CONFIDENTIAL ## KANSAS CORPORATION COMMISSION OIL & GAS CONSERVATION DIVISION ORIGINAL 3/10/10 For September 1999 Form Must Be Typed WICHITA, KS ### WELL COMPLETION FORM | ** | COMIL | | | · · | |--------------|---------|-----------|--------|-------| | WELL HISTORY | - DESCR | IPTION OF | WELL & | LEASE | | | | | | | | Operator: License # 33344 | API No. 15 - 15-133-27280-0000 | |--|--| | Name: Quest Cherokee, LLC | County: Neosho | | Address: 211 W. 14th Street | NE _ SW_ SE _ Sec. 14 _ Twp. 30 _ S. R. 18 _ 🗸 East _ West | | City/State/Zip: Chanute, KS 66720 | 810 feet from N (circle one) Line of Section | | | 1500 feet from (E) W (circle one) Line of Section | | Purchaser: Bluestem Pipeline, LLC Operator Contact Person: Jennifer R. Ammann Phone: (620) 431-9500 | Footages Calculated from Nearest Outside Section Corner: | | Phone: (620) 431-9500 | (circle one) NE SE NW SW | | Phone: (<u>620</u>) <u>431-9500</u> Contractor: Name: TXD | Lease Name: Graham Well #: 2A | | License: 33837 | Field Name: Cherokee Basin CBM | | Wellsite Geologist: Ken Recoy | Producing Formation: Multiple | | Designate Type of Completion: | Elevation: Ground: 966 Kelly Bushing: n/a | | ✓ New Well Re-Entry Workover | Total Depth: 1066 Plug Back Total Depth: 1052 | | Oil SWD SIOW Temp. Abd. | Amount of Surface Pipe Set and Cemented at 21 Feet | | ✓ Gas ENHR SIGW | Multiple Stage Cementing Collar Used? | | Dry Other (Core, WSW, Expl., Cathodic, etc) | If yes, show depth setFeet | | If Workover/Re-entry: Old Well Info as follows: | If Alternate II completion, cement circulated from 1052 | | Operator: | feet depth to surface w/ 140 sx cmt. | | Well Name: | · | | Original Comp. Date: Original Total Depth: | Drilling Fluid Management Plan ALT JJ 51805 (Data must be collected from the Reserve Pit) | | Deepening Re-perf Conv. to Enhr./SWD | Chloride content ppm Fluid volume bbls | | Plug Back Plug Back Total Depth | Dewatering method used | | Commingled Docket No | | | Dual Completion Docket No | Location of fluid disposal if hauled offsite: | | Other (SWD or Enhr.?) Docket No | Operator Name: | | 11 16 07 11 11 25 07 14 00 07 | Lease Name: License No.: | | 11-16-07 11-25-07 11-26-07 Spud Date or Date Reached TD Completion Date or | Quarter Sec TwpS. R 🔲 East 🗌 West | | Recompletion Date Recompletion Date | County: Docket No.: | | INSTRUCTIONS: An original and two copies of this form shall be filed with Kansas 67202, within 120 days of the spud date, recompletion, workove Information of side two of this form will be held confidential for a period of 13 107 for confidentiality in excess of 12 months). One copy of all wireline logs of TICKETS MUST BE ATTACHED. Submit CP-4 form with all plugged wells. | r or conversion of a well. Rule 82-3-130, 82-3-106 and 82-3-107 apply. 2 months if requested in writing and submitted with the form (see rule 82-3- and geologist well report shall be attached with this form. ALL CEMENTING | | All requirements of the statutes, rules and regulations promulgated to regulat herein are complete and correct to the best of my knowledge. | te the oil and gas industry have been fully complied with and the statements | | Signature: Sinnifu R. ammann, | KCC Office Use ONLY | | Title: New Well Development Coordinator Date: 3/10/08 | Latter of Confidentiality Section | | Subscribed and sworn to before me this 10th day of | Letter of Confidentiality Received If Denied, Yes Date: | | 20 D. | Wireline Log Received RECEIVED | | | Geologist Report Received CORPORATION COMMISSION | | Notary Public: Devia Klauman | UIC Distribution MAD 4 2 2000 | | | | | Notal: | y Public - State of Kansas CONSERVATION DIVISION WICHITA KS | ### Side Two | | 344437 | | | | | | | | | |---|---|---------------------------------|---------------------------------------|------------------------|---------------------|-----------------------------|---|----------------------------|-------------------------------| | Operator Name: Que | est Cherokee, LL | С | | Lease | e Name:_ | Graham | | Well #: _2A | | | Sec. 14 Twp. 3 | | | | | y: Neosh | | | | | | INSTRUCTIONS: SI
tested, time tool oper
temperature, fluid red
Electric Wireline Log | n and closed, flowing
covery, and flow rate: | g and shut-in
s if gas to su | n pressures, v
urface test, al | whether s
long with | hut-in pre | ssure reached | static level, hydro | ostatic pressure | es, bottom hole | | Drill Stem Tests Take | | ☐ Yes | □No | | V L | og Format | ion (Top), Depth | | Sample | | Samples Sent to Geo | ological Survey | Yes | □No | | Nam
See | e
attached | | Тор | Datum | | Cores Taken | | Yes | No | | | | | | | | Electric Log Run
(Submit Copy) | | _ Yes | No | | | | | | | | List All E. Logs Run: | | | | | | | | | | | Compensated Dual Induction | I Density Neut
n Log | ron Log | 0.40000 | DE0000 | | | | | | | | | Report a | CASING I
all strings set-c | | Ne
Surface, inte | ew Used
ermediate, produ | ction, etc. | | | | Purpose of String | Size Hole
Drilled | | Casing
n O.D.) | | eight
. / Ft. | Setting
Depth | Type of
Cement | # Sacks
Used | Type and Percent
Additives | | Surface | 12-1/4 | 8-5/8" | · · · · · · · · · · · · · · · · · · · | 22 | | 21 | "A" | 5 | | | Production | 6-3/4 | 4-1/2 | | 10.5 | | 1052 | "A" | 140 | | | | | | ADDITIONAL | CEMENT | ING / SOI | JEEZE RECOR | ID. | | | | Purpose: Perforate Protect Casing Plug Back TD Plug Off Zone | Depth
Top Bottom | · · | f Cement | T | s Used | | | Percent Additives | | | Plug Oil 2011e | | | | | | | | | | | Shots Per Foot | | | - Bridge Plug
ich Interval Per | | e | | acture, Shot, Cemei
Amount and Kind of M | | d
Depth | | 4 | 957-959/904-90 | 6/898-900 | | | | 500gal 15%HCLw/ 56k | bis 2%kd water, 661bbis water | w/ 2% KCL, Blockie, 6400 | 20/40 sand 57-959/904- | | | | | | | | | | | 898-900 | | 4 | 674-676/640-64 | 3/616-618 | | | | 400gal 15%HCLw/ 53t | obis 2%kci water, 537bbis water | r w/ 2% KCL, Blockle, 3800 | # 20/40 sand 674-676/640- | | | | | | | | | | | 616-618 | | 4 | 528-532/516-52 | 0 | | | | 400gel 15%HCLw/ 41t | obis 2%kci water, 665bbis wete | r w/ 2% KCL, Blockle, 6000 | # 20/40 sand 528-532/516- | | TUBING RECORD 2- | Size
3/8" | Set At 999 | 1 | Packer
n/a | At | Liner Run | Yes V | 0 | | | Date of First, Resume | rd Production, SWD or I | Enhr. | Producing Met | hod | Flowin | g 📝 Pum | ping Gas L | ift Oth | er (Explain) | | Estimated Production
Per 24 Hours | Oil
n/a | Bbls. | Gas
0.0 mcf | Mcf | Wat
145. | er
0 bbls | Bbls. | Gas-Oil Ratio | Gravity | | Disposition of Gas | METHOD OF | | | | | Production Int | erval | | | | Vented ✓ Sold | Used on Lease | [| Open Hole Other (Spec | Pe | erf. | Dually Comp. | Commingled | | | # QUEST Resource Corporation Ravin 4513 CONFIDENTIAL MAR 1 0 2008 KCC TICKET NUMBER 2618 FIELD TICKET REF # FOREMAN Joe 625310 620-431-9500 211 W. 14TH STREET, CHANUTE, KS 66720 ## TREATMENT REPORT & FIELD TICKET CEMENT | DATE | | WELL | NAME & NUMBER | 3 | | SECTION | TOWNSHIP | RAN | GE | COUNTY | |------------------------------------|---|---|--|--------------------------|----------|--------------|--------------|-----------|------------------|--------------------| | 11-26-07 | Graham | _ν 2- | Α | | | 2 | <u> 30 </u> | 18 | | NO | | FOREMAN /
OPERATOR | TIME | TIME | LESS
LUNCH | TRUCK
| | TRAILER
| TRU
HOU | | | IPLOYEE
INATURE | | Joen | 11:00 | 2:45 | | 903427 | | | 3. | 75 | Joe | Blanchard | | Tim | l | | | 903197 | | | | | _Tit | n Alyens | | MANERICK | | | | 903600 | | | | | 12 | 01 | | Tyler | \ | | | 903140 | 93 | 32452 | | | 10 | | | DANIEL | 1 | V | | 931420 | | | | | 初, | niels. | | DEMARKS | 52.14 DRILL
14.2 SLURF
5.78 DISPL | PIPE
RY VOL
ACEMENT PS
ARAN
Flush | 2 5KS | UBING | old
P | OTHE | ERENT LEFT I | n CASING | 0_ | | | | 1052 | 6 (| F+ 41/2
Centraliz
1/2 Flo | Casing
zers
atshoe | , | | | | | | | ACCOUNT
CODE | QUANTITY or | UNITS | | DESCRIPTION OF SE | RVIC | ES OR PRODUC | OT | | | TOTAL
MOUNT | | 903427
903197
903600
1104 | 3.7 | hr c
hr B | oreman Pickup
ement Pump Truck
ulk Truck
ortland Cement
0/58 POZ Blend O | | (e < | 372 | 43 | | | | | 1126 | | 1 0 | WG - Blend Come | 4/2 W. | سم | مالا | } | | | | | 1110 | 28 | | ilsonite | | ! | 7 | ر | | | | | 1107 | | - 2r | lo-Seal | | | | | | | | | 1118 | | | remium Gel | <u> </u> | | | | | - | | | 1215A | 19 | | CL
edium Silicate | Calala | 7 | 0 | | RECE | IVED | | | 1111B | | 3 JC | ity Water | LOXONOR | | <u> </u> | KANSA | S CORPOR | TION C | OMMISSION - | | 1123 | 3,75 | | ransport Truck | | | | | 1445 : | 0.000 | <u> </u> | | 70.5140
Convers | 3,/3 | \ | ansport Trailer | | | | | MAR 1 | 3 ZU | J Ö | | G31420 | | 1 14 | 0 Vac | | _ | | (| CONSERVAT | ION DIV | ISION | | 111100 | _ _ | <u></u> | | | | | | 18.1541 | !- . | | MAR 1 0 2008 ### TXD SERVICES DRILLERS LOG KCC TXD SERVICES | RIG # | 101 | | ভ. 1 4 | T. 30 | R. 18 | IGAS TESTS | : | | |--|---|---|---|--|--|---|--|---| | API# | 133-2728 | | County: | Neosho | | 467' | slight blo | 44 | | Elev.: | 966' | | Location: | Kansas | | 622' | 3 - 1/2" | | | | | | | | | 653' | 4 - 1/2" | 10
12 | | Operator: | Quest Ch | erokee LLC | *************************************** | | | 715' | 4 - 1/2" | | | Address | 9520 N. N | lay Ave., St | lite 300 | | | 777' | 5 - 1/2" | 12 | | 7 | | City, OK. 7 | | | | | | 14 | | WELL# | 2-A | . 0.0, 0.1 | Lease Name: | Graham | | 808, | 5 - 1/2" | 14 | | Footage locat | | 810 | ft. from the | S | line | 839' | 6 - 1/2" | 15 | | ! | | 1500 | ft. from the | E | | 870' | 6 - 1/2" | 15. | | Drilling Contra | ctor | 1000 | | | line | 901' | 4 - 1/2" | 12. | | Spud Date: | NA | | TXD SERV | CES LP | | 963' | 13 - 3/4" | 51. | | Date Comp: | 11-25-07 | | Geologist: | | | 1066' | 13 - 3/4" | 51. | | Exact Spot Lo | | ALE STALOS | Total Depth: | 1066' | | | | | | | | NE SW SE | | | | | | | | Casing Red | | | Rig Time | | | | | - | | | Surface | Production | | | | | | | | Size Hole | 12-1/4" | 6-3/4" | | | | — | | - | | Size Casing | 8-5/6" | 4-1/2" | | | | | * | | | Weight | 24# | 10-1/2# | | | | | | · | | Setting Depth | 22' | | | | | | | | | Type Cement | | | | | | <u> </u> | | | | Sacks | | | | | | <u> </u> | | | | 1 | | | WELL LOG | | | | | | | | | | | | | | | | | Formation | Тор | Btm. | | _ | Btm | Formation | T | In- | | | | | Formation | Тор | Btm. | Formation | Тор | Btm. | | top soil | 0 | 22 | Formation shale | Top 359 | 361 | shale | 721 | 747 | | op sail
Ime | 0 22 | 22
58 | Formation shale sand | 359
361 | 361
367 | shale
coal | 721
747 | 747
748 | | top soil
Ilme
shale | 0
22
58 | 22
58
85 | Formation
shale
sand
shale | 359
361
367 | 361
367
422 | shale
coal
shale | 721
747
748 | 747
748
771 | | top sdil
Ime
shale
Ime | 0
22
58
85 | 22
58
85
93 | Formation shale sand shale lime | 359
361
367
422 | 361
367
422
447 | shale
coal
shale
coal | 721
747
748
771 | 747
748
771
773 | | rop soil
lime
shale
lime
eand ! | 0
22
58
86
93 | 22
58
85
93
112 | Formation shale sand shale lime b.shale | 359
361
367
422
447 | 361
367
422
447
449 | shale coal shale coal shale | 721
747
748
771
773 | 747
748
773
773 | | rop soil
Ime
shale
Ime
sand ! | 0
22
58
86
93
112 | 22
58
85
93
112
131 | Formation shale sand shale lime b.shale lime | 359
361
367
422
447
449 | 361
367
422
447
449
455 | shale
coal
shale
coal
shale
coal | 721
747
748
771
773
788 | 747
748
773
773 | | top soil lime shale lime sand ! lime shale | 0
22
58
86
93
112 | 22
58
85
93
112
131
168 | Formation shale sand shale lime b.shale lime b.shale | 369
361
367
422
447
449
455 | 361
367
422
447
449
455
457 | shale coal shale coal shale coal shale coal | 721
747
748
771
773
788
789 | 747
748
771
773
788
788 | | op soil Ime shale lme sand ! me shale me | 0
22
58
86
93
112
131
168 | 22
58
85
93
112
131
168
183 | Formation shale sand shale lime b.shale b.shale shale shale | 369
361
367
422
447
449
455
457 | 361
367
422
447
449
455
457
458 | shale coal shale coal shale coal shale coal shale coal shale | 721
747
748
771
773
788
789
816 | 747
748
777
773
788
788
816 | | top soil lime shale lime sand lime shale me shale | 0
22
58
86
93
112
131
168
103 | 22
58
85
93
112
131
168
183
212 | Formation shale sand shale lime b.shale lime b.shale shale shale | 369
361
367
422
447
449
455
457 | 361
367
422
447
449
455
457
458
521 | shale coal shale coal shale coal shale coal shale coal shale coal | 721
747
748
771
773
788
789 | 747
748
771
773
788
789
816
817 | | op soil ime shale ime shale ime shale ime ihale ime | 0
22
58
86
93
112
131
168
103 | 22
58
85
93
112
131
168
183
212
214 | Formation shale sand shale lime b.shale lime b.shale shale shale lime b.shale | 359
361
367
422
447
449
455
457
458
521 | 361
367
422
447
449
455
457
458
521
523 | shale coal shale coal shale coal shale coal shale coal shale coal shale b.shale | 721
747
748
771
773
788
789
816
817 | 747
748
771
773
786
789
816
817
854 | | ime shale me | 0
22
58
86
93
112
131
168
103
212
214 | 22
58
85
93
112
131
168
183
212
214
238 | Formation shale sand shale lime b.shale lime b.shale shale lime b.shale coal | 359
361
367
422
447
449
455
457
458
521
523 | 361
367
422
447
449
455
457
458
521
523 | shale coal shale coal shale coal shale coal shale coal shale coal shale shale b.shale shale | 721
747
748
771
773
788
789
816 | 747
748
771
773
788
789
816
817
854 | | op soil ime shale me shale me hale me hale | 0
22
58
86
93
112
131
168
103
212
214
238 | 22
58
85
93
112
131
168
183
212
214
238
240 | Formation shale sand shale lime b.shale lime b.shale shale lime b.shale coal | 359
361
367
422
447
449
455
457
458
521
523 | 361
367
422
447
449
455
457
458
521
523
524 | shale coal shale coal shale coal shale coal shale coal shale shale b.shale shale shale | 721
747
748
771
773
786
789
816
817 | 747
746
771
773
786
789
816
817
854
858 | | op soil Ime shale Ime hale me hale me hale hale | 0
22
58
86
93
112
131
168
163
212
214
238
240 | 22
58
85
93
112
131
168
183
212
214
238
240
274 | Formation shale sand shale lime b.shale lime b.shale shale lime b.shale lime coal | 369 361 367 422 447 449 455 457 458 521 523 524 542 | 361
367
422
447
449
455
457
458
521
523
524
542
562 | shale coal shale coal shale coal shale coal shale coal shale shale shale b.shale shale shale shale | 721
747
748
771
773
788
789
816
817
854 | 747
748
777
773
788
789
816
817
854
858
880
891 | | top soil lime shale | 0
22
58
86
93
112
131
168
163
212
214
238
240
274 | 22
58
85
93
112
131
168
183
212
214
238
240
274 | Formation shale sand shale lime b.shale lime b.shale shale lime b.shale shale lime b.shale shale shale shale shale | Top 369 361 367 422 447 449 455 457 458 521 523 524 542 562 | 361
367
422
447
449
455
457
458
521
523
524
542
662
643 | shale coal shale coal shale coal shale coal shale coal shale shale b.shale shale shale shale shale coal | 721
747
748
771
773
788
789
816
817
854
866 | 747
748
771
773
788
789
816
817
854
858
880
891 | | op soil ime shale me hale me hale me hale me hale me hale hale hale | 0
22
58
86
93
112
131
168
193
212
214
238
240
274 | 22
58
85
93
112
131
168
183
212
214
238
240
274
276
296 | Formation shale sand shale lime b.shale lime b.shale shale lime b.shale lime b.shale shale lime b.shale coal lime sand shale b.shale | Top 359 361 367 422 447 449 455 457 458 521 523 524 542 562 643 | 361
367
422
447
449
455
457
458
521
523
524
542
562
643
846 | shale coal shale coal shale coal shale coal shale coal shale shale shale shale shale shale shale shale | 721
747
748
771
773
788
789
816
817
854
866
880 | 747
748
771
773
788
789
816
817
854
856
890
891 | | ime shale sh | 0
22
58
86
93
112
131
168
103
212
214
238
240
274
276 | 22
58
85
93
112
131
168
183
212
214
238
240
274
276
296
307 | Formation shale sand shale lime b.shale lime b.shale lime b.shale lime b.shale lime b.shale coal lime sand shale b.shale coal | Top 359 361 367 422 447 449 455 457 458 521 523 524 542 562 643 645 | 361
367
422
447
449
455
457
458
521
523
524
542
562
643
846
646 | shale coal shale coal shale coal shale coal shale shale shale shale shale shale shale shale shale coal shale coal | 721
747
748
771
773
786
789
816
817
854
866
880
891 | 747
746
771
773
788
789
816
817
854
858
880
891
897 | | ime shale | 0
22
58
86
93
112
131
168
103
212
214
238
240
274
276
296 | 22
58
85
93
112
131
168
183
212
214
238
240
274
276
296
307 | Formation shale sand shale lime b.shale lime b.shale lime b.shale lime b.shale shale coal lime sand shale b.shale | 359 361 367 422 447 449 455 457 458 521 523 524 542 562 643 645 | 361
367
422
447
449
455
457
458
521
523
524
542
562
643
646
649 | shale coal shale coal shale coal shale coal shale coal shale shale shale shale shale shale coal shale coal shale | 721
747
748
771
773
788
789
816
817
854
866
880
891
897
899 | 747
748
774
775
788
789
816
817
854
856
880
891
897
893 | | ime shale me sha | 0
22
58
86
93
112
131
168
163
212
214
238
240
274
276
296
307
309 | 22
58
85
93
112
131
168
183
212
214
238
240
274
276
296
307
309 | Formation shale sand shale lime b.shale lime b.shale lime b.shale shale lime b.shale coal lime sand shale b.shale coal shale | 369 361 367 422 447 449 455 457 458 521 523 524 542 562 643 645 646 | 361
367
422
447
449
455
457
458
521
523
524
542
562
643
845
646
649
651 | shale coal shale coal shale coal shale coal shale coal shale shale shale shale shale coal shale coal shale coal shale coal | 721
747
748
771
773
786
789
816
817
854
866
880
891
897 | 747
748
777
773
788
789
816
817
854
856
880
891
897
899
953
954 | | Formation top soil lime shale lime shale ime shale ime shale ime shale me hale me hale me | 22
58
86
93
112
131
168
103
212
214
238
240
274
276
296
307
309
311 | 22
58
85
93
112
131
168
183
212
214
238
240
274
276
296
307
309
311 | Formation shale sand shale lime b.shale lime b.shale lime b.shale lime shale lime shale coal lime sand shale b.shale coal shale coal shale | Top 369 361 367 422 447 449 455 457 458 521 523 524 542 562 643 645 646 649 651 | 361
367
422
447
449
455
457
458
521
523
524
542
562
643
646
649
651
694 | shale coal shale coal shale coal shale coal shale coal shale b.shale shale shale coal shale coal shale coal shale coal shale coal | 721
747
748
771
773
788
789
816
817
854
866
880
891
897
899
953 | 747
748
771
773
789
816
817
854
858
860
891
897
899
953
954
957 | | ime shale me sha | 22
58
86
93
112
131
168
193
212
214
238
240
274
276
296
307
309
311
314 | 22
58
85
93
112
131
168
183
212
214
238
240
274
276
296
307
309
311
314 | Formation shale sand shale lime b.shale lime b.shale lime b.shale lime b.shale coal lime sand shale b.shale coal shale coal shale coal | Top 359 361 367 422 447 449 455 457 458 521 523 524 542 562 643 645 646 649 651 694 | 361
367
422
447
449
455
457
458
521
523
524
542
562
643
646
649
651
694 | shale coal shale coal shale coal shale coal shale coal shale shale shale shale shale coal shale coal shale coal shale coal | 721
747
748
771
773
788
789
816
817
854
866
880
891
897
899
953
954
957 | 747
748
771
773
788
789
816
817
854
858
800
801
897
999
953
954
957 | | op soil Ime shale Ime shale me hale hale hale me hale hale | 22
58
86
93
112
131
168
103
212
214
238
240
274
276
296
307
309
311 | 22
58
85
93
112
131
168
183
212
214
238
240
274
276
296
307
309
311
314 | Formation shale sand shale lime b.shale lime b.shale lime b.shale lime b.shale lime b.shale coal lime sand shale coal shale coal shale coal shale | Top 369 361 367 422 447 449 455 457 458 521 523 524 542 562 643 645 646 649 651 | 361
367
422
447
449
455
457
458
521
523
524
542
562
643
646
649
651
694 | shale coal shale coal shale coal shale coal shale coal shale b.shale shale shale coal shale coal shale coal shale coal shale coal | 721
747
748
771
773
788
789
816
817
854
866
880
891
897
899
953 | 747
748
771
773
789
816
817
854
858
860
891
897
899
953
954
957 | RECEIVED KANSAS CORPORATION COMMUNICATION MAR 13 2008