KANSAS CORPORATION COMMISSION ONE POINT STABILIZED OPEN FLOW OR DELIVERABILITY TEST | Type Test | : | | | | | | (8 | See Instruc | ctic | ons on Reve | rse Side |) | | | | | | | |---|--------------------------------|--------------------|---|--------------------|--|---------------------|---|---|----------|---|---|----------------------|--|------------------------|---------|--|---------------------------------|--| | √ Op | en Flov | , | | | | Took | Data | | | | | AD | l No. 15 | | | | | | | De | liverabi | lty | | | | | Date
5/12 | - | | | | AF | 1140. 15 | 119 | 9-001 | 29 - 🗪 | 2-0 | 0 | | Company | | | - | | | | - | · | | Lease
CLASS | ΞN | <u></u> | | | | 1-7 | Well Nu | mber | | County
MEADE | | | Locat
NW N | | W SE | Sect | tion | | | TWP
34S | | RNG (E | :/W) | | | | Acres A | Attributed | | Field
McKINI | NEY | | | | | | ervoir | //Cheste | er: | | | Gas Ga
DUK | thering | Conn | ection | | | | | Completic
12/6/19 | |) | | | | Plug
604 | | Total Dep | pth | | | Packer
5998 | Set at | | | | | | | Casing Si | ize | | Weigi
9.5 | nt | 21 | Inter | nal D | iameter | | Set at
6148 | - | Perf
593 | orations
34 | | · | то
6036 | - | | | Tubing Si | ze | | Weig | nt | • | Inter | nal D | lameter | | Set at
5930 |) | Perf | orations | | | То | | | | Type Con | | | |
(:1:0 | | Type | | 1 Production | on | | | Pump t | Init or Tra | aveling | Plung | er? Yes
YES | / No | | | Producing | g Tiffe | (Annuli | us / Tubir | g) | | 0.0 | | arbon Dio | xid | е | | % Nitro | • | | | Gas Gr
0.691 | | 3 ₀ | | CASING
Vertical E | | ١ | | | | 0.2 | 204 | Pre | | ите Тарѕ | | 2.759 | , | | | | | rover) Size | | vertical L | рөрин(п | , | | | | | | PIP | E | · | | | | | | , | | 0101) 0120 | | Pressure | Buildur | o: She | ut in11. | /5/ | 2 | 12 | at_10 | 0:00 am | _ (| (AM) (PM) 1 | aken_11 | /6/ | | 20 | 12 = | 10:00 | am | (AM) (PM) | | Well on L | .ine: | Sta | ırted | | 2 | | at | | _ (| (AM) (PM) 1 | aken | | | 20 | & | nt | | (AM) (PM) | | | | | | | | · · | | OBSERV | ΈD | SURFACE | | | | | Durati | on of Shut | in 24 | Hours | | Static /
Dynamic
Property | Orific
Size
(inche | , _P , | Circle one:
Meter
over Press
psig (Pm) | ure C | Pressure
ifferential
in
iches H ₂ 0 | Flow
Temper
t | rature | Well Head
Temperatur
t | | Casin
Wellhead P
(P _w) or (P ₁) | ressure
or (P _c) | (P _*) | Tubing
ead Press
or (P ₁) or (| P _c) | | uration
Hours) | | d Produced
Barrels) | | Shut-In | | + | paig (i iii) | <u> </u> | 101100 1120 | | | | 1 | 164 | psia | psig | - P | sia | 24 | | <u> </u> | | | Flow | FLOW ST | 'n | AM ATTRIE | UTES | | | | | | | | | Plate
Coeffied
(F _b) (F | cient
;) | Me
Provei | ole ono:
oter or
Pressure
osia | 1 | Press
extension
P _m x h | | Grav
Fact | or | | Flowing
emperature
Factor
F _H | Fa | iation
ctor
pv | | red Flor
R
Acfd) | w | GOR
(Cubic Fe
Barrel) | | Flowing
Fluid
Gravity
G _m | | | | | | <u></u> | _ | | | | | | | | <u> </u> | | | | | <u> </u> | | (P _c)² ≃ | | | (P _w)² | = | : | (OPE | N FL | | IVE
% | RABILITY) (P_ | - 14.4) + | | | : | | (P _a)
(P _d) | $0^2 = 0.2$
$0^2 = 0.2$ | 07 | | (P _c) ² - | (P _a) ² | | - (P _*)² | Choose
1.
2. | P _c ² - P _c ² by: P _c ² - P _c | LC
for
1. | OG of
mula
or 2.
I divide
by: | P _c ² - P _w ² | | Slope
 | sure Curve
) = "n"
or
gned
rd Slope | l n x | LOG | | , | Antilog | O _l
Del
Equals | pen Flow
iverability
a R x Antilog
(Mcfd) | | | | | | | - c t | Open Flo | w | | | N | lcfd @ 14 | .65 psia | a | | | Deliverabil | ity | | | | Mcfd (| 3 14.65 ps | ia | - | | | | - | - | | | | correc | t. Execute | ed 1 | this the 19
CEIVED | TH | | the abov | | | that he ha | | rledge of 20 12 . | | | ···• | | Witness | (if any) | | | <u>[{</u> | | | 21 201 | | ev! | | For | Company | | | | | | | | For Con | mission | | | | IXL | ĮΨ | # I 201 | | | | Che | cked by | | | | CONSERVATION DISTRICTOR WICHITA, KS | | | he laws of the state of Kansas
ehalf of the operator_BEREXC | s that I am authorized to request | |---|--|---|---| | correct to the best
of equipment insta | of my knowledge and belief | based upon available producti
ompletion or upon use being ma | his application form are true and ion summaries and lease records ade of the gas well herein named. | | | est a one-year exemption from
ounds that said well: | m open flow testing for the <u>CL</u> | ASSEN 1-7 | | · · | is a coalbed methane producing cycled on plunger lift due is a source of natural gas for is on vacuum at the present is not capable of producing | e to water or injection into an oil reservoir t time; KCC approval Docket No at a daily rate in excess of 25 ability any and all supporting o | 0 | | Date: <u>11/19/12</u> | Sigr | nature: By By By Title: PETROLEUM ENGIN | RECEIVED KANSAS CORPORATION COMMISSION NOV 2 1 2012 CONSERVATION DIVISION WICHITA, KS | Instructions: If a gas well meets one of the eligibility criteria set out in KCC regulation K.A.R. 82-3-304, the operator may complete the statement provided above in order to claim exempt status for the gas well. At some point during the current calendar year, wellhead shut-in pressure shall have been measured after a minimum of 24 hours shut-in/buildup time and shall be reported on the front side of this form under **OBSERVED SURFACE DATA**. Shut-in pressure shall thereafter be reported yearly in the same manner for so long as the gas well continues to meet the eligibility criterion or until the claim of eligibility for exemption **IS** denied. The G-2 form conveying the newest shut-in pressure reading shall be filed with the Wichita office no later than December 31 of the year for which it's intended to acquire exempt status for the subject well. The form must be signed and dated on the front side as though it was a verified report of annual test results.