KANSAS CORPORATION COMMISSION RIGINAL OIL & GAS CONSERVATION DIVISION Form ACO-1 September 1999 Form Must Be Typed ### WELL COMPLETION FORM ### **WELL HISTORY - DESCRIPTION OF WELL & LEASE** | Operator: License # 32887 | API No. 15 - 099-24562-0000 | |--|---| | Name: Endeavor Energy Resources, LP | County: Labette | | Address: PO Box 40 | | | City/State/Zip: Delaware, OK 74027 | 2475 feet from S/ N (circle one) Line of Section | | Purchaser: na | 330 feet from E) (circle one) Line of Section | | Operator Contact Person: Joe Driskill | Footages Calculated from Nearest Outside Section Corner: | | Phone: (918) 467-3111 | (circle one) NE (SE ₂) NW | | Contractor: Name: Well Refined Drilling | (circle one) NE SE, NW Lease Name: Flying T Cattle Well #: 13-2 Field Name: Valeda | | License: 33072 | Field Name: Valeda | | Wellsite Geologist: na | Producing Formation: na | | Designate Type of Completion: | Elevation: Ground: 776.5 Kelly Bushing: | | ✓ New Well Re-Entry Workover | Total Depth: 905 Plug Back Total Depth: 900 | | Oil SWD SIOW Temp. Abd. | Amount of Surface Pipe Set and Cemented at 45' Feet | | GasENHR _ SIGW; | Multiple Stage Cementing Collar Used? | | Dry Other (Core, WSW, Expl., Cathodic, etc) | If yes, show depth set | | If Workover/Re-entry: Old Well Info as follows: | If Alternate II completion, cement circulated from 900 | | Operator: | feet depth to surface w/_ 105 sx cmt. | | Well Name: | 100 dopin to | | Original Comp. Date: Original Total Depth: | Drilling Fluid Management Plan AIT I NUL 11-23-09 (Data must be collected from the Reserve Pit) | | Deepening Re-perf Conv. to Enhr./SWD | | | Plug Back Plug Back Total Depth | Chloride content ppm Fluid volume bbls | | Commingled Docket No. | Dewatering method used | | Dual Completion Docket No | Location of fluid disposal if hauled offsite: | | Other (SWD or Enhr.?) Docket No | Operator Name: | | | Lease Name: License No.: | | 8-11-09 8-12-09 na Spud Date or Date Reached TD Completion Date or | Quarter Sec TwpS. R East West | | Recompletion Date Recompletion Date | County: Docket No.: | | | | | INSTRUCTIONS: An original and two copies of this form shall be filed with Kansas 67202, within 120 days of the spud date, recompletion, workove Information of side two of this form will be held confidential for a period of 1 107 for confidentiality in excess of 12 months). One copy of all wireline logs TICKETS MUST BE ATTACHED. Submit CP-4 form with all plugged wells. | er or conversion of a well. Rule 82-3-130, 82-3-106 and 82-3-107 apply. 2 months if requested in writing and submitted with the form (see rule 82-3- and geologist well report shall be attached with this form. ALL CEMENTING | | All requirements of the statutes, rules and regulations promulgated to regula
herein are complete and correct to the best of my knowledge. | te the oil and gas industry have been fully complied with and the statements | | $\sim 10^{\circ}$ | / KCC Office Hea Chilly | | Signature: Goc Dushill | KCC Office Use ONLY | | Title: Operations Superintendent Date: 11-9-09 | Letter of Confidentiality Received | | Subscribed and sworn to before me this 4th day of November | If Denied, Yes Date: | | | Wireline Log Received | | NOTARY PUBLIC STATE | | | Notary Public NowATA COL | UIC Distribution KPIRES NOV 1 2 2009 | | COMMISSION Expires. 15 Pr. 2.3 10 COMMISSIO | KCC WICHITA | #### Śide Two | Operator Name: Ende | avor Energy Reso | urces, LP | | Leas | e Name:_ | Flying T Cattle | nahimen managan | Well #: | n-n-mainnings-curves programmunings-continues | |---|--|---------------------------|---------------------------------------|---|---------------|------------------------------|---|---|---| | Sec. 13 Twp. 34 | S. R. <u>17</u> | . 🗸 Eas | t 🗌 West | Count | ty: Labett | te | | | | | NSTRUCTIONS: Sho
ested, time tool open
emperature, fluid reco
Electric Wireline Logs | and closed, flowin
very, and flow rate | g and shut
s if gas to | t-in pressures,
surface test, a | whether s
llong with | hut-in pre | essure reached | static level, hyd | rostatic pressure | es, bottom hole | | Orill Stem Tests Taken (Attach Additional S | | Y | es 🗸 No | 1 100 - | V L | .og Format | ion (Top), Depth | and Datum | Sample | | Samples Sent to Geole | · | □ Y | es 🗸 No | | Nam
Osw | ne
ego Lime | | Top
293 | Datum
483.5 | | Cores Taken | ` | \ | es 📝 No | | | rton Coal | | 840 | -63.5 | | lectric Log Run
(Submit Copy) | | VVY | es No | | Missi | issippi Lime | | 854 | -77.5 | | ist All E. Logs Run: | | | | | | | | | | | Compensated Dual Induction | Density / Ne | utron | | | | | | | | | | | Reno | | RECORD | | ew Used
ermediate, produc | ation etc | | | | Purpose of String | Size Hole
Drilled | Siz | re Casing
t (In O.D.) | We | ight
/ Ft. | Setting
Depth | Type of Cement | # Sacks
Used | Type and Percent
Additives | | Surface | 12.250 | 8.625 | . (5.5.) | 21# | | 45' | Portland | 50 | 7,00 | | Production | 6.750 | 4.5 | | 10.5 | | 900' | Class A | 105 | | | | | , | ADDITIONAL | CEMENT | ING / SQI | JEEZE RECOR | D | HARRISHIHII MARKAMININ KANAMARKAMININ KO 2001 | | | Purpose: Perforate Protect Casing Plug Back TD Plug Off Zone | Depth
Top Bottom | Туре | of Cement | T | s Used | | | Percent Additives | | | Shots Per Foot | | | RD - Bridge Plug
Each Interval Per | |) | | acture, Shot, Ceme
mount and Kind of I | • | d Depth | | | | | | | | | | | RECEIVE | | | Alle Area and a second a second and | | | *************************************** | | | | | NOV 1 2 20 | | TUBING RECORD | Size | Set At | | Packer | At | Liner Run | Yes N | 0 | KCC WICHI | | Date of First, Resumerd I | Production, SWD or E | nhr. | Producing Meti | hod | Flowing | g Pump | ing Gas L | .ift Othe | r (Explain) | | Estimated Production Per 24 Hours | Oil | Bbls. | Gas | Mcf | Wate | er E | Bbls. | Gas-Oil Ratio | Gravity | | Disposition of Gas | METHOD OF (| COMPLETIC |)N | 1 | | Production Inte | rval | | | | Vented Sold (If vented, Subr | Used on Lease | | Open Hole Other (Speci | Peri | f. 🔲 C | Dually Comp. | Commingled | | | # Well Refined Duilling Company, Inc. 4230 Douglas Road - Thayer, KS 66776 Contractor License # 33072 - FEIN # 620-839-5581/Office; 620-432-6170/Jeff Cell; 620-839-5582/FAX | | | | Lić#32 | 887, | TANE (C) | S13 | T34S | R17E | |--|--|--|--|--|---|---|---|--| | \PI #: | 15-099 | -24562-0000 | | | Pin # 5 | Location | | NE,NE,SE | | perator: | Endeav | or Energy Resour | ces LP | | 金 (5) | County | | Labette | | ddress: | РО Вох | 40 | | | 1 CLD | <u> </u> | | | | 4.5. # # | Delawa | re, Ok 74027 | | | | ∵ Gäs T | ests*> | | | Vell #: | 13-2 | Lease Name: | Flying T | Cattle | - Depth | Oz. | | flow - MCF | | ocation: | 2475 | FSL | Line | | | The property of the control c | Section 1997 And 1997 | | | | 330 | FWL | Line | | See Page 3 | | | | | pud Date: | | 8/11/2009 | | | | | | | | ate Complete | | 8/12/2009 | TD: | 905 | | | | | | | | Kephart | | | | | | | | | ord | Surface | Produc | | | | | | | lole Size | | 12 1/4" | | 6 3/4" | | | | | | asing Size |) | 8 5/8" | ļ | | | | | | | Veight | 41- | 4~1 | | | | | | | | etting Dep | | 45' | | <u> </u> | | | | | | ement Typ | be | Portland | | <u> </u> | OOF | $\mathcal{V}_{\mathcal{N}}}}}}}}}}$ | | | | acks
eet of Cas | ina | Consolidated | | | | <u> </u> | | | | eet of Cas | ing | | ļ | ļ | <u> </u> | | | <u>.</u> | | ote: | | | | | | | | | | ole. | | | | | | | | | | | | , | | | | | | | N. Isaasa | | | | | | | | | | 9LH-0812(|)9=R5-0 | 36-Flýing T. Gattle | | | | | | | | , but | | | | WellL | og | | | at the special section of | | Тор : | Bottom | Formation | Тор | Well L
Bottom | og
La Formation | F/Op / | | Formation | | Top 0 | Bottom
0.5 | Formation overburden | Top
285 | Well L
Bottom
287 | og
∴Formation:
lime | ∌⊲Top
470 | Bottom
471 | ேFormation
coal | | Top
0
0.5 | Bottom
0.5
4 | Formation overburden broken lime | .∓op
285
287 | Well L
Bottom
287
293 | Og
Formation
lime
shale | ⊁√Top
470
471 | Bottom
471
516 | Formation a
coal
shale | | Top: 0
0
0.5
4 | Bottom
0.5
4
17 | Eormation overburden broken lime lime | 285
287
293 | Well L
Bottom
287
293
306 | og
Formation
lime
shale
lime | . Top
470
471
516 | Bottom
471
516
523 | Eormation coal shale sand | | Top : 0
0 0.5
4
17 | Bottom
0.5
4
17 | Formation
overburden
broken lime
lime
shale | 285
287
293
306 | Well L
Bottom
287
293
306
307 | Og
Formation:
lime
shale
lime
blk shale | | Bottom
471
516
523
523 | Formation coal shale sand odor - wet | | Top: 0
0 0.5
4
17
21 | Bottom
0.5
4
17
21 | Formation
overburden
broken lime
lime
shale
water | 285
287
293
306
307 | Well L
Bottom
287
293
306
307
326 | OG Formation Scaling Ime shale lime blk shale slime | 470
470
471
516
519
523 | Bottom
471
516
523
523
544 | Formation coal shale sand odor - wet shale | | Top 0
0 0.5
4
17
21
21 | Bottom
0.5
4
17
21 | Formation overburden broken lime lime shale water lime | 285
287
293
306
307
326 | Well L
Bottom
287
293
306
307
326
328 | OG Formation Ime shale lime blk shale slime blk shale | 470
470
471
516
519
523
544 | 86ttom
471
516
523
523
544
545 | Formation coal shale sand odor - wet shale blk shale | | Top : 0
0 0.5
4
17
21
21
41 | Bottom
0.5
4
17
21
41
43 | Eormation overburden broken lime lime shale water lime shale | 285
287
293
306
307
326
328 | Well L
Bottom
287
293
306
307
326
328
364 | Og Formation: lime shale lime blk shale slime blk shale | 470
470
471
516
519
523
544
545 | 86ttom
471
516
523
523
544
545
546 | coal shale sand odor - wet shale blk shale coal | | Top:
0
0.5
4
17
21
21
41
43 | Bottom
0.5
4
17
21
41
43
47 | Eormation overburden broken lime lime shale water lime shale lime | 285
287
293
306
307
326
328
364 | Well L
Bottom
287
293
306
307
326
328
364
365 | OG Ime shale lime blk shale slime blk shale slime blk shale | 470
471
516
519
523
544
545
546 | 86ttom
471
516
523
523
544
545
546
547 | coal shale sand odor - wet shale blk shale coal shale | | Top: 0
0.5
4
17
21
21
41
43
43 | Bottom
0.5
4
17
21
41
43
47
179 | Formation overburden broken lime lime shale water lime shale lime shale lime shale | 285
287
293
306
307
326
328
364
365 | Well L
Bottom
287
293
306
307
326
328
364
365
367 | OG Ilime shale lime blk shale slime blk shale slime blk shale lime blk shale | 470
470
471
516
519
523
544
545
546
547 | 86ttom
471
516
523
523
544
545
546
547
562 | coal shale sand odor - wet shale blk shale coal shale sand | | Top:
0
0.5
4
17
21
21
41
43
47
179 | Bottom
0.5
4
17
21
41
43
47
179
183 | Formation overburden broken lime lime shale water lime shale lime shale lime | 285
287
293
306
307
326
328
364
365
367 | Well L
Bottom
287
293
306
307
326
328
364
365
367
385 | OG Formation lime shale lime blk shale slime blk shale lime shale lime shale blk shale | 470
471
516
519
523
544
545
546
547
562 | 80ttom
471
516
523
523
544
545
546
547
562
598 | coal shale sand odor - wet shale blk shale coal shale sand | | Top 0
0.5
4
17
21
21
41
43
47
179
183 | Bottom
0.5
4
17
21
41
43
47
179
183
189 | Formation overburden broken lime lime shale water lime shale lime shale lime shale | 285
287
293
306
307
326
328
364
365
367
385 | Well L
Bottom
287
293
306
307
326
328
364
365
367
385
410 | OG Ime shale time blk shale slime blk shale lime blk shale lime shale lime shale | 470
471
516
519
523
544
545
546
547
562
598 | 516
523
523
544
545
546
547
562
598
601.5 | coal shale sand odor - wet shale blk shale coal shale sand which is the shale blk shale coal shale shale sund shale weir coal | | Top: 0 0.5 4 17 21 21 41 43 47 179 183 189 | Bottom
0.5
4
17
21
41
43
47
179
183
189
208 | Formation overburden broken lime lime shale water lime shale lime shale lime shale lime shale | 285
287
293
306
307
326
328
364
365
367
385
410 | Well L
Bottom
287
293
306
307
326
328
364
365
367
385
410
411 | OG Ime shale lime blk shale slime blk shale lime blk shale lime shale lime shale blk shale | 470
471
516
519
523
544
545
546
547
562
598
601.5 | 516
523
523
544
545
546
547
562
598
601.5
646 | coal shale sand odor - wet shale blk shale coal shale sand which is the shale coal shale sand shale weir coal shale | | Top: 0 0.5 4 17 21 21 41 43 47 179 183 189 195 | Bottom
0.5
4
17
21
41
43
47
179
183
189
208 | Formation overburden broken lime lime shale water lime shale lime shale lime shale lime oil odor | 285
287
293
306
307
326
328
364
365
367
385
410
411 | Well L
Bottom
287
293
306
307
326
328
364
365
367
385
410
411
412 | OG Ime shale lime blk shale slime blk shale lime shale lime shale lime shale blk shale lime shale blk shale | 519
519
523
544
545
546
547
562
598
601.5
646 | 86ttom
471
516
523
523
544
545
546
547
562
598
601.5
646
647.5 | coal shale sand odor - wet shale blk shale coal shale sand shale sand shale sand shale coal | | Top: 0 0.5 4 17 21 21 41 43 47 179 183 189 195 208 | Bottom
0.5
4
17
21
41
43
47
179
183
189
208 | Formation overburden broken lime lime shale water lime shale lime shale lime shale lime shale lime shale | 285
287
293
306
307
326
328
364
365
367
385
410
411
412 | Well L
Bottom
287
293
306
307
326
328
364
365
367
385
410
411
412
414 | OG lime shale lime blk shale slime blk shale lime shale lime shale lime shale blk shale lime shale blk shale lice shale shale lime shale | 470
471
516
519
523
544
545
546
547
562
598
601.5
646
647.5 | 544
545
546
547
546
547
562
598
601.5
646
647.5
662 | coal shale sand odor - wet shale blk shale coal shale sand weir coal shale Weir coal shale coal shale | | Top: 0 0.5 4 17 21 21 41 43 47 179 183 189 195 208 209 | Bottom
0.5
4
17
21
41
43
47
179
183
189
208
209
211 | Formation overburden broken lime lime shale water lime shale lime shale lime shale lime shale lime shale lime shale | 285
287
293
306
307
326
328
364
365
367
385
410
411
412
414 | Well L
Bottom
287
293
306
307
326
328
364
365
367
385
410
411
412
414
427 | Formation lime shale lime blk shale slime blk shale lime shale lime shale blk shale lime shale blk shale lime shale shale shale shale shale | 470
471
516
519
523
544
545
546
547
562
598
601.5
646
647.5
662 | 544
545
546
547
562
598
601.5
646
647.5
662
663 | coal shale sand odor - wet shale blk shale coal shale sand weir coal shale coal shale | | Top 0
0.5
4
17
21
21
41
43
47
179
183
189
195
208
209
211 | Bottom
0.5
4
17
21
41
43
47
179
183
189
208
209
211
220 | Formation overburden broken lime lime shale water lime shale lime shale lime shale lime shale lime shale libe blik shale shale shale | 285
287
293
306
307
326
328
364
365
367
385
410
411
412
414
427 | Well L
Bottom
287
293
306
307
326
328
364
365
367
385
410
411
412
414
427
448 | Ime shale lime blk shale slime blk shale lime shale lime shale blk shale lime shale blk shale lime shale shale shale shale shale blk shale | 470
471
516
519
523
544
545
546
547
562
598
601.5
646
647.5
662
663 | 544
545
546
547
562
598
601.5
646
647.5
662
663
711 | coal shale sand odor - wet shale blk shale coal shale sand weir coal shale coal shale shale coal shale shale coal shale coal shale coal shale | | Top: 0 0.5 4 17 21 21 41 43 47 179 183 189 195 208 209 | Bottom
0.5
4
17
21
41
43
47
179
183
189
208
209
211
220
249 | Formation overburden broken lime lime shale water lime shale lime shale lime shale lime shale lime shale libe blik shale shale shale | 285
287
293
306
307
326
328
364
365
367
385
410
411
412
414 | Well L Bottom | Ime shale lime blk shale slime blk shale lime shale lime shale blk shale lime shale blk shale lime shale shale shale shale shale blk shale | 470
471
516
519
523
544
545
546
547
562
598
601.5
646
647.5
662 | 80ttom 471 516 523 523 544 545 546 547 562 598 601.5 646 647.5 662 663 711 712 | coal shale sand odor - wet shale blk shale coal shale sand weir coal shale coal shale shale coal shale shale coal shale coal shale coal shale | | Company. | Endeavor Er | nergy Resources LP | Lease | | Flying T Cattle | ₩ell# | i 1352% | nage 2 | |--------------|-------------|--------------------|------------------------|--------------------------|-----------------|--|--|--| | ->•rTop∗.t | Bottom | Formation | ∦ Тор∴ | Bettom | Formation | - Ton≼ | Bottom | Formation | | 714 | 715 | blk shale | A SHOW A P. A. MARKATO | Constitution of the last | | | | is promisely and the second | | 715 | | shale | | | | | | | | 757 | | | | | <u> </u> | | | | | 758.5 | 771 | shale | † — — | | | | | | | 771 | 772.5 | coal | <u> </u> | | | | | | | 772.5 | 803 | shale | | | | | | | | 803 | | AW coal | | | | | | | | 804.5 | | shale | | | | | | | | 813 | | BW coal | | | | | | | | 814 | 843 | shale | | | | | | | | 843 | | Riverton coal | | | | | | | | 844.5 | | shale | | | · . | | | | | 854 | 867 | | | | | ļ | | | | 337 | | slight odor | | | | <u></u> | | | | 867 | 905 | | | | | ļ | | | | 905 | | Total Depth | | | | | | | | 300 | | rotar Depth | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | . | 17 | | | | | | | | ((| | Ŋ, | | | | | | | | 7 | | U | | | | | | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 09LH±081209-R5-036-Flying T Cattle 13:2-EER RECEIVED NOV 1 2 2009 KCC WICHITA | Operator : Endeavor | Energy | Lease Na | me 🥬 🤔 | Elyingstreattle_E | Well.# [#] -=::13-2 | o page 3 | |----------------------|-------------------|------------------|--------------|---|------------------------------|----------| | | Riverton coal | -Gas | rests | | | _ | | | | Oz. | | flow=MCF | | | | | 200 | | No flow | | | | | 1 | 230 | | No flow | | | | | ļ | 255 | | No flow | | | | | 1 | 330 | | Trace | | | | | 1 | 380 | | Trace | | | | | 1 | 405 | | Trace | · · · · · · · · · · · · · · · · · · · | · · | | | | 430 | 7 | 3/8" | 9.45 | | | | | 455 | 11 | 3/8" | 11.9 | | | | 1 | 480 | 10 | 3/8" | 11.3 | | | | ļ. | 530 | 20 | 1/2" | 28 | | | | ļ. | 555 | 4 | 3/4" | 28.3 | | | | ! | 605 | 19 | 1 1/2" | 303 | | | | ļ | 630 | 11 | 1 1/2" | 231 | | | | Ļ | 655 | 6 | 1 1/2" | 170 | | | | | 680 | | Check S | | | | | | 730 | 3 | 1 1/2" | 121 | | | | | 780 | 2 | 1 1/2" | 98.5 | | | | 1 | 805 | 6 | 1" | 63.3 | | | | | 830 | 2 | 1" | 36.5 | | | | 1 | 853.5 | 3 | 1" | 44.7 | | | | Ļ | 880 | 2 | 1" | 36.5 | | | | Ĺ | 909 | Gas | Check S | ame | | | | 1_ | | | | | | | | Ĺ | | | | | | | | Ĺ | 77.77 | | | | | | | COF | ソw | | | | | | | | L | Γ | | | | | | | | Γ | | | | | | | | Ī | | . | | *************************************** | | | | | | | | | | | | Ţ | | | | *************************************** | | | | ſ | | | | | | | | | | | | | | | | Ţ | | | | | | | | r | | | | | | | | ļ- | | | | | | | | F | | | | | | | | | | | | | | | | ŀ | | | | | | | | F | | | | | | RECEIV | | f | | | | | | ハレレビハ | | 09EH+08 209 R5-036 | 3-Flying T Cattle | 13 <u>⊧</u> 2-EE | R, | | | NOV 12 | | | | | | | | | · **RECEIVED** NOV 1 2 2009 **KCC WICHITA** IL 230846 znd well TICKET NUMBER LOCATION Backleswill, ax FOREMAN KIXK Sanders DATE_ PO Box 884, Chanute, KS 66720 620-431-9210 or 800-467-8676 **AUTHORIZTION** ## **FIELD TICKET & TREATMENT REPORT** | | Or 800-467-8678 | | | CEMEN | IT | | | | |-----------------|---------------------------------------|-------------|---------------------------------------|--|-------------------|-----------------|---------------------------------|-----------| | DATE | CUSTOMER# | WELL | NAME & NUM | BER | SECTION | TOWNSHIP | RANGE | COUNTY | | 8-13-09 | 2520 | Tota | Porch | 13-2 | | | | Labatte | | CUSTOMER | <i>E ,</i> | Flying | TO | TIE | TRUCK# | | | | | AAILING ADDR | Endequar
ESS | | 0 - 1 / | | TRUCK# | DRIVER | TRUCK# | DRIVER | | | | | | | 398 | John | | (C | | CITY | | STATE | ZIP CODE | 1 | 5/8 | Anthony | | 25 | | | | | | | 403 764 | James K. | | 4// | | OB TYPE | 15 | HOLE SIZE | 1.341 | LI
NOLE DEPTI | H_ 9051 | CASING SIZE & V | NEIGHT 4/2 | 1 3/19 | | | | DRILL PIPE | | _TUBING | | CASING SIZE & I | OTHER | 2 | | LURRY WEIGH | 1 4 4 | SLURRY VOL | | | sk_ <i>6.94</i> | CEMENT LEFT in | | | | ISPLACEMEN" | | DISPLACEMEN | | MIX PSI | ·· <u> </u> | RATE | () () () () () () () () | | | EMARKS: | | | | | Ilem In | | > | | | 1/10+1 | al Seal 1 | 19/ 50/2 | 12% 6 | 1 / Just | Plens No | al al aut | an 105 F | of semen | | du 4 10 | line to | set shop | 5/10 | day of | - washed | sud au | oung t l | res, dago | | 0 | 7 | 100 | · · · · · · · · · · · · · · · · · · · | CIALCO / | Washid_ | | | | | | | | | | | | | | | | | | re Com | use of | 5.1 | | | | | | | | | | C MAY | | | | | | | | | 7.77 | | | | | | | | | | , \/ | | | | | | | | | | | | | | | | ACCOUNT
CODE | QUANITY | or UNITS | DE | SCRIPTION of | f SERVICES or PRO | DDUCT | UNIT PRICE | TOTAL | | 5401 | | <i>,</i> | PUMP CHARG | | -1 ' ' | | OMIT TRUE | | | J.707 | | <u></u> | MILEAGE | E Chang | String) | | | 8700 | | 5407 | / | | · · · · · · · · · · · · · · · · · · · | | | | | | | 5402 | 0 | 20' | Bulk | | | | | 29% 00 | | 550/c | | hes | Foota | | | | | 17/00 | | 5/02/ | , | | /cans | | <u></u> | | | 350 | | -104/ | | | 4/2/2 | uz Cardo | ziner. | | | 18800 | | 1104 | 1050/ | 2522 # | | 24-1-1 | | | | -12- | | HOTA | 25x/ 8 | 7,8.10 | DI | Colos | (SA) | <u>gė</u> | | 138/80 | | HOA | | | There . |)est | | | | 8/e 40 | | 1111 | 10.50 | 3 | Kal Se | | | 9 | | 40950 | | 11188 | 300
450 | 2 | Caranula
D | ted Sas | <u> </u> | # | | 9300 | | 1/23 | 5040 | _ | Fremin | m (sel | | <u> </u> | | 72 00 | | 4404 | 1070 | fac | III D | 11 DI | RECE | IVED # | | 7056 | | | | | 4/2 / | phes Plu | | | | 4300 | | | · · · · · · · · · · · · · · · · · · · | | | | MOA , | 5 5003 | | | | | | | | | | WOLUTA | | | | | | 1 | | ······································ | KCC V | VICHITA | | | | | 7/ | <i>y</i> | | <u> </u> | | | | | | in 3737 | | Mr | | | | 6.55% 8 | SALES TAX ESTIMATED | 141.2 | | | | 10 | , | | | | TOTAL | 4/27 5 | | ITHORIZTION_ | | / | | TITLE | | | DATE | 466 | #230796 | TICKET NUMBER | 21740 | |------------------|-------| | LOCATION B-VILLE | | | FOREMAN COO | | | DATE | | | CEMENT | | | | | |---|--|---|------------------|-------------|----------------|-------------|--| | | | WELL NAME & NUMBE | | ECTION | TOWNSHIP | RANGE | COUNTY | | 2-11-09 | 2520 Flyin | y TCattle #13- | 2 | 13 | 34 | 12 | habethe | | CUSTOMER | 1 | , | 2843 | | | | الم المرابع | | Encleavor
MAILING ADDRE | 88 | | 7 | RUCK# | DRIVER | TRUCK# | DRIVER | | | | | 5 | 36 T118 | Nyan H | | | | CITY | STATE | ZIP CODE | 5 | 18 | Mobe H | | | | | OTATE | ZIP CODE | 415 | TIZS | Nak | | | | | HOLE SIZ | E_10-4 | | / | CASING SIZE & | NEIGHT RYP | | | CASING DEPTH_ | 45' DRILL PIP | | | | | OTHER | ··· | | SLURRY WEIGHT | T SLURRY \ | /OL v | NATER gal/sk | | CEMENT LEFT in | | -1 | | DISPLACEMENT. | DISPLACE | EMENT PSI N | MIX PS! | | RATE | | | | REMARKS: ρ | umred 2sks gel ah | of Est circula | hon owners | 50sks | cement disp | level . 201 | 1 (1 6 11 | | | | | | | | eur w A B | Sucin. | | | - | Crealand com | unt to Swhere | | | | | | | | | | | | | | | | | | 7 | | | | | | | | 2 (U) Y | | | | | | | | | - u | 1 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ACCOUNT | | | | | | | | | ACCOUNT
CODE | QUANITY or UNITS | DESC | CRIPTION of SERV | ICES or PR | ODUCT | UNIT PRICE | TOTAL | | S4015 | QUANITY or UNITS | DESC
PUMP CHARGE | CRIPTION of SERV | ICES or PR | ODUCT | UNIT PRICE | | | S4015
5406 | QUANITY or UNITS | | | | ODUCT | UNIT PRICE | 680,00 | | S4015 | 1 | PUMP CHARGE | | | ODUCT | UNIT PRICE | 689,00
189.95 | | S4015
5406 | 1 | PUMP CHARGE
MILEAGE
Bulk Tru | | | ODUCT | UNIT PRICE | 689,00
189.95
296.00 | | CODE
54015
5406
5407
550K | 1
55 | PUMP CHARGE MILEAGE Bulk Tru Trunsport | | | ODUCT | UNIT PRICE | 689,00
189.55
296.00
420.00 | | CODE
54015
5406
5407 | 1
55
1
4h
4200# | PUMP CHARGE MILEAGE By lk Tru Trunsport Compt | | | ODUCT | UNIT PRICE | 680,00
189.95
296.00
420.00 | | CODE
54015
5406
5407
550K
4104
1102 | 1
55
1
4h
4200#
100# | PUMP CHARGE MILEAGE By lk Tru Trunsport Compt | | | ODUCT | UNIT PRICE | 689,00
189.55
296.00
420.00
658.00 | | CODE 54015 54015 5404 1104 1102 | 1
55
1
4h
4200#
100#
80# | PUMP CHARGE MILEAGE Bulk Tru Trunsport Censat Calcum Phino Seal | | | ODUCT | UNIT PRICE | 680,00
189.95
296.00
420.00
658.00
21.00
86.40 | | CODE 54015 54015 5407 5501C 4104 1102 1102A | 1
55
1
4h
4200#
100#
80#
200# | PUMP CHARGE MILEAGE Bulk Tru Trunsport Censat Calcum Phino Seal | | | ODUCT | UNIT PRICE | 680,00
189.55
296.00
420.00
658.00
21.00
86.40 | | CODE
54015
5406
5407
55016 | 1
55
1
4h
4200#
100#
80# | PUMP CHARGE MILEAGE Bulk Tru Trunsport Convert Calcoum Phino Seal | | | ODUCT | UNIT PRICE | 680,00
189.95
296.00
420.00
658.00
21.00
86.40 | | CODE 54015 54015 5407 5501C 4104 1102 1102A | 1
55
1
4h
4200#
100#
80#
200# | PUMP CHARGE MILEAGE Bulk Tru Trunsport Censat Calcum Phino Seal | | | ODUCT | UNIT PRICE | 680,00
189.55
296.00
420.00
658.00
21.00
86.40 | | CODE 54015 54015 5407 5501C 1104 1102 1102A | 1
55
1
4h
4200#
100#
80#
200# | PUMP CHARGE MILEAGE Bulk Tru Trunsport Censat Calcum Phino Seal | | | | | 680,00
189.95
296.00
420.00
658.00
21.00
86.40 | | CODE 54015 54015 5407 5501C 4104 1102 1102A | 1
55
1
4h
4200#
100#
80#
200# | PUMP CHARGE MILEAGE Bulk Tru Trunsport Censat Calcum Phino Seal | | | RECEIV | | 680,00
189.95
296.00
420.00
658.00
21.00
86.40 | AUTHORIZTION Joseph Keyhus TITLE Driller SALES TAX ESTIMATED TOTAL KCC WICHITA 6.55 ATE