CONFIDENTIAL KANSAS CORPORATION COMMISSION **WELL COMPLETION FORM** OIL & GAS CONSERVATION DIVISION WELL HISTORY - DESCRIPTION OF WELL & LEASE Form ACO-1 September 1999 Form must be Typed # ORIGINAL | Operator: License # 5952 | API NO. 15- 067-21659-0000 10 27 | |---|---| | Name: BP AMERICA PRODUCTION COMPANY | County GRANT | | Address P. O. BOX 3092, WL1-RM 6.128, WL-1 | | | City/State/Zip HOUSTON, TX 77253-3092 | 1260 ' FNL Feet from S/N (circle one) Line of Section | | Purchaser: RECEIVED | 1260' FWL Feet from E/W (circle one) Line of Section | | Operator Contact Person: DEANN SMYERS KANSAS CORPORATION COMM | | | Phone (281) 366-4395 NOV 0 3 2008 | (circle one) NE SE NW SW | | Contractor: Name: Trinidad Drilling, LP CONSERVATION DIVISIO | Lease Name <u>JOHN H. BAUCHMAN</u> Well # | | License: 33784 WICHITA, KS | Field Name HUGOTON | | Wellsite Geologist: Jennifer McMahon | Producing Formation CHASE | | Designate Type of Completion | Elevation: Ground 3091 Kelley Bushing 3103 | | New Well Re-Entry Workover | Total Depth 2980 Plug Back Total Depth 2720 | | Oil SWD SIOW Temp. Abd. | Amount of Surface Pipe Set and Cemented at 716 Feet | | _X_ Gas ENHR SIGW | Multiple Stage Cementing Collar Used? Yes X No | | Dry Other (Core, WSW, Expl., Cathodic, etc.) | If yes, show depth setFeet | | If Workover/Reentry: Old Well Info as follows: | If Alternate II completion, cement circulated from N/A | | Operator: | feet depth tow/sx cmt. | | Well Name: | Drilling Fluid Management Plan Aff IM 1-7-09 | | Original Comp. Date Original Total Depth | (Data must be collected from the Reserve Pit) | | Deepening Re-perf Conv. to Enhr./SWD | Chloride content ppm Fluid volume bbls | | Plug Back Total Depth | Dewatering method used | | Commingled Docket No | Location of fluid disposal if hauled offsite: | | Dual Completion Docket No | Operator Name | | Other (SWD or Enhr?) Docket No | Lease Name License No | | 07/03/08 07/04/08 07/30/08 | Quarter Sec Twp S R E _ W | | Spud Date or Pate Reached TD Completion Date or Recompletion Date | County Docket No | | Kansas 67202, within 120 days of the spud date, recompletion, wo Information on side two of this form will be held confidential for a per 82-3-107 for confidentiality in excess of 12 months). One copy of all CEMENTING TICKETS MUST BE ATTACHED. Submit CP-4 form with | with the Kansas Corporation Commission, 130 S. MarkeT - Room 2078, Wichita, rkover or conversion of a well. Rule 82-3-130, 82-3-106 and 82-3-107 apply. Friod of 12 months if requested in writing and submitted with the form (see rule I wireline logs and geologist well report shall be attached with this form. ALL the all plugged wells. Submit CP-111 form with all temporarily abandoned wells. I gulate the oil and gas industry have been fully complied with and the statements | | herein are complete and correct to the best of my knowledge. | | | Signature Alollan Smy | KCC Office Use ONLY | | Title REGULATORY STAFF ASSISTANT Date 10 | D/23/08 Letter of Confidentiality Attached | | Subscribed and sworn to before me this day of (Octo) | he/ If Denied, Yes Date: | | Notary Bublis And a Harm of the Ann | Wireline Log Received THOMPSON Goalgaiet Papert Reseived | | Notary Public Notary Pi | nmission Expires UIC Distribution | | | 111 30, 2012 1 CODULTO TIM | Side Two | Sec. 25 Twp 275 | | East X | | _ Lease
County | | RANT | SAUGHMAN ,施
点版 | vveii# | | |--|-----------------------------------|-------------------------------------|---------------------------------------|-----------------------------|-----------|-------------------|---------------------------------------|---------------|-----------------------| | INSTRUCTIONS: Sho
tested, time tool open a
temperature, fluid reco
Electric Wireline Logs s | and closed, flowi | ng and shut-in p
rates if gas to | oressures,
surface o | whether she
during test. | ut-in p | ressure reach | ed static level, h | ydrostatic p | ressures, bottom hole | | Drill Stem Tests Taken
(Attach Additional Sh | neets.) | ☐ Yes [3 | ₹ No | X | Log | F | formation (Top), I | Depth and D | atums Sample | | Samples Sent to Geolog | ical Survey | X Yes |] No | Nam | е | | Тор | Da | atum | | Cores Taken | | ☐ Yes 🖸 | No No | | | | 4. | | | | Electric Log Run
(Submit Copy.) | | X Yes |] No | HERRIN | | Ī | 2396 | KE | | | List All E.Logs Run: | | 18: 6- | 4/- | TOWAND | | | 2513 | KE | | | COMPENSATED SPECT | <i>COUNEX TI</i>
RAL NATURAL (| CAMMA RAY-7/ | 16/2008 | FORT R | | San A | 2565 | KE | | | w_ | | | | COUNCI | T CEK | OVE 42 | 2667 | K | 3 | | MISTOR | | | | | 9,00 | | Between in | | | | Moor | Papar | CASING RE
t all strings set-c | | New [| Us
Det | | we ki | | | | Purpose of String | Size Hole | Size Casing | · · · · · · · · · · · · · · · · · · · | Weight | imeui | Setting | Type of | # Sacks | Type and Percent | | r dipose of Stillig | Drilled | Set (In O.D | | Lbs./Ft. | | Depth | Cement | Used | Additives | | SURFACE | | 8-5/8" | | 24# | | 716' | | 380 | | | PRODUCTION | | 5-1/2" | |
15.5# | | 2938' | | 450 | | | | , , | ADDIT | IONAL CE | MENTING/S | QUE | EZE RECORD | | | | | Purpose Perforate | Depth Top Bottom | Type of C | ement | #Sacks U | sed | | Type and Pe | ercent Additi | ves | | Protect Casing Plug Back TD | | | | | | | | ٠ | | | Plug Off Zone | | | | | | | | | <u>.</u> | | Shots Per Foot | PERFORATION
Specify Foot | RECORD - Brid
age of Each Inte | | | | | e, Shot, Cement S
Kind of Material | | ord
Depth | | 4 | 2513-2533 / | 2575-2595 (| (Chase) | 7/22/2008 | 3 | FRAC CHAS | SE w/197,100# | 8/16 BR/ | ADA. | | | 2770-2780, | 2824-2834 (C |) 7/22 | /2008 | | SAND, 1-4 | 1 PPG - 7/2 | 8/2008 | | | | | | | | | | | | | | (| 2720 RBP SE | T | | | | | | | | | TUBING RECORD | Size | Set At | | Packer At | _ | Liner Run | ☐ Yes 🕱 | No | | | Date of First, Resumed | Production, SV | VD or Enhr. | | ng Method | □Р | umping ☐Ga | as Lift Oth | er (Explain) | | | 07/29/08 Estimated Production Per 24 Hours | Oil | Bbls. | Gas | Mcf | Wate | | Gas-Oil | | Gravity | | | | <u> </u> | 546 mcd | Ed | | 2 ⁵ 0. | Dead -t'- 11 | | | | Disposition of Gas: | | | | . C 5 4 | 4!c | | Production Inter | | | | Vented Sold (If vented, submit.) | Used on Lo | ease 🔲 | ť | | ration | Dually C | omp. Commir | | | | (ii veritea, sublilit. | 7.00-10.) | | Other (S | pecify) _ | • | | | , | | # RECEIVED KANSAS CORPORATION COMMISSION #### HALLIBURTON #### NOV 0 3 2008 # Cementing Job Summary CONSERVATION DIVISION The Road to Excellence Starts with Safety | | | | | | | | | | 10 | | | | | | ion a | | | | 1622 | |--
---|---|---|--|--|---|--|--|--|--|--
--|--|---|--|---|---|-------------------|--| | Sold To #: | | | | | | #: 2664 | | | | te #: | | | | | | s Ord | er# | : 6010 | <i>J</i> 032 | | Customer: | | | | | CTIO | , | | | Cust | tome | r Rep: | Kno | | | | | | | | | Well Name | | | | | | | Well# | | | | | | Α | PI/U | WI #: | 15-06 | 7-2 | 1659 | | | Field: HU | | | | ity (S | AP): | ULYSSE | S | Count | ty/Pari | ish: (| Grant | | | | Stat | e: Kar | ısaş | | | | PANOMA (| | | | | | | | | | | | | | | | | | KCI | | | Legal Des | | | | 25 To | wnsh | | | | | | | | ~~~ | | | | | 9 9 0 | 900 | | Contracto | | | | | | Rig/Pla | atform | Name | Num: | : 216 | 3 | | | R | | Û | ، ام | | 008 | | Job Purpo | | | | | Casi | | | | | | | | | | | CA | ME | inci | MTIA | | Well Type: | | | | | | Job Ty | | | | | | | | | | | 6 40 | 900 Env | A 1 03 65 | | Sales Pers | on: | HEST | ON, M | <u>YRON</u> | l | Srvc S | upervi | sor: (| COBLE | E, RA | NDALL | | MBU | ID E | mp# | : 347 | 700 | | | | | | | | | | | | | ersonn | nel | | | | | | | | | | | HES Em | | | Exp H | | np# | | S Emp | | | p Hrs | | | | | mp Na | | E | xp Hrs | Emp | | COBLE, R.
Gene | ANDA | ALL | 5.5 | 34 | 7700 | FLORE | | EN | 6. | .0 | 44719 | 13 | GRAV | ÆS, | JERE | MYL | | 5.5 | 39915 | | PARUZINS | SKI J | OHN | 5.5 | 44 | 1380 | Estrada VASQU | | ON | 6.0 | ^ | 40469 | <u>_</u> | | | | | _ | | | | Harrison | JI (I, O(|) . | J. J | | 1300 | VICTOR | | COIV, | 0.1 | ו | 40409 | 2 | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | 1 | | Equi | pment |
t | <u> </u> | | | | | | | | L | | HES Unit # | Dis | stance- | 1 way | HES | Unit | # Dist | ance-1 | | | Unit: | # Dis | stanc | e-1 w | av I | HES | Unit # | | Distan | ce-1 wa | | 10243558 | | mile | | | 514010 | | | | 10286 | | | mile | | | 10825 | | _ | 0 mile | | | 54219 | 70 | mile | | 7581 | 9 | 70 mi | ile | | D060 | 1 | 70 | mile | | | | | + | | : | | | | | | · | | t | | Job I | Hours | | | | - | £_ | | | | | | | Date | On | Location | on C | perat | ing | Date | | n Loca | | | erating | | Da | te | 0 | Loca | tion | 0 | peratin | | | 1 | | 1 | Hour | - 1 | | | — | | _ | lours | - 1 | - | ~ | j 0. | | | | Hours | | | i | Hours | | noui | 5 | |] | Hour | rs | п | ivui a | | | | - 1 | mour: | 5 | | HOUTS | | 07-05-08 | | 5.5 | | 4 | 5 | | | noui | rs | n | .ours | + | | | + | Hours | <u> </u> | | nours | | | | | | 4 | | | | | | | ım of ea | ach c | olumn | sepa | arately | | <u> </u> | | nours | | TOTAL | | | | | | | | | | | | ach c | olumn | | arately
Time | | S | | nours | | FOTAL | lame | 5.5 | | 4 | | | | 7 | | | | ach c | | | Tim | | ************************************** | | | | FOTAL Formation N Formation D | lame | 5.5 | ор | 4 | | Bott | | 7 | Total is | the su | ım of ea | ach c | 04 - | Job
Date
Jul - | Tim
2008 | es
Tii
22 | me
:00 | Tin | ne Zone
CST | | FOTAL Formation N Formation D Form Type | lame
epth | 5.5
(MD) T | | 4
Jot | ВНЅТ | | om |]7 | Total is | the su
Called
On Lo | <i>Im of ea</i> | ach c | 04
05 | Job
Date
Jul - : | Tim
2008
2008 | es Tir 22 01: | me
:00 | Tin | ne Zone
CST | | FOTAL Formation N Form Type ob depth M | lame
Depth | 5.5
(MD) T | op
948. ft | 4
Jot | BHS1 | r
Depth TVI | om | 2948 | Total is | the su
Called
On Lo
Job Si | of each of the second s | | 04 - · · · · · · · · · · · · · · · · · · | Job Date Jul - Jul - Jul - | 2008
2008
2008
2008 | es Tir 22 01 04 | me
:00
:30 | Tin | ne Zone
CST
CST | | FOTAL Formation N Formation D Form Type Ob depth M Vater Depth | lame
Depth | 5.5
(MD) T | 948. ft | 4
Jot | BHS1 | Pepth TVI
t Above I | om |]7 | Fotal is | the su
Called
On Lo
Job Si
Job C | Im of ea | ed | 04
05
05 | Joh
Date
Jul -
Jul -
Jul - | 2008
2008
2008
2008
2008 | 22
01:
04:
06: | me
:00
:30
:40 | Tin | ne Zone
CST
CST
CST
CST | | FOTAL Formation N Form Type ob depth M | lame
Depth | 5.5
(MD) T | 948. ft | 4
Jot | BHS1 | r
Depth TVI | om | 2948
4. | Total is | the su
Called
On Lo
Job Si
Job C | of each of the second s | ed | 04 - · · · · · · · · · · · · · · · · · · | Joh
Date
Jul -
Jul -
Jul - | 2008
2008
2008
2008
2008 | es Tir 22 01 04 | me
:00
:30
:40 | Tin | ne Zone
CST
CST
CST | | FOTAL Formation N Formation D Form Type Ob depth M Vater Depth erforation D | lame
Depth | 5.5
(MD) T | 948. ft | 4
Jot | BHS1
Job D | Depth TVI
t Above I | om D | 2948
4. · | Fotal is C | Called
On Lo
Job Si
Job Co
Depar | Im of ea | ed | 04
05
05
05 | Job
Date
Jul - :
Jul - :
Jul - : | 2008
2008
2008
2008
2008
2008 | 222
011
041
063
072 | me
:00
:30
:40
:00 | Tin | ne Zone
CST
CST
CST
CST
CST | | FOTAL Formation N Formation D Form Type Ob depth M Vater Depth | lame
Depth | 5.5
(MD) T | 948. ft | Jot | BHS1 | Pepth TVI
t Above I | om | 2948
4. Well | Fotal is C | the su
Called
On Lo
Job Si
Job C | Im of ea | ed | 04
05
05
05 | Joh
Date
Jul - :
Jul - :
Jul - :
Jul - : | 2008
2008
2008
2008
2008
2008 | Tin 22 01 04 06 07 | me
:00
:30
:40
:00
:00 | Tin | ne Zone CST CST CST CST CST CST | | Formation Notes Type Torm Type Torm Type Tob depth Mill Total Depth Torm Type | Jame
Depth
Depth | 5.5 (MD) T | 948. ft | John John John John John John John John | BHS1 Job C Wk H | Depth TVI
t Above I
To | om D | 2948
4. Well | Fotal is C | Called
On Lo
Job Si
Job Co
Depar | Im of ea | ed | 04
05
05
05 | Joh
Date
Jul - :
Jul - :
Jul - :
Jul - : | 2008
2008
2008
2008
2008
2008 | es Tin 22 01 04 06 07: | me
:00
:30
:40
:00
:00 | Top | ne Zone CST CST CST CST CST CST CST | | Formation N Formation D Form Type Ob depth M Vater Depth Perforation D Description | Jame
Depth
Depth | 5.5 (MD) T (MD) Fi | 948. ft | John John John John John John John John | BHS1
Job D
Wk H | Depth TVI t Above I To ID in 7.875 | om D
Floor Weight | 2948
4. • Well | Fotal is a control of the | Called
On Lo
Job Si
Job C
Depar | i Out
ocation
tarted
omplet
ted Loc | ed | 04
05
05
05 | Joh
Date
Jul - :
Jul - :
Jul - :
Jul - : | 2008
2008
2008
2008
2008
2008
2008 | Tin 22 01 04 06 07 | me
00
30
40
00
00 | Tin | CST
CST
CST
CST
CST
CST | | FOTAL Formation N Form Type Ob depth M Vater Depth erforation D Description Production H | Jame
Depth
Depth | 5.5 (MD) T | 948. ft | John John John John John John John John | BHS1 Job C Wk H | Depth TVI
t Above I
To | om D | 2948
4. • Well | Fotal is C | Called
On Lo
Job Si
Job C
Depar | i Out
ocation
tarted
omplet
ted Loc | ed | 04 | Joh
Date
Jul - :
Jul - :
Jul - :
Jul - : | 2008
2008
2008
2008
2008
2008
2008 | Tin | me
00
30
40
00
00 | Top | ne Zone CST CST CST CST CST CST CST | | Formation N Formation D Form Type Ob depth M Vater Depth erforation D Description Production H Production asing | Jame
Depth
Depth | 5.5 (MD) T (MD) Fi New / Used | 948. ft | Jot
ox
sure
g | BHS1
Job D
Wk H | Pepth TVI
t Above I
To
ID
in
7.875
5.012 | om D
Floor Weigh
Ibm/f | 2948
4. Well | Fotal is a
control of the | Called
On Lo
Job Si
Job Co
Depar | i Out cation tarted omplet ted Loc | Gra | 04 - 05 - 05 - 05 - 05 - 05 - 05 - 05 - | Joh
Date
Jul - :
Jul - :
Jul - :
Jul - : | 2008
2008
2008
2008
2008
2008
2008 | ES Tin 222 011 041 061 07: Botto MD ft 2910 2910 | me :00 :30 :40 :00 :00 :m | Top | ne Zone CST CST CST CST CST CST TVD | | FOTAL Formation N Form Type Ob depth M Vater Depth erforation D Description Production H Production asing | Jame
Depth
Depth | 5.5 (MD) T (MD) Fi | 948. ft | Jot
ox
sure
g | BHS1
Job D
Wk H | Pepth TVI
t Above I
To
ID
in
7.875
5.012 | om D
Floor Weight Ibm/f | 2948
4. Well | Fotal is a control of the | Called
On Lo
Job Si
Job Co
Depar
read | i Out ocation tarted omplet ted Loc | ed : | 04 - 05 - 05 - 05 - 05 - 05 - 05 - 05 - | Joh
Date
Jul - :
Jul - :
Jul - :
Jul - : | 2008
2008
2008
2008
2008
2008
2008 | Tin 22 01 04 06 07 Botto MD ft 2910 | me :00 :30 :40 :00 :00 :m | Top | ne Zone CST CST CST CST CST CST | | Formation N Formation D Form Type Ob depth M Vater Depth erforation D Description Production H Production asing | Jame
Depth
Depth | 5.5 (MD) T (MD) Fi New / Used | 948. ft | Jot
Sure
g | BHS1
Job E
Wk H | ID in 7.875 5.012 8.097 | om D
Floor Weigh
Ibm/f | 2948
4. Well | Fotal is a control of the | Called
On Lo
Job Si
Job Co
Depar
read | I Out Cation tarted complet ted Loc | ed c | 04 - 05 - 05 - 05 - 05 - 05 - 05 - 05 - | Job
Date
Jul - :
Jul - :
Jul - :
Top
f | 2008
2008
2008
2008
2008
2008
2008 | Botto MD ft 2910 680. | me
:00
:30
:40
:00
:00 | Top
TVD
ft | ne Zone CST CST CST CST CST CST | | FOTAL Formation N Formation D Form Type Ob depth M Fater Depth Production H Production Surface Casin | lame
Depth
Depth | (MD) T (MD) Fi New / Used New | 948. ft rom Ma press psi | Jot
Dot | BHS1
Job E
Wk H | Depth TVI
t Above I
To
ID
in
7.875
5.012
8.097
Sa | om D
Floor Weight Ibm/f | 2948
4. Well | Fotal is a control of the | Called
On Lo
Job Si
Job Co
Depar
read | I Out Cation tarted complet ted Loc | Gradult J-E | 04 - 05 - 05 - 05 - 05 - 05 - 05 - 05 - | Job
Date
Jul -
Jul -
Jul -
Jul -
Top
f | 2008
2008
2008
2008
2008
2008
2008 | Botto MD ft 2910 680. | me
:00
:30
:40
:00
:00 | Top | ne Zon
CST
CST
CST
CST
CST
TCST | | Formation Normation Description Production Horoduction asing Burface Casin | Depth | 5.5 (MD) T (MD) FI New / Used New New | 948. ft rom Ma press psi | Jot
Sure
g
Do
8 MIN | BHS1
Job E
Wk H | Depth TVI
t Above I
To
ID
in
7.875
5.012
8.097
Sa | om D
Floor Weight Ibm/f | 2948
4. Well | Fotal is a constant of the con | Called
On Lo
Job Si
Job Co
Depar
read | I Out Cation tarted complet ted Loc | Gra J-E Qty 1 | 04 - 05 - 05 - 05 - 05 - 05 - 05 - 05 - | Joh
Date
Jul -
Jul -
Jul -
Jul -
Top
f | 2008
2008
2008
2008
2008
2008
2008 | Botto MD ft 2910 680. | me
:00
:30
:40
:00
:00 | Top
TVD
ft | ne Zon
CST
CST
CST
CST
CST
TVD
ft | | FOTAL Formation N Formation D Form Type Ob depth M Vater Depth erforation D Production H Production asing Surface Casin LUG,CMTG, HOE,IFS,5-1 | Jame Depth Depth ID TOP,S | (MD) T (MD) FI New / Used New New New | 948. ft rom Ma press psi VE,4.3 FLPR | Jot
Sure
g
Do
8 MIN | BHS1
Job D
Wk H
Size
in
5.5
8.625
escrip | Pepth TVI t Above I To ID in 7.875 5.012 8.097 Sa | om D
Floor Weight Ibm/f | 2948
4. Well | Fotal is a constant of the con | Called
On Lo
Job Si
Job Co
Depar
read | I Out Cation tarted complet ted Loc | Gra J-5 Qty 1 | 04 - 05 - 05 - 05 - 05 - 05 - 05 - 05 - | Joh
Date
Jul -
Jul -
Jul -
Jul -
Top
f
68 | 2008
2008
2008
2008
2008
2008
2008 | Botto MD ft 2910 680. | me
:00
:30
:40
:00
:00 | Top
TVD
ft | ne Zone CST CST CST CST CST CST TST CST | | FOTAL Formation N Formation D Form Type Ob depth M Vater Depth erforation D Description Production H Production asing Gurface Casin LUG,CMTG, HOE,IFS,5-1 TRZR ASSY | Depth Depth ID Depth TOP,5 | (MD) T (MD) Fi (MD) Fi New / Used New New New 5 1/2,HV | 948. ft rom Ma press psi VE,4.3 FLPR 7 7/8 I | Jot
Sure
g
Do
8 MIN | BHS1
Job D
Wk H
Size
in
5.5
8.625
escrip | Pepth TVI t Above I To ID in 7.875 5.012 8.097 Sa | om D
Floor Weight Ibm/f | 2948
4. Well | Fotal is a constant of the con | Called
On Lo
Job Si
Job Co
Depar
read | I Out Cation tarted complet ted Loc | Gra J-5 Qty 1 1 10 | 04 - 05 - 05 - 05 - 05 - 05 - 05 - 05 - | Job
Date
Jul -:
Jul -:
Jul -:
Top
f
68 | 2008
2008
2008
2008
2008
2008
2008 | Botto MD ft 2910 680. | me
:00
:30
:40
:00
:00 | Top
TVD
ft | ne Zone CST CST CST CST CST CST TST CST | | FOTAL Formation N Formation D Form Type Ob depth M Vater Depth Production H Production asing Surface Casin LUG, CMTG, HOE, IFS, 5-1 TRZR ASSY OLLAR-STO | Depth Depth ID Depth Ing TOP,S I/2 8R I/5 1/2 I/2 57 I/2 1/2 | (MD) T (MD) FI (MD) FI New / Used New New S 1/2, HV C C S G X /2"-W/D | 948. ft rom Ma press psi VE,4.3 FLPR 7 7/8 I | Jot
Sure
g
Do
8 MIN | BHS1
Job D
Wk H
Size
in
5.5
8.625
escrip | Pepth TVI t Above I To ID in 7.875 5.012 8.097 Sa | om D
Floor Weight Ibm/f | 2948
4. Well | Fotal is a constant of the con | Called
On Lo
Job Si
Job Co
Depar
read | I Out Cation tarted complet ted Loc | Gradult | 04 | Job
Date
Jul -:
Jul -:
Jul -:
Jul -:
Top
f | 2008
2008
2008
2008
2008
2008
2008 | Botto MD ft 2910 680. | me
:00
:30
:40
:00
:00 | Top
TVD
ft | ne Zon
CST
CST
CST
CST
CST
TCST | | FOTAL Formation N Formation D Form Type Ob depth M Fater Depth Production H Production asing Surface Casin LUG, CMTG, HOE, IFS, 5-1 TRZR ASSY OLLAR-STO | Depth Depth ID Depth Ing ITOP,S I/2 8R I/5 1/2 I/2 5 1/2 | (MD) T (MD) FI (MD) FI New / Used New New S 1/2, HV C C S G X /2"-W/D | 948. ft rom Ma press psi VE,4.3 FLPR 7 7/8 I | Jot
Sure
g
Do
8 MIN | BHS1
Job D
Wk H
Size
in
5.5
8.625
escrip | Pepth TVI
t Above I
To
ID
in
7.875
5.012
8.097
Sa | om D
Floor
Weightbm/f
15.5
24. | 2948
4. Well
ht t | Fotal is a control of the | Called
On Lo
Job Si
Job Co
Depar
read | I Out Cation tarted complet ted Loc | Gra J-5 Qty 1 1 10 | 04 - 05 - 05 - 05 - 05 - 05 - 05 - 05 - | Job
Date
Jul -:
Jul -:
Jul -:
Jul -:
Top
f | 2008
2008
2008
2008
2008
2008
2008 | Botto MD ft 2910 680. | me
:00
:30
:40
:00
:00 | Top
TVD
ft | ne Zon
CST
CST
CST
CST
CST
TVD
ft | | FOTAL Formation N Formation D Form Type Ob depth M Formation D Description Production H Production asing Burface Casin LUG,CMTG, HOE,IFS,5-1 TRZR ASSY OLLAR-STO T,HALL WE | Depth Depth TOP, 1/2 8R 7,5 1/2 PP-5 1. | S.5 (MD) T (MD) FI New / Used New New New CSG X /2"-W/D | 948. ft rom Ma press psi VE,4.3 FLPR 7 7/8 I | Jot
Sure
9
DO
8 MIN
V
HOLE, | BHS1
Job D
Wk H
Size
in
5.5
8.625
escrip
/5.09 I | Pepth TVI
t Above I
To
ID
in
7.875
5.012
8.097
Sa | om D Floor Weigh Ibm/f 15.5 24. ales/Re | 2948 4. Well It is a second of the | Fotal is a constant of the con | Called On Lo Job Si Job Ci Depar read LT&C ST&C | i Out cation tarted omplet ted Loc | Gradult | 04 - 05 - 05 - 05 - 05 - 05 - 05 - 05 - | Job
Date
Jul -:
Jul -:
Jul -:
Jul -:
Top
f
68 | 2008
2008
2008
2008
2008
2008
2008
0 MD | Tin 22 01 04 06 07 | me: 000 :300 :400 :000 :000 :m | Top TVD ft Suppl | ne Zon CST CST CST CST TVD ft | | FOTAL Formation N Formation D Form Type Ob depth M Vater Depth erforation D Production H Production asing Surface Casin LUG,CMTG, HOE,IFS,5-1 TRZR ASSY OLLAR-STO IT,HALL WE | Depth Depth ID Depth Ing ITOP,S I/2 8R I/5 1/2 I/2 5 1/2 | S.5 (MD) T (MD) FI New / Used New New New CSG X /2"-W/D | 948. ft rom Ma press psi VE,4.3 FLPR 7 7/8 I | Jot
Sure
g
Do
8 MIN | BHST
Job D
Wk H
Size
in
5.5
8.625
escrip
/5.09 I | Pepth TVI t Above I To ID in 7.875 5.012 8.097 Sa | om D
Floor
Weightbm/f
15.5
24. | 2948
4. Well
ht t | Fotal is a constant of the con | Called On Lo Job Si Job Ci Depar read LT&C ST&C | I Out Cation tarted complet ted Loc | Gra J-5 Qty 1 1 10 1 | 04 | Job
Date
Jul -:
Jul -:
Jul -:
Jul -:
Top
f
68 | 2008
2008
2008
2008
2008
2008
2008
0. MD
t | Tin 22 01 04 06 07 | me :00 :30 :40 :00 :00 :00 :00 :00 :00 :00 :00 :0 | Top TVD ft Suppl | ne Zon CST CST CST CST TVD ft | | FOTAL Formation N Formation D Form Type Ob depth M Vater Depth Production H Production asing Surface Casin LUG,CMTG, HOE,IFS,5-1 TRZR ASSY OLLAR-STO IT,HALL WE Type Uide Shoe | Depth Depth TOP, 1/2 8R 7,5 1/2 PP-5 1. | S.5 (MD) T (MD) FI New / Used New New SD,INSR CSG X /2"-W/D | 948. ft rom Ma press psi VE,4.3 FLPR 7 7/8 I | Jot
Sure
9
DO
8 MIN
V
HOLE, | BHS1 Job E Wk H Size in 5.5 8.625 escrip /5.09 f HING | Pepth TVI
t Above I
To
ID
in
7.875
5.012
8.097
Sa | om D Floor Weight Ibm/f 15.5 24. Nes/Re | 2948 4. Well It is a second of the | Fotal is a constant of the con | Called On Lo Job Si Job Ci Depar read LT&C ST&C | I Out Cation tarted complet ted Loc S Depth | Gradult | 04 | Job
Date
Jul -:
Jul -:
Jul -:
Jul -:
Top
f
68 | 2008
2008
2008
2008
2008
2008
2008
0. MD
t | Tin 22 01 04 06 07
 me :00 :30 :40 :00 :00 :00 :00 :00 :00 :00 :00 :0 | Top TVD ft Suppl | ne Zone CST CST CST CST TVD ft | | FOTAL Formation N Formation D Form Type Ob depth M Vater Depth Production H Production asing Surface Casin LUG,CMTG, HOE,IFS,5-1 TRZR ASSY OLLAR-STO IT,HALL WE Type Uide Shoe | Depth Depth ID Depth Ing IOP, S I/2 8R I/2 8R I/5 1/2 ID-A Size | S.5 (MD) T (MD) FI New / Used New New SD,INSR CSG X /2"-W/D | 948. ft rom Ma press psi VE,4.3 FLPR 7 7/8 I OGS | Jot
Dot
Sure
g
Do
8 MIN
V
HOLE, | BHST
Job C
Wk H
Size
in
5.5
8.625
escrip
/5.09 f
HING | ID in 7.875 5.012 8.097 Sation MA | om D Floor Weight Ibm/f 15.5 24. Nes/Re | 2948 4. Well It is a second of the | Fotal is a constant of the con | Called On Lo Job Si Job Ci Depar read LT&C ST&C | I Out Cation tarted complet ted Loc S) Depth | Gradult State of the t | 04 | Job
Date
Jul -:
Jul -:
Jul -:
Jul -:
Top
f
68 | 2008
2008
2008
2008
2008
2008
2008
Dep | Tin 22 01 04 06 07 | me :000 :300 :400 :000 :000 :000 :000 :000 | Top TVD ft Suppl | ne Zone CST CST CST CST TVD ft Make | ### Cementing Job Summary | | | • 1 | | | Mi | scellane | eous Mai | erials | | | | | | | |---------|---------------------|---------------------------------------|-------|------------------|-----------------|----------|-------------|--------|--------------------|-----------|-----------------|--------------|---------|-------| | Gellin | g Agt | | | Conc | Surfacta | ent | | Conc | Acid | Туре | | Qty | Con | c % | | Treatn | nent Fld | | | Conc | Inhibito | Г | | Conc | | d Type | | Size | Qty | | | | | | | | | Flu | id Data | | | | | | | | | St | tage/Plug |) #: 1 | | | | | | | ALY SALE | | | | | | | Fluid | Stage | ge Type Fluid Name Qty Qty Mixing Yie | | Yield | Mix Rat | | Total | Mix | | | | | | | | # | | | | | | | | uom | Density
Ibm/gal | ft3/sk | Fluid
Gal/sk | bbl/min | Fluid (| al/sl | | 1 | Water S | pacer | | | | | 10.00 | bbl | 8.33 | .0 | .0 | 5.0 | | | | 2 | Tail Slur | ry | EXT | ENDACEM (TM) | SYSTEM (| 452981) | 450.0 | sacks | 12.3 | 2.03 | 11.29 | 5.0 | 11. | 29 | | • | 0.25 lbm |) | POL | Y-E-FLAKE (1012 | 216940) | | <u> </u> | | -1 | <u> </u> | | 1 | | | | | 11.288 G | al | FRE | SH WATER | | | | | | | | | | | | 3 | 2% KCL
Displacen | | | | | | 70.00 | bbl | 8.33 | .0 | .0 | 5.0 | | · | | C |).084 gal/b | bi | CLA | YFIX II, HALTANI | (1000037 | 29) | <u> </u> | | - I | | | - | | | | Ca | lculated | Values | | Pressur | es | | | | V | olumes | | | | | | Displac | cement | 70 | | Shut In: Instant | | Lost Re | turns | 0 | Cement S | | 163 | Pad | | | | Top Of | Cement | SURFA | CE 5 | Min | | Cement | Returns | | | splacemen | 69.5 | Treatm | ent | | | Frac G | radient | | 1 | 5 Min | | Spacers | S | | | Breakdown | | Total J | | 42.5 | | | | | | | | R | ates | | | | | | | | | Circul | ating | 5 | | Mixing | 5 | 5 | Displac | ement | 5 | | Avg. Jo | ob | 5 | | | Cem | ent Left In | Pipe | Amo | unt 0ft Rea | son Shoe | Joint | | | | | | <u></u> | | | | Frac R | Ring # 1 @ | 2 | ID | Frac ring # 2 | @ 1 | D | Frac Ring | #3@ | ID | Fra | c Ring | #4@ | ID | | | Th | e Inform | nation | State | ed Herein Is C | orrect | | er Represer | | | | | | | | RECEIVED KANSAS CORPORATION COMMISSION NOA 0 3 5008 CONSERVATION DIVISION WICHITA, KS KCC OCT 2 7 2003 COMERCENTIAL # Cementing Job Log The Road to Excellence Starts with Safety # 2664414 Quote #: | Sold To #: 307666 | Ship To #: 266 | 4414 | | Quote #: | | | Sale | s Order #: 6010632 | |--------------------------------------|---------------------|----------|---------|-----------|----------------------|-------------|--|--| | Customer: BP AMERICA PRO | | | | | | nowles, | | 3 01401 111 00 10002 | | Well Name: John H. Baughman | n | Well # | | | | | | 15-067-21659 | | Field: HUGOTON- City | (SAP): ULYSSE | S C | ounty/ | Parish: 0 | Grant | | | : Kansas | | PANOMA COMMINGLED | | | | | | | | | | Legal Description: Section 25 | Township 27S | Range 3 | 38W | | | | | | | Lat: N 0 deg. OR N 0 deg. 0 mi | in. 0 secs. | | 1 | Long: E | 0 deg. O | R E 0 de | g. 0 min. | 0 secs | | Contractor: TRINIDAD | Rig/Pi | atform | Name/N | Num: 216 | } | | <u> </u> | | | Job Purpose: Cement Producti | | | | | | Ticket | Amount | : CONFIDENTIAL | | Well Type: Development Well | Job T | ype: Ce | ement P | roduction | Casing | | | (2)4)00- | | Sales Person: HESTON, MYRO | ON Srvc S | Supervi | sor: CC | BLE, RA | NDALL | MBU I | D Emp #: | 347700 | | | | | Rate | | lume | | ssure | | | Activity Description | Date/Time | Cht | bbl/ | 1 : | | | sig | Comments | | | | | min | | bl | | | | | | | # | | Stage | Total | Tubing | Casing | | | Call Out | 07/04/2008 | | | | | | | The state of s | | | 22:00 | | | | | | | | | Depart from Service Center or | 07/05/2008 | | 1 | | | | | JOURNEY | | Other Site | 00:30 | | • | | | | | MANAGEMENT | | Amiro Atlan | 07/05/0000 | <u> </u> | | | <u> </u> | <u> </u> | ļ | BEFORE DEPARTURE | | Arrive At Loc | 07/05/2008 | ŀ | | | | | | RUNNING CASING | | Assessment Of Location | 01:30
07/05/2008 | | | <u> </u> | | | | UPON ARRIVAL | | Safety Meeting | 01:40 | | | | | | | SPOT TRUCKS | | Pre-Rig Up Safety Meeting | 07/05/2008 | | | RE | CEIVED
DRATION CO | MMISSION | | IOD CITE DDD | | i to tag op datoly incoming | 01:50 | | K | NSAS CORP | DRATION | | | JOB SITE BBP
MEETING | | Rig-Up Equipment | 07/05/2008 | | | 101 | 0 3 200 | 8 | | PUMP TRUCK AND | | | 02:00 | | | NUN | 0.0 200 | - | | BULK TRUCKS | | Casing on Bottom | 07/05/2008 | | | CONSE | RVATION DIV | ISION | | RIG UP PLUG | | | 03:45 | | | 00110 | WICHITA, KS | | | CONTAINER AND | | | | | | | | | | CIRC. W/RIG | | Pre-Job Safety Meeting | 07/05/2008 | | ļ | | | | | | | Ot-A lab | 04:15 | | | | | | | | | Start Job | 07/05/2008 | | | | | | | HOOK UP TO HES | | Test Lines | 04:40 | | | | | | [| LINES | | rest Lilles | 07/05/2008
04:41 | - | | | | | į | 2500 PSI | | Pump Spacer 1 | 07/05/2008 | | 4.5 | 10 | 40 | | 075.0 | | | Tamp opacer 1 | 04:42 | | 4.5 | 10 | 10 | | 375.0 | FRESH WATER | | Pump Cement | 07/05/2008 | | 5 | 163 | 173 | | 400.0 | 450 SKS | | • | 04:45 | | | ,00 | | | | EXTENDACEM @ 12.3# | | Clean Lines | 07/05/2008 | | | | | | | TO DITCH | | | 05:16 | - | | [| I | | | 10 211011 | | Drop Plug | 07/05/2008 | | | | | | | TOP PLUG | | | 05:19 | | | | | | | | | Pump Displacement | 07/05/2008 | | 5 | 50 | 223 | | 150.0 | 2% KCL - 40 BBLS CMT | | | 05:20 | | | | | | | TO PIT | | Other | 07/05/2008 | | 1 | 19.5 | 242.5 | | 650.0 | STAGED LAST 20 BBL | | | 05:30 | | | | <u></u> | | | | Sold To #: 307666 Ship To #:2664414 Quote #: Sales Order #: 6010632 SUMMIT Version: 7.20.130 Saturday, July 05, 2008 06:22:00 # Cementing Job Log | Activity Description | Date/Time | Cht | Rate
bbl/
min | Volume
bbi | | 1 | ssure
sig | Comments | |---|---------------------|-----|---------------------|---------------------------------------|-------|--------|--------------|--| | | | # | | Stage | Total | Tubing | Casing | | | Bump Plug | 07/05/2008
05:57 | | 1 | | | | 725.0 | PRESSURED PLUG UP
TO 1250 PSI -
PRESSURE DROPPED
OFF BEFORE 500 PSI
OVER | | Check Floats | 07/05/2008
05:58 | | | | | | | FLOATS HELD | | End Job | 07/05/2008
06:00 | | | | | _ | | | | Pre-Rig Down Safety Meeting | 07/05/2008
06:05 | | | | V | | | | | Rig-Down Equipment | 07/05/2008
06:10 | | | · · · · · · · · · · · · · · · · · · · | OCT | | ri All | | | Depart Location for Service
Center or Other Site | 07/05/2008
07:00 | | | | COM | FIDEN | 13 17 | JOURNEY
MANAGEMENT
MEETING BEFORE
DEPARTURE | RECEIVED KANSAS CORPORATION COMMISSION NOV 0 3 2008
CONSERVATION DIVISION WICHITA, KS Sold To #: 307666 Ship To #:2664414 Quote #: Sales Order #: 6010632 SUMMIT Version: 7.20.130 Saturday, July 05, 2008 06:27:00 # RECEIVED KANSAS CORPORATION COMMISSION #### NOV 0 3 2008 # Cementing Job Summary CONSERVATION DIVISION WICHITA, KS The Road to Excellence Starts with Safety | Sold To | | | | | | | | | | | | | | | | | | |---|--|---|--|--|---|-----------------------------|-----------------|--|----------------------------------|------------------|--|--|----------|--|---------------------------------------|------------|---------------| | | | | | | To #: | | | | Quote | | | | | | orde | r #: 60 | 08992 | | Custome | | | | | TION (| COMF | YANY | | Custon | ner Rep | : Kno | wles, | Anth | ony | | | | | Well Nan | ne: Jo | hn H. E | Baughi | man | | | Well # | : 4 | | | | Al | PI/U | WI #: | 15-067 | 7-21659 |) | | Field: H | UGOT | ON- | | City (SA | P): UL | YSSE | S | Count | y/Parish | : Grant | | | | | : Kans | | | | PANOMA | CON | IMING | | • • | • | | | | • | | | | | | | - | | | Legal De | script | ion: S | ection | 25 Tow | nship ? | 27S F | Range | 38W | | | | | • | <u></u> | · · · · · · · · · · · · · · · · · · · | | \mathbb{C} | | Contract | | | | | | | | | /Num: 2 | 16 | | | | | | 0 5 | 000 | | Job Purp | | | | ace Cas | | | | | | | | | | ······································ | - 0C 1 | 7276 | 1008 | | Well Type | | | | | | loh Ty | me: Co | ement | Surface (| asino | | | | | 000 | | NMAL | | Sales Per | | | *********** | | | | | | VILTSHI | | | MBU I | D E | | | | 11.9 1 11 100 | | | | | | | | /ERSI | HEK | | | \ L , | | WIBO I | | mp #. | 1930 | + [| | | | | | | | | | | | rsonnel | | | | | | | | | | HES E | | | Exp H | | | | S Emp | | Ехр Н | | p# | | | mp Na | | Exp H | | | FLORES
Estrada | , RUBI | =N | 1.5 | 4471 | 193 L | OPEZ, | , JUAN | Rosale | s 1.5 | 198 | 514 | MEND | OZA | , VICT | OR | 1.5 | 44259 | | WILTSHI | DE | · | 1.5 | 1958 | 144 | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | - | | | MERSHE | | | 1.5 | 1950 | ''' | | | | ľ | 1 | | | | | | 1 | | | | <u> </u> | | <u> </u> | | | | | Faui | pment | | | | | | | <u>. L</u> | | | HES Unit | # Di | stance | -1 wav | HES | Init # | Dist | ance-1 | | HES Un | i+ # [| ietano | ce-1 wa | T | HE6 I | Jnit # | Diet | | | | | | | 1 | 1 | | | , | 1120 011 | - | IStant | JC-1 W | 27 | TILO (| JIIIL # | Dist | ince-1 wa | | | | | · · · · · · · · · · · · · · · · · · · | ٠ | | | | lob l | lours | | | · | | | | <u> </u> | • | | Date | 0 | n Locat | ion | Operatin | -a | Date | | n Loca | | peratin | | M-4 | | T 0- | 1 4 | r | | | Duto | 0. | Hours | | Hours | ~ . | Date | | Hour | _ | peratin
Hours | 9 | Dat | æ | On | Locat
Hours | | Operating | | · | | | | | -+- | | | 11001 | - | Hours | | | | | nours | | Hours | | TOTAL | | | | - | | | | 7 | otal is the | sum of | each c | column | sens | retely | | | | | | 大 沙海南 | SAL FAR | | * Job | X ₹3 40 c | 33.835 | 26.5535 | X-11- | | ni seliton | Kinders | to rest | loh | Time | c Oleve | dia en la | Minutes M. | | ormation | | | - | | <u> </u> | | | X::::::::::::::::::::::::::::::::::::: | \$40 5 30 PH306 | | 8767 | | Date | | Tim | | ime Zone | | ormation | | | Top | | | Botte | om | | Cal | ed Out | | | vate | | 1 | ie i | IIIIe Zone | | orm Type | | 1 | | E | BHST | 12000 | | | | Locatio | n | | | | | | | | ob depth | MD | 1 | 680. ft | | ob Dep | th TVE | 5 | | | Started | | 03 | lul - : | 2008 | 22:1 | ia - | CST | | Vater Dept | h | | | | Vk Ht A | | | 5. 1 | | Compl | | 04 - 3 | | | 23:0 | | CST | | | | 1 | | | | То | · · · · · · · · | | | | | | | | | | | | | Depth | (MD) | rom | | | | | | Dep | | ос | | | | 1 | | | | erforation | Depti | (MD) | rom | | | 1.0 | L., | Well | | arted L | ос | | | | L | | | | | | (MD) | ·· ·········· | ax S | ize | ID | Weigh | | | arted L | | ade | Ton | MD | Botton | n Tor | Bottor | | erforation | | , | M | | ize
in | <u> </u> | Weigh | t | Data | arted L | | ade | Тор | - 1 | Botton
MD | | ľ | | erforation
Descript | ion | New | M | | | ID | _ | t | Data | arted L | | ade | - | - 1 | | n Top | TVD | | Descript Surface Ho | ion
le | New /
Used | M | sure | in 1 | ID
in
12.25 | lbm/fi | it i | Data
Threa | arted L | Gr | | - | - 1 | MD | TVE | ľ | | Descript Surface Ho | ion
le | New /
Used | M pres | sure | in 1 | ID
in
12.25
3.097 | lbm/ft | t | Data
Thread | arted L | Gr. | 55 | f | t | MD
ft
680.
680. | TVE
ft | TVD
ft | | Descript Surface Ho | ion
le | New /
Used | M | sure
sig
8.0 | in 1
625 8 | ID
in
 2.25
 3.097 | lbm/ft | t | Data
Threa | arted L | Gr. | 55 | f | t | MD
ft
680.
680. | TVE
ft | TVD | | Descript Surface Hol Surface Cas | ion
le
sing | New /
Used | pres | sure
sig
8. | in 1625 8 | ID
in
12.25
3.097 | lbm/ft | t | Data
Thread | arted L | Gr. | 55 | f
iom | t | MD
ft
680.
680. | TVE
ft | TVD
ft | | Descript Surface Hol Surface Cas | ion
le
sing | New /
Used
New | M pres ps | sure
sig
8.
Des
20 MIN/8 | in 1
625 8
scriptio | ID
in
12.25
3.097 | lbm/ft | t | Data
Thread | arted L | Gr | 55 | f
iom | | MD
ft
680.
680. | TVE
ft | TVD
ft | | Descript Surface
Holsurface Cas LUG,CMTC | ion
le
sing
G,TOP, | New / Used New / 8 5/8,H | M pres ps | B IN 8RD | 1625 8
625 8
64 8
64 8
64 8 | ID
in
12.25
3.097 | lbm/ft | t | Data
Thread | arted L | Gr | 55 | iom (| | MD
ft
680.
680. | TVE
ft | TVD
ft | | Descript Surface Hol Surface Cas LUG,CMTC HOE,CSG, | ion
le
sing
3,TOP,
TIGER
ISR FL | New / Used New 8 5/8,H | M pres ps | Des
20 MIN/8
3 IN 8RD
D, 24 lbs | 1625 8
625 8
64 8
64 8
64 8 | ID
in
12.25
3.097 | lbm/ft | t | Data
Thread | arted L | Gradulta Gra | 55 Qty u | iom \ | | MD
ft
680.
680. | TVE
ft | TVD
ft | | Descript Surface Hol Surface Cas LUG,CMTC HOE,CSG, LVASSY,IN | ion
le
sing
3,TOP,
TIGER
ISR FL
IY - 1.5 | New // Used New // S 5/8,H | WE, 7.:
H,8 5/8
5/8 8R
7 IN | Des 20 MIN/8 IN 8RD D, 24 lbs 8-5/8 | in 1625 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | ID
in
12.25
3.097 | lbm/ft | t | Data
Thread | arted L | Gradulta Gra | 55 Qty u | iom | | MD
ft
680.
680. | TVE
ft | TVD
ft | | Descript Burface Hol Surface Cas LUG,CMTC HOE,CSG, LVASSY,IN LLUP ASS ENTRALIZ | ion
le
sing
3,TOP,
TIGER
ISR FL
Y - 1.5 | New / Used New / 8 5/8,HR TOOT.OAT,8-600 ID - SY - AF | WE,7.: H,8 5/8 8R 7 IN PI - 8-5/ | 8.0 | in 1625 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | ID
in
12.25
3.097 | lbm/ft | t | Data
Thread | arted L | J. | Otty u | iom | | MD
ft
680.
680. | TVE
ft | TVD
ft | | Descript Surface Hol Surface Cas LUG, CMTC HOE, CSG, LVASSY, IN LLUP ASS ENTRALIZ LP, LIM, 8 5, | ion S,TOP, TIGER ISR FL Y - 1.5 ER AS | New / Used New / 8 5/8,H R TOOT OAT,8- 000 ID - SY - AF | WE,7.: H,8 5/8 8R 7 IN PI - 8-5/ | 8.0 | in 1625 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | ID
in
12.25
3.097 | lbm/ft | t | Data
Thread | arted L | Jan | Qty u EA EA | lom | | MD
ft
680.
680. | TVE
ft | TVD
ft | | Descript Surface Hol Surface Cas LUG, CMTC HOE, CSG, LVASSY, IN LLUP ASS ENTRALIZ LP, LIM, 8 5, | ion S,TOP, TIGER ISR FL Y - 1.5 ER AS | New / Used New / 8 5/8,H R TOOT OAT,8- 000 ID - SY - AF | WE,7.: H,8 5/8 8R 7 IN PI - 8-5/ | 8.0 | in 1625 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | ID
in
12.25
3.097 | lbm/ft | t | Data
Thread | arted L | Gr. J. Qty 1 1 1 1 5 | Oty u EA EA EA | iom | | MD
ft
680.
680. | TVE
ft | TVD
ft | | Descript Surface Hol Surface Cas LUG, CMTC HOE, CSG, LVASSY, IN ILLUP ASS ENTRALIZ LP, LIM, 8 5, | ion S,TOP, TIGER ISR FL Y - 1.5 ER AS | New / Used New / 8 5/8,H R TOOT OAT,8- 000 ID - SY - AF | WE,7.: H,8 5/8 8R 7 IN PI - 8-5/ | 8.0 | in 1625 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | ID
in
12.25
3.097 | 24.
les/Re | ntal/3 | Data
Thread | SC) | Gradu J. Gradu 1 1 1 1 1 5 1 1 | City u EA EA EA EA | iom | | MD
ft
680.
680. | TVE
ft | TVD
ft | | Descript Surface Hol Surface Cas LUG,CMTC HOE,CSG, LVASSY,IN LLUP ASS ENTRALIZ LP,LIM,8 5, | ion S,TOP, TIGER ISR FL Y - 1.5 ER AS | New / Used New / S 5/8,H R TOOT,OAT,8- 000 ID - SY - AF | WE, 7.3
H, 8 5/8
5/8 8R
7 IN
PI - 8-5/1
I DOG | 8.0 | in 1625 8
scription 8.09 MA | ID
in
12.25
3.097 | 24.
les/Re | ntal/3 | B RD (ST | arted L | January Janu | Cty u EA EA EA EA EA | Jom N | Dept | MD
ft
680.
680. | TVE ft Sup | TVD
ft | | Descript Surface Hol Surface Cas LUG,CMTC HOE,CSG, LVASSY,IN LLUP ASS ENTRALIZ LP,LIM,8 5, T,HALL W | ion S,TOP, TIGER ISR FL Y - 1.5 ER AS /8,FRIG | New / Used New / S 5/8,H R TOOT,OAT,8- 000 ID - SY - AF | WE, 7.3
H, 8 5/8
5/8 8R
7 IN
PI - 8-5/1
I DOG | Bure 8.0
8.0 | in 1625 8
scription 8.09 MA | ID in | 24.
les/Re | ntal/3 | Data Thread 8 RD (STail Party (| arted L | Grand J. | Cty u EA EA EA EA EA Type | Jom N | | MD
ft
680.
680. | TVE
ft | TVD
ft | | Descript Descript Surface Hol Surface Cas LUG,CMTC HOE,CSG, LVASSY,IN LLUP ASS ENTRALIZI LP,LIM,8 5, T,HALL W Type uide Shoe | ion S,TOP, TIGER ISR FL Y - 1.5 ER AS /8,FRIG | New / Used New / S 5/8,H R TOOT,OAT,8- 000 ID - SY - AF | WE, 7.3
H, 8 5/8
5/8 8R
7 IN
PI - 8-5/1
I DOG | Bure 8.0 | in 1625 8 scription 8.09 MA | ID in | 24.
les/Re | ntal/3 | B RD (ST | arted L | Grand J. | City u EA EA EA EA EA FA | om | Dept | MD
ft
680.
680. | TVE ft Sup | TVD
ft | | Descript Descript Surface Hol Surface Cas LUG,CMTC HOE,CSG, LVASSY,IN ILLUP ASS ENTRALIZ LP,LIM,8 5, T,HALL W | ion S,TOP, TIGER ISR FL Y - 1.5 ER AS /8,FRIG | New / Used New / S 5/8,H R TOOT,OAT,8- 000 ID - SY - AF | WE, 7.3
H, 8 5/8
5/8 8R
7 IN
PI - 8-5/1
I DOG | Bure 8.0 | in 1625 8 Scription 3.09 MA | 1D in | 24.
les/Re | ntal/3 | B RD (ST | arted L | Grand J. | Cty u EA EA EA EA EA Type | fom long | Dept | MD
ft
680.
680. | TVE ft Sup | TVD
ft | Summit Version: 7.20.130 Thursday. July 03. 2008 23:28:00 # RECEIVED KANSAS CORPORATION COMMISSION #### NOV 0 3 2008 #### HALLIBURTON CONSERVATION DIVISION WICHITA, KS #### Cementing Job Summary | | | | | | Miscellan | eous Ma | terials | | | | | | | |------------|--------------------|---------------|-------------------|----------------|--------------------|--------------|--|------------------------------|-----------------|------------------------|---------------------------------------|-------------------|---------| | Gellin | g Agt | | Conc | Sui | rfactant | | Conc | Acid | i Type | | Qty | Conc | : % | | Treati | ment Fld | | Conc | inh | ibitor | | Conc | San | d Type | | Size | Qty | 1 | | | | | | | Fli | uid Data | | | | | • | | | | S | tage/Plug | #: 1 | | | | | | | | | | | 77 77 T | | Fluid
| Stage | Туре | F | uid Name | | Qty | Qty
uom | Mixing
Density
Ibm/gal | Yield
ft3/sk | Mix
Fluid
Gal/sk | Rate
bbl/min | Total
Fluid G | | | 1 | Water Pr
Flush | 'e- | | | | 10.0 | bbl | 8.33 | .0 | .0 | 5.0 | | | | 2 | Lead Slu | rry | EXTENDACEM | (TM) SYST | EM (452981) | 230.0 | sacks | 12.3 | 2.07 | 11.45 | 5.0 | 11.4 | 5 | | | 3 % | | CALCIUM CHLC | RIDE - HI | TEST PELLE | T (100005 | 053) | | | | | | | | | 0.5 lbm | | POLY-E-FLAKE | (10121694 | 0) | | | | | | | | | | | 11.449 Ga | 1 | FRESH WATER | | | | | | | | | | | | 3 | Tail Slun | ry | HALCEM (TM) S | SYSTEM (4 | 52986) | 150.0 | sacks | 14.8 | 1.34 | 6.32 | 5.0 | 6.32 | | | | 2 % | | CALCIUM CHLO | RIDE - HI | TEST PELLE | T (100005 | 053) | | | | · · · · · · · · · · · · · · · · · · · | | | | | 0.25 lbm | | POLY-E-FLAKE | (101216940 | 0) | | | | | | | | ···· | | | 6.324 Ga | | FRESH WATER | | | | | | | | | ····· | | | 4 | Water
Displacem | ent | | | | 40.633 | bbl | 8.33 | .0 | .0 | 5.0 | | | | Ca | lculated | Values | Pre | ssures | 1-13-4 | | | . Vo | olumes 🧀 | 2/31分钟 | Mary Hiller | Ant. A | Jorgan | | | cement | | Shut in: inst | ant | Lost R | eturns | | Cement SI | urry | | Pad | | | | | Cement | | 5 Min | | | t Returns | | Actual Dis | splacement | | Treatm | ent | | | | radient | *** | 15 Min | <u>, l</u> | Spacer | | | | Breakdown | | Total Jo | | | | | | asia i | | 346.38 S. 1655 | 79/20 3/3 F | lates::::±: | Marie 1960, security
Compression (1988) | 445-14 | | 1000 (1) | estation. | / #: #/ 15 | | | Circu | | | Mixin | | | Displac | ement | | | Avg. Jo | b | | | | | ent Left In | | Amount 42 ft | | Shoe Joint | · | | | | | | | | | Frac F | Ring #1@ | | D Frac ring | g # 2 @ | ID | Frac Ring | g#3@0 | ID | Fra | c Ring | #4@ | ID | | | Th | e Inform | ation S | Stated Herein | Is Corre | Custom | Per Represer | | inature
() Keal | | | | | | OCT 2 7 2008 CONFIDENTIAL Summit Version: 7.20.130 Thursday. July 03. 2008 23:28:00 #### HALLIBURTON NOV 0 3 2003 # Cementing Job Log CONSERVATION DE SAUGE WICHITA, KS The Road to Excellence Starts with Safety | Sold To #: 307666 | Ship To #: | 2664414 | Quote #: | Sales Order #: 6008992 | |--------------------------------------|-----------------|-----------------------------|------------------|---------------------------| | Customer: BP AMERICA I | PRODUCTION (| COMPANY | Customer Rep: K | nowles, Anthony | | Well Name: John H. Baug | hman | Well #: 4 | | API/UWI #: 15-067-21659 | | Field: HUGOTON-
PANOMA COMMINGLED | City (SAP): ULY | SSES County | /Parish: Grant | State: Kansas | | Legal Description: Section | n 25 Township 2 | 7S Range 38W | | | | Lat: N 0 deg. OR N 0 deg. | 0 min. 0 secs. | | Long: E 0 deg. O | R E 0 deg. 0 min. 0 secs. | | Contractor: TRINIDAD | R | ig/Platform Name/ | | | | Job Purpose: Cement Sur | face Casing | | | Ticket Amount: | | Well Type: Development V | Vell J | ob Type: Cement S | Surface Casing | | | Sales Person: HESTON, N | MYRON S | rvc Supervisor: W
ERSHEK | | MBU ID Emp #: 195811 | | | | • | | | | | | | |------------------------|---------------------|-----|---------------------|-------|-----------|--------|-------------|---| | Activity Description | Date/Time | Cht | Rate
bbl/
min | b | ume
bl | p | sure
sig | Comments | | | | # | (A) (P) | Stage | Total | Tubing | Casing | | | Call Out | 07/03/2008
18:00 | | | | | | | · | | Arrive At Loc | 07/03/2008
21:30 | | | | | | | KCC | | Pre-Job Safety Meeting | 07/03/2008
21:44 | | | | | | | OCT 2 7 2008. | | Start Job | 07/03/2008
22:19 | | | | | | | CONFIDENTIAL | | Test Lines | 07/03/2008
22:20 | | | | · | | 2000.
0 | | | Pump Spacer 1 | 07/03/2008
22:22 | , | 5 | 10 | | | 20.0 | WATER | | Pump Lead Cement | 07/03/2008
22:24 | | 5 | 85 | | | .0 | 230 SKS EXTENDEEM
@ 12.3# | | Pump Tail Cement | 07/03/2008
22:37 | · | 5 | 36 | | | .0 | 150 SKS HALCEM @
14.83 | | Drop Plug | 07/03/2008
22:44 | | 5 | | 121 | | 40.0 | END CEMENT | | Pump Displacement | 07/03/2008
22:45 | | 5 | 43 | | | .0 | WATER | | Other | 07/03/2008
22:51 | | 2 | 33 | | | 130.0 | SLOW RATE | | Other | 07/03/2008
23:00 | | 2 | | 44 | | 85.0 | DIDN'T BUMP PLUG///
CLOSE IN WITH 85 PSI | | End Job | 07/03/2008
23:02 | | | | | | | | Sold To #: 307666 Ship To #:2664414 Quote #: Sales Order #: 6008992 **SUMMIT Version:** 7.20.130 Thursday. July 03. 2008 11:28:00