CONFIDENTIAL Date Commission Expires: # KANSAS CORPORATION COMMISSION OIL & GAS CONSERVATION DIVISION ORIGINAL Form Moctober 2008 Form Must Be Typed 9 4 1 ### **WELL COMPLETION FORM WELL HISTORY - DESCRIPTION OF WELL & LEASE** | OPERATOR: License # 33539 | API No. 15 - 205-27785-0000 | |--|--| | Name: Cherokee Wells, LLC | Spot Description: NW-NW | | Address 1: P.O. Box 296 SEP 0 4 2009 | | | Address 2: 1033 Fillmore COMENTAL | 660 Feet from North / South Line of Section | | City: Fredonia State: KS Zip: 66736 + | 660 Feet from East / West Line of Section | | Contact Person: Emily Lybarger | Footages Calculated from Nearest Outside Section Corner: | | Phone: (620) 378-3650 RECEIVED | □NE ☑NW □SE □SW | | CONTRACTOR: License # 33072 | County: Wilson | | Name: Well Refined Drilling SEP 14 2009 | Lease Name: Nelson Well #: A-2 | | Wellsite Geologist: N/A KCC WICHITA | Field Name: Cherokee Basin Coal Gas Area | | Purchaser: Southeastern Kansas Pipeline | Producing Formation: Unknown | | Designate Type of Completion: | Elevation: Ground: 972' est. Kelly Bushing: N/A | | New Well Re-Entry Workover | Total Depth: 1405' Plug Back Total Depth: N/A | | OII SWD SIOW | Amount of Surface Pipe Set and Cemented at: 44' 10" Feet | | Gas ENHR SIGW | Multiple Stage Cementing Collar Used? Yes 🛛 No | | CM (Coal Bed Methane) Temp. Abd. | If yes, show depth set: Feet | | Dry Other (Core, WSW, Expl., Cathodic, etc.) | If Alternate II completion, cement circulated from: bottom casing | | If Workover/Re-entry: Old Well Info as follows: | feet depth to: surface w/ 150 sx cmt. | | Operator: | Dailling Florid Manager Plan 21 + 71 1/ 1/10 - 10 - 20 | | Well Name: | Drilling Fluid Management Plan 44 I NU 10 -19-09 (Data must be collected from the Reserve Pit) | | Original Comp. Date: Original Total Depth: | Chloride content: ppm Fluid volume: bbls | | Deepening Re-perf Conv. to Enhr Conv. to SWD | Dewatering method used: | | Plug Back: Plug Back Total Depth | | | Commingled Docket No.; | Location of fluid disposal if hauled offsite: | | Dual Completion Docket No.: | Operator Name: | | Other (SWD or Enhr.?) Docket No.: | Lease Name: License No.: | | 8/24/09 8/26/09 N/A | QuarterSecTwpS. R East West | | Spud Date or Date Reached TD Completion Date or Recompletion Date Recompletion Date | County: Docket No.: | | INSTRUCTIONS: An original and two copies of this form shall be filed with the Kansas 67202, within 120 days of the spud date, recompletion, workover or cort of side two of this form will be held confidential for a period of 12 months if requitiality in excess of 12 months). One copy of all wireline logs and geologist well BE ATTACHED. Submit CP-4 form with all plugged wells. Submit CP-111 form | rversion of a well. Rule 82-3-130, 82-3-106 and 82-3-107 apply. Information ested in writing and submitted with the form (see rule 82-3-107 for confiden-report shall be attached with this form. ALL CEMENTING TICKETS MUST | | All requirements of the statutes, rules and regulations promulgated to regulate the | e oil and gas industry have been fully complied with and the statements herein | | are complete and correct to the best of my knowledge. Signature: | | | | KCC Office Use ONLY | | Title: Administrative Assistant Oate: 9/4/09 | Letter of Confidentiality Received | | Subscribed and sworn to before me this <u>4</u> day of <u>Sptemb</u> | er , if Denied, Yes Date: | | 20 9. | Wireline Log Received | | MAN MUMB C | Geologist Report Received | | Notary Public: JUW) TRACY M | ILLER) UIC Distribution | My Appt. Expires #### Side Two | Operator Name: Cherokee Wells, LLC | | Lease Na | ame: Nelson | | Well #: _A-2_ | | |---|--|-------------------|-------------------------------|---|--------------------------------------|-------------------------------| | Sec. 29 Twp. 28 S. R. 14 | ✓ East | County: | Wilson | | | | | INSTRUCTIONS: Show important tops an time tool open and closed, flowing and shu recovery, and flow rates if gas to surface te surveyed. Attach final geological well site r | t-in pressures, whether s
st, along with final chart(| hut-in pressu | ire reached static level | , hydrostatic pre | essures, bottom h | ole temperature, fluid | | Drill Stem Tests Taken
(Attach Additional Sheets) | ∏ Yes 📝 No | | ☑ Log Formatio | on (Top), Depth | and Datum | ☐ Sample | | Samples Sent to Geological Survey | Yes 🗹 No | | Name
Drillers Log - Enclos | ed | Тор | Datum | | Cores Taken
Electric Log Run
(Submit Copy) | Yes No Yes No | | | ı | RECEIVED | | | List All E. Logs Run: | | | | S | EP 14 2009 |) | | Dual Induction Log, High Rocompensated Density/Neur | | sed | | KC | EP 14 2009
C WICHIT/ | 4 | | | | RECORD | New Used | tion, etc. | | | | Purpose of String Size Hole Drilled | Size Casing
Set (In O.D.) | Weigh
Lbs. / F | nt Setting | Type of
Cement | # Sacks
Used | Type and Percent
Additives | | Surface 12 1/4" | 8 5/8" | N/A | 44' 10" | Portland | 8 | | | Longstring 6 3/4" | 4 1/2" | 10.5# | 1395' | Thickset | 150 | | | | ADDITIONAL | CEMENTING | G / SQUEEZE RECORD |) | | | | Purpose: Depth Top Bottom Perforate Top Bottom Plug Back TD Plug Off Zone | Type of Cement | #Sacks U | | | d Percent Additives | | | [| · | | | | | | | | ON RECORD - Bridge Plug
Footage of Each Interval Per | | | acture, Shot, Cem
Amount and Kind of | ent Squeeze Record
Material Used) | Depth | | N/A N/A | | | N/A | <u></u> | | N/A | | | | · | | | | KCC | | | | | | | SEP | 0 4 2003 | | | | | | · · · · · · · · · · · · · · · · · · · | CON | FIDENTIAL | | TUBING RECORD: Size: | Set At: | Packer At: | Liner Run: | Yes [] | No | | | Date of First, Resumed Production, SWD or Enl | nr. Producing Meth | | Flowing Pump | ing Gas | Lift Othe | er (Explain) | | Estimated Production Oil Per 24 Hours | Bbls. Gas | Mcf | Water E | Bbls. | Gas-Oil Ratio | Gravity | | DISPOSITION OF GAS: | ŀ | l | | | | | | | | METHOD OF C | COMPLETION: | | PRODUCTIO | ON INTERVAL: | ## Well Refined Drilling Co., Inc. 4230 Douglas Road Thayer, KS 66776 Contractor License # 33072 620-839-5581/ Office; 620-432-6170/Jeff Kephart Cell; 620-839-5582/FAX RECEIVED SEP 1 4 2009 KCC WICHITA | Rig #: | 3 | • • | Lic # 33 | 539 | LWERY | S29 | T28S | R14E | 7 | |---|---|---|--|---|--|---|--|--|-----------------------------------| | _ | | 27785-0000 | LIC # 33 | 333 | な。"、"な | Location: | 1200 | NW,NW | - | | | | · | | | Kig#5 |) | | Wilson | - | | Operato | | kee Wells, LLC | | | Rig#3 | County: | | VVIISON | | | | | Camp Bowie Blvd | | | CL D' | | | | _ | | | | Vorth, TX 76107 | | | | Gas Tes | | | | | Well #: | | Lease Name: | Neison | | Depth | inches | Orfice | flow - MCF | | | Location: | 660 | | Line | | 205 | | No Flow | | 4 | | | | FWL | Line | | 255 | | No Flow | | ⊣ i | | Spud Date | | 8/24/2009 | | 4.105 | 355 | 2 | 3/8" | 5.05 | | | Date Com | pleted: | 8/26/2009 | טון: | 1405 | 455 | 3 | 3/4"
3/4" | 24.5 | _ | | Driller: | | Louis Heck | 165 | | 505 | 4 | | 28.3 | _ | | Casing R | | Surface | Product | | 655 | | Check S | | _ | | Hole Siz | | 12 1/4" | ļ | 6 3/4" | 730 | 6 | 3/4" | 34.7 | _ [| | Casing S | Size | 8 5/8" | | | 805 | | Check S | | - - | | Weight | | 441.30 | 1 | | 980 | | Check S | | | | Setting I | | 44'; 10" | | | 1080 | | Check S | | - | | Cement | Туре | Portland | | | 1130 | 4 | 3/4" | 28.3 | _ | | Sacks | | 8 | <u> </u> | | 1230 | | Check S | | | | Feet of (| Casing | | <u> </u> | | 1305 | | Check S | | | | | | | | | 1380 | 10 | 1 1/4" | 138 | _ | | | | | | | 1405 | Gas | Check S | ame | <u></u> | | | 4 | | | <u> </u> | | | | | <u> </u> | | | ╡ | | 001110 | 20000 D | 2 000 Noles - A 0 | CIAILO | OW DEZ | | | | | | | 09LH-08 | 82609-R | 3-029-Nelson A-2- | CWLLC- | | | | | | | | | | | | Well L | og | | | | | | Тор | Bottom | Formation | Тор | Well L
Bottom | Og Formation | Тор | Bottom | Formation | | | Top
0 | Bottom
2 | Formation overburden | Top
649 | Well L
Bottom
650 | OG
Formation
shate | 909 | 913 | shale | | | Top
0
2 | Bottom
2
27 | Formation overburden sand | Top
649
650 | Well L
Bottom
650
652 | Formation shate blk shale | 909
913 | 913
914 | shale
coal | | | Top
0
2
27 | Bottom
2
27
41 | Formation
overburden
sand
lime | Top
649
650
652 | Well L
Bottom
650
652
660 | Formation shate blk shale lime | 909
913
914 | 913
914
934 | shale
coal
sand | | | Top
0
2
27
41 | Bottom
2
27
41
239 | Formation
overburden
sand
lime
sand | Top
649
650
652
660 | Well L
Bottom
650
652
660
664 | Formation shate blk shale lime shale | 909
913
914
934 | 913
914
934
936 | shale
coal
sand
sandy shale | | | Top 0 2 27 41 239 | Bottom
2
27
41
239
274 | Formation
overburden
sand
lime
sand
lime | Top
649
650
652
660
664 | Well L
Bottom
650
652
660
664
690 | Formation shate blk shale lime shale shale | 909
913
914
934
936 | 913
914
934
936
964 | shale coal sand sandy shale shale | | | Top
0
2
27
41
239
274 | Bottom
2
27
41
239
274
409 | Formation overburden sand lime sand lime shale | Top
649
650
652
660
664
690 | Well L Bottom 650 652 660 664 690 714 | Formation shate blk shale lime shale sand shale | 909
913
914
934
936
964 | 913
914
934
936
964
967 | shale coal sand sandy shale shale loime | | | Top
0
2
27
41
239
274
409 | Bottom
2
27
41
239
274
409 | Formation overburden sand lime sand lime shale | Top
649
650
652
660
664
690
714 | Well L
Bottom
650
652
660
664
690
714 | Formation shate blk shale lime shale sand shale lime | 909
913
914
934
936
964 | 913
914
934
936
964
967 | shale coal sand sandy shale shale loime coal | KCC | | Top
0
2
27
41
239
274
409
424 | 27
41
239
274
409
450 | Formation overburden sand lime sand lime shale lime picked up water | Top
649
650
652
660
664
690
714 | Well L Bottom 650 652 660 664 690 714 724 | Formation shate blk shale lime shale sand shale lime blk shale | 909
913
914
934
936
964
967 | 913
914
934
936
964
967
969 | shale coal sand sandy shale shale loime coal | KCC
P 0 4 2003 | | Top
0
2
27
41
239
274
409
424
430 | Bottom
2
27
41
239
274
409
450 | Formation overburden sand lime sand lime shale lime picked up water added water | Top
649
650
652
660
664
690
714
724
726 | Well L Bottom 650 652 660 664 690 714 724 726 | Formation shate blk shale lime shale sand shale lime btk shale lime | 909
913
914
934
936
964
967
969 | 913
914
934
936
964
967
969
994 | shale coal sand sandy shale shale loime coal lime Shale | EP 0 4 2003 | | Top 0 2 27 41 239 274 409 424 430 450 | Bottom
2
27
41
239
274
409
450 | Formation overburden sand lime sand lime shale lime picked up water added water shale | Top
649
650
652
660
664
690
714
724
726 | Well L Bottom 650 652 660 664 690 714 724 726 779 817 | Formation shate blk shale lime shale sand shale lime btk shale lime shale | 909
913
914
934
936
964
967
969
994 | 913
914
934
936
964
967
969
994
1024 | shale coal sand sandy shale shale loime coal lime shale lime | EP 0 4 2003 | | Top 0 2 27 41 239 274 409 424 430 450 474 | Bottom
2
27
41
239
274
409
450
474 | Formation overburden sand lime sand lime shale lime picked up water added water shale sand | Top
649
650
652
660
664
690
714
724
726
779
817 | Well L Bottom 650 652 660 664 690 714 724 726 779 817 828 | Formation shate blk shale lime shale sand shale lime btk shale lime shale sand | 909
913
914
934
936
964
967
969
994
1024 | 913
914
934
936
964
967
969
994
1024
1046 | shale coal sand sandy shale shale loime coal lime shale lime blk shale | EP 0 4 2003 | | Top 0 2 27 41 239 274 409 424 430 450 474 | Bottom 2 27 41 239 274 409 450 474 477 479 | Formation overburden sand lime sand lime shale lime picked up water added water shale sand sand | Top
649
650
652
660
664
690
714
724
726
779
817
828 | Well L Bottom 650 652 660 664 690 714 724 726 779 817 828 848 | Formation shate blk shale lime shale sand shale lime blk shale lime blk shale lime shale sandy shale | 909
913
914
934
936
964
967
969
994
1024
1046 | 913
914
934
936
964
967
969
994
1024
1046
1049 | shale coal sand sandy shale shale loime coal lime shale lime blk shale lime | EP 0 4 2003 | | Top 0 2 27 41 239 274 409 424 430 450 474 477 | Bottom 2 27 41 239 274 409 450 474 477 479 | Formation overburden sand lime sand lime shale lime picked up water added water shale sand sandy shale sand | Top
649
650
652
660
664
690
714
724
726
779
817
828
848 | Well L Bottom 650 652 660 664 690 714 724 726 779 817 828 848 | Formation shate blk shale lime shale sand shale lime blk shale lime shale sandy shale sandy shale sandy shale | 909
913
914
934
936
964
967
969
994
1024
1046
1049 | 913
914
934
936
964
967
969
994
1024
1046
1049
1053 | shale coal sand sandy shale shale loime coal lime shale lime blk shale blk shale | EP 0 4 2003 | | Top 0 2 27 41 239 274 409 424 430 450 474 477 479 494 | Bottom 2 27 41 239 274 409 450 477 479 494 495 | Formation overburden sand lime sand lime shale lime picked up water added water shale sand sand sandy shale sand coal | 7op
649
650
652
660
664
690
714
724
726
779
817
828
848 | Well L Bottom 650 652 660 664 690 714 724 726 779 817 828 848 860 870 | Formation shate blk shale lime shale sand shale lime blk shale lime shale sand shale lime shale lime shale sand shale | 909
913
914
934
936
964
967
969
994
1024
1046
1049
1053 | 913
914
934
936
964
967
969
994
1024
1049
1053
1056 | shale coal sand sandy shale shale loime coal lime shale lime blk shale lime blk shale coal | EP 0 4 2003 | | Top 0 2 27 41 239 274 409 424 430 450 474 477 479 494 495 | 8ottom
2
27
41
239
274
409
450
474
477
479
494
495
507 | Formation overburden sand lime sand lime shale lime picked up water added water shale sand sandy shale sand coal sandy shale | 7op
649
650
652
660
664
690
714
724
726
779
817
828
848
860
870 | Well L Bottom 650 652 660 664 690 714 724 726 779 817 828 848 860 870 | Formation shate blk shale lime shale sand shale lime blk shale lime shale lime shale lime shale lime shale sandy shale ime shale sandy shale ime | 909
913
914
934
936
964
967
969
994
1024
1046
1049
1053 | 913
914
934
936
964
967
969
994
1024
1049
1053
1056
1058 | shale coal sand sandy shale shale loime coal lime shale lime blk shale lime blk shale coal lime | EP 0 4 2003 | | Top 0 2 27 41 239 274 409 424 430 450 474 477 479 494 495 507 | 8ottom
2
27
41
239
274
409
450
474
477
479
494
495
507
548 | Formation overburden sand lime sand lime shale lime picked up water added water shale sand sand sandy shale sand coal sandy shale | 7op
649
650
652
660
664
690
714
724
726
779
817
828
848
860
870 | Well L Bottom 650 652 660 664 690 714 724 726 779 817 828 848 860 870 879 | Formation shate blk shale lime shale sand shale lime btk shale lime shale sandy shale lime shale sandy shale sandy shale sandy shale sandy shale shale shale shale shale shale shale | 909
913
914
934
936
964
967
969
994
1024
1046
1053
1056
1058 | 913
914
934
936
964
967
969
994
1024
1049
1053
1056
1058 | shale coal sand sandy shale shale loime coal lime shale lime blk shale lime blk shale coal lime sand | EP 0 4 2003 | | Top 0 2 27 41 239 274 409 424 430 450 474 477 479 494 495 | 8ottom
2
27
41
239
274
409
450
474
477
479
494
495
507
548 | Formation overburden sand lime sand lime shale lime picked up water added water shale sand sandy shale sand coal sandy shale shale shale sand | Top 649 650 652 660 664 690 714 724 726 779 817 828 848 860 870 879 | Well L Bottom 650 652 660 664 690 714 724 726 779 817 828 848 860 870 879 892 | Formation shate blk shale lime shale sand shale lime blk shale lime blk shale lime shale lime shale sandy shale ime shale lime shale sandy shale | 909
913
914
934
936
964
967
969
994
1024
1046
1053
1056
1058 | 913
914
934
936
964
967
969
994
1024
1046
1053
1056
1058
1060 | shale coal sand sandy shale shale loime coal lime shale lime blk shale lime blk shale coal lime sand sandy shale | KCC
EP 0 4 2009
XIFIOENTIAL | | Top 0 2 27 41 239 274 409 424 430 450 474 477 479 494 495 507 | 8ottom
2
27
41
239
274
409
450
474
477
479
494
495
507
548
553 | Formation overburden sand lime sand lime shale lime picked up water added water shale sand sand sandy shale sand coal sandy shale | 7op
649
650
652
660
664
690
714
724
726
779
817
828
848
860
870 | Well L Bottom 650 652 660 664 690 714 724 726 779 817 828 848 860 870 879 892 898 | Formation shate blk shale lime shale sand shale lime btk shale lime shale sandy shale lime shale sandy shale sandy shale sandy shale sandy shale shale shale shale shale shale shale | 909
913
914
934
936
964
967
969
994
1024
1046
1053
1056
1058 | 913
914
934
936
964
967
969
994
1024
1046
1053
1056
1058
1060
1090
1116 | shale coal sand sandy shale shale loime coal lime shale lime blk shale lime blk shale coal lime sand sandy shale shale | EP 0 4 2003 | | | | Wells LLC | Lease Na | | | Well# | | page 2 | | |------|--------|--------------|--|--|---------------|--------------|--|---|------------| | Тор | Bottom | Formation | Тор | Bottom | Formation | Тор | Bottom | Formation | | | 1118 | 1128 | shale | | | · | | | | | | 1128 | 1131 | blk shale | | | | | 1 1 | | | | 1131 | | | | | | | İ | | | | 1132 | 1168 | sandy shale | | | | 1 | | - | | | 1168 | | | | | | | | | | | 1169 | | | | | | 1 | 1 1 | · · · · · | | | 1195 | | | | | | 1 | i i | | | | | | oil odor | | 1 | | | | | | | 1202 | 1213 | shale | | 1 | | 1 | | - | | | 1213 | | | | | | | † | | | | 1227 | 1237 | shale | | <u> </u> | | | | | | | 1237 | 1265 | sandy shale | | | | _ | | | | | 1265 | 1273 | Red Shale | - | † † | | <u> </u> | † † | | | | 1273 | | | - | | | + | | | | | 1352 | | | | | | + | | | | | 1365 | | | | | | | + | | | | 1405 | | Total Depth | | | | + | + | RECEIVED | ١ | | 1700 | | rotar Deput | | | | | | 1740HIVE | , | | | | | - | | | - | | | no | | | | | | | | | - | SEP 14 201 | UJ | | | | | | | | | + | | | | | | | | | | <u> </u> | + | KCC WICI III | ITA | | | | | ļ | | | _ | | | | | | | | - | | | | | | | | | | | ļ | | | | ↓ | . <u> </u> | <u> </u> | | | | | | | | | | <u> </u> | l | | | | | | | | | | · | | | | | | | | | - | | | | | • | | | | | | | ···· | | | | | 1 | 1 | | | | | | | | | • | 1 | 1 | KC | 0 | | | | | · | | | | | | | | | | | 1 | \vdash | | | | SEP 114 701 | ηĝ | | | | | † | | | 1 | | <u> </u> | u ⊎ | | | | | | | - | | + | CONFIDE | m | | | | | | | | + | + | CONTRACTOR OF THE PARTY | u • • | | | | | | | · | - | + | | | | | | | | | | | + + | | | | | | | | - | | + | | | | | | | | - | | | + | | | | | | | | | | | | + | | | | | | | ļ | | | | | | | | l | | | | | | | <u> </u> | | | | I | Notes: # CONSOLIDATED OF THE PARTY LES CUSTOMER# WELL NAME & NUMBER TICKET NUMBER 23546 LOCATION FULCIA FOREMAN RICK Led God RANGE COUNTY PO Box 884, Chanuta, KS 66720 820-431-9210 or 800-467-8876 DATE ## FIELD TICKET & TREATMENT REPORT CEMENT SECTION TOWNSHIP | _ | 0.0 | | | | | | |---------------------------|----------------------|---|-------------------|--------------------|---------------------------------------|--| | 2-27-09
USTOMER | 1 ARRO 1 Malso | <u>. 42</u> | | | | Wilson | | \mathcal{I} | Conestic Energy Par | toes Co. | TRUCK# | DRIVER | TRUCK# | DRIVER | | ILING ADDR | ESS 97 | Tools | 463 | Shennon | TROCK # | CHOVER | | 4 | 94 Caro Bouje | | 573 | Oquid | | | | Y | 916 Camp Boule STATE | ZIP CODE | 3/3 | <u> </u> | | - | | _ foer | r Worth Tx | 72107 | | | - | | | TYPE_lac | | | TH 1405' | CARING SIZE A | WEIGHT 1/2" | 14 54 | | SING DEPTH | | | | OFFICE OFFI | OTHER | | | IRRY WEIGH | IT_/3.** SLURRY VO | X. 45 RM WATER GR | Vak 8.º | CEMENT LEFT | in CASING O | , | | PLACEMENT | T_22'4 (A) DISPLACEN | ENT PSI <u>1.00</u> PSI_/ | tosa | RATE | | | | AARKS: S | efety mertine- Ri | 3 up to 41/2" cress | on Bruk | cyculation | 4/35 6 | <u> </u> | | fresh | | | | er specer | | a/ | | Links. | Musted 150 345 | # · | -1 5ª Kotsee | | | | | vield | 1,69. uashart a | me + lass shat d | | | lece -/ 22 | | | ALL P | resh water final | | Git. Gen | 1 4 4 | - 37 uni | | | 2 000 | | In 1 14 | | to excluse a | · · · · · · · · · · · · · · · · · · · | | | | Job Complete Rig | dans | | | 3803 | RECEN | | | | | | | ·· | RECEIVE | | ~ | | "Thank Yes" | | | | SEP 142 | | | | | | · · · · · | | <u> </u> | | CCOUNT | QUANITY or UNITS | DESCRIPTION | of SERVICES or PR | DOUCT | UNIT PRICE | CC WACH | | SYOI | | PUMP CHARGE | | | 820.00 | 870.00 | | syol | 40 | MILEAGE | | | 3.45 | 138.00 | | | | | | | | | | 1244 | 150 503 | thirset count | | | 16.00 | 2400.00 | | 1104 | 750* | 5th Ketseel DU/SE | | | .39 | 292.50 | | | | | | | | | | 118A | 300* | gel-flah | | | .16 | 48.60 | | | | | | | 1 | † ************************************ | | CYET | 8.25 | tan-miley but | +114 | | m/L | 296.00 | | | | | | | + ~ · | - 74.00 | | 4404 | 1 | 48° too male of | | · | W2 - | 4.5 | | | | 415 top restor pl | 5 | 300 | 43.00 | 43.04 | | | | · · · · · · · · · · · · · · · · · · · | 180 | 30 | | | | | | | 200 N | DENTIAL
DENTIAL | † | | | | | | SEL V | TAITIAL | 1 | | | | | | CONF | DEHILL | | | | | | | | · | | | | | | | | | Subtatel | 4087.50 | | I | | | | 6.37. | SALES TAX | 125.36 | | 3737 | Ti pleled | 83108 | Q | | ESTIMATED | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | I /\ | | TOTAL | 9262.86 |