Form G-2 (Rev. 7/03) KCC WICHITA ## Kansas Corporation Commission One Point Stabilized Open Flow or Deliverability Test (See Instructions on Reverse Side) | ype lest: | | | | | (Se | e instruc | uons on | Reverse | e Siae) | | | | | | | |---|-------------------------------|---|---------------------------------------|-------------------------|--|---|---|-----------------|---|--|-------------------------------------|-----------------------------|----------------------------------|---|--| | | Open Flow Test Deliverability | | | Test Date: | Date: 07/25/2011 | | | | | API No. | | | 15175205450000 | | | | Company OXY USA Inc | | | | | Lease LIBERAL 6 | | | | | | | W | /ell Nu | umber | | | County Location Seward 660' FNL & 660' FWL | | | | | Section TWP 36 34S | | | | RNG (E/W)
34W | | | Acres Attributed 640 | | | | | Field
SALLEY | | | | | Reservoir
Morrow | | | | Gas Gathering Connection ONEOK FIELD SERVICES | | | | | | | | Completion
10/01/198 | | | | | lug Back ' | Total Dep | th | | ı | Packer Set at | | | | | | | Casing Size | asing Size Weight 1/2" 15.5# | | | . In | Internal Diameter Set at 4.950" Set at 6,690' | | | | Perforations
6,185' | | | To
6,200' | | | | | Tubing Size | 9 | Wei | _ | | iternal Dia | ameter | | et at
6,208' | | Perforation | S | То | | | | | Type Completion (Describe) SINGLE-GAS | | | | | Type Fluid Production WATER | | | | Pump Unit or Traveling Plunger? Yes / Yes - Beam Pump | | | | Yes / No | | | | Producing Thru (Annulus / Tubing) Annulus | | | | | % Carbon Dioxide
0.430% | | | | (| | | | | avity - Gg
. 714 | | | Vertical Depth (H) 6,193' | | | | | Pressure Taps
Flange | | | | | A Marie VIII | | | (Meter Run) (Prover) Size 3.068" | | | | Pressure B | uildup: | Shut in | 07/2 | . 4 2 | 20 11 | at 9:00 |) | | Taken | 07/25 | 20 11 | at S | 9:00 | **** | | | Well on Lin | e: | Shut in _ | | 2 | 20 | at | _ | | Taken | | 20 | at | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | OBSER | VED SU | IRFACE | DATA | | Ouration of | Shut-in _ | 24 | Hours | | | Static /
Dynamic | Orifice
Size | Orifice Meter Differe Size Prover Pressure in | | 4 | ntial Flowing
Temperature | | Well Head
Temperature | | sing
d Pressure
Pt) or (Pc) | Tub
Wellhead
(P _w) or (F | Pressure
t) or (P _c) | Duration | | Liquid Produced | | | Property
Shut-In | (inches) | | | Inches H ₂ (|) t | | | psig
12.0 | psia
26.4 | psig | psia | psia (Hours) | | (Barrels) | | | Flow | | T | | | T | | | | | | | | | | | | | | | ·· | <u></u> | | FLOW S | TREAM | ATTRI | BUTES | | | | | | | | Plate
Coefficient
(F _b) (F _p)
Mcfd | : | Circle one: Press Meter or Extension Prover Pressure psia P _m x h | | | Gravity
Factor
F ₀ | | Flowing
Temperature
Factor
F ₆ | | riation
actor
=
pv | Metered Flow
R
(Mcfd) | | GOR
(Cubic Feet/Barrel) | | Flowing
Fluid
Gravity
G _m | | | | | | | (1 | OPEN FL | OW) (DE | LIVERA | BILITY) | CALCU | LATIONS | | | P _a) ² = | 0.207 | | | (P _c) ² = | : | (P _w) | ² = <u>0.0</u> | : - | P _d = | | _% | _ | 4.4) + 14 | .4 = | <u></u> : | (1 | P _d) ² = | 0 | | | $(P_c)^2 - (P_n)^2$
or
$(P_c)^2 - (P_d)^2$ | (P _c | $(P_{c})^{2} - (P_{w})^{2}$ $(P_{c})^{2} - (P_{w})^{2}$ $(P_{c})^{2} - (P_{w})^{2}$ $(P_{c})^{2} - (P_{c})^{2}$ $(P_{c})^{2} - (P_{c})^{2}$ $(P_{c})^{2} - (P_{w})^{2}$ $(P_{c})^{2} - (P_{w})^{2}$ $(P_{c})^{2} - (P_{w})^{2}$ | | | LOG of
formula
1. or 2.
and divide
by: | P _c ² - P _w ² | P _c ² - P _w ² - | | Curve
n"
——
1
ope | n x LOG | ļ | Antilog | | Open Flow
Deliverability
Equals R x Antilog
(Mcfd) | | | | | | | | | | | | | | <u> </u> | | + | | | | Open Flow | | 0 | Mcf | fd @ 14.65 | psia | | Deliver | rability | L | | Mcfd @ | 14.65 psia | | | | | the facts stated | i therein, and | | • | | | ny, states the | | · | d to make th | ne above report and | that he has kn | owledge of | , | 2011 . | | | | • | · | | | | | | | | | DXY USA | Inc. | ,
 | | | | | | · · · · · · · · · · · · · · · · · · · | Witness | | | | | | | | For Compa | Ty (| nc.) | | | | | | For | Commission | i | | | | | | | . <u>J.</u> | | | RECEN | | | | | | | | | | - | | | | | | | RECEI
OCT 19 | | | I declare under penalty of perjury under the laws K.A.R. 82-3-304 on behalf of the operator Ocontained on this application form are true and correct and lease records of equipment installation and/or upor I hereby request a one-year exemption from containing the th | XY USA Inc.
to the best of my kn
n type of completion | and that the and a | ne foregoing poelief based u
being made o | oressure information
pon available pro | on and stateme
duction summa
in named. | ents
aries | |--|---|--|--|---|--|---------------| | said well: | | | | g | g | | | | | | | | | | | (Check one) | | | | | | | | is a coalbed methane producer | | • | | | | | | is cycled on plunger lift due to water | | | | | | | | is a source of natural gas for injection into a | | | | | | | | is on a vacuum at the present time; KCC ap | proval Docket No. | | | | | • | | is not capable of producing at a daily rate in | excess of 250 mcf/ | /D | | | | | | I further agree to supply to the best of my ability and corroborate this claim for exemption from testing. Date: October 13, 2011 | y and all supporting | documents de | emed by Co | mmission staff as i | necessary to | | | | | , | | | | | | • | * | • . | Signature: | David Ogden
OXY USA Inc | 20 | | | | | | Title: | Gas Busine | ss Coordina | tor | **Instructions:** If a gas well meets one of the eligibility criteria set out in the KCC regulation K.A.R. 82-3-304, the operator may complete the statement provided above in order to claim exempt status for the gas well. At some point during the current calendar year, wellhead shut-in pressure shall have been measured after a minimum of 24 hours shut-in/buildup time and shall be reported on the front side of this form under **OBSERVED SURFACE DATA**. Shut-in pressure shall thereafter be reported yearly in the same manner for so long as the gas well continues to meet the eligibility criterion or until the claim of eligibility for exemption **IS** denied. The G-2 form conveying the newest shut-in pressure reading shall be filed with the Wichita office no later than December 31st of the year for which it's intended to acquire exempt status for the subject well. The form must be signed and dated on the front side as though it was a verified report of annual test results. RECEIVED OCT 1 9 2011 KCC WICHITA