shaley, Keep Duilling - We're Willing! CONFIDENTIAL CONDENTIAL ORIGINAL KCC JUL 0 7 2005 12701 ENERGY RD · FT. MORGAN, CO. 80701 · PH (970) 887-2788 · FAX (970) 887-5922 BLUE JAY OPERATING - FORT WORTH, TEXAS Coal Seam Frac Project May 31, 2005 ### Blue Jay - Jantz A#1 - Return Trip Mulky (902'-905', 4 spf), 12 shots total. Started with 500 gals of 7.5% HCl. Followed with 672 gal gelled water flush. Started treatment with a pad of 5000 gallons of MavFoam C70, followed by 4500 gals of MavFoam C70 carrying 9000 lbs 16/30 Arizona Sand at 1.0 to 3.0 ppg down hole. The treatment was flushed to the top perforation with 601 gal gelled water. A total of 123,000 SCF of N_2 was used. Started acid @ 5 bpm, STP-184, BH-212. Started Flush, STP-972, BH-901. Formation broke down at 1289 psi. Started Pad, STP-1241, BH-1573. Initial FQ was 61. Sand stages are as follows: Start 1#, STP-1397, BH-1480, FQ-70. Start 2#, STP-1492, BH-1615, FQ-70. Start 3#, STP-1601, BH-1737, FQ-71. Start Flush, STP-1566, BH-1723, FQ-71. Pad through sand stages were pumped @ 15-18 BPM downhole. FQ averaged 70Q. Max pressure was 1601. Average rate was 18 bpm at 1496 psi surface (1656 psi bottomhole). ISIP was 896 psi; 5 min - 721 psi, 10 min - 699 psi, 15 min - 688 psi. RECEIVED JUL 1 8 2005 KCC WICHITA