KANSAS CORPORATION COMMISSION ONE POINT STABILIZED OPEN FLOW OR DELIVERABILITY TEST

Type Tes	st:				(See Instru	ctions on Res	rerse Side)				
□ o	pen Flov	V								,		
D	eliverabi	lty		Test Dat	6 :			API	No. 15	5-1005	9 1	100
Compan		or Franci	ls Oil Com		· · · · · · · · · · · · · · · · · · ·	Lease			- 00	<u> </u>	Well N	umber
County	Na I	Loca		Section		TWP	rden	ANG (E	۸W۱		1-3	Attributed
	Clar	K NENES	WSW	32		34S		25W	•••	•	ACIES!	-ttingted
Field	McK	Inney	•	Reservo	ir Drrow				hering Connec	tion		
Completion Date 2/7/63				Plug Bac	Plug Back Total Depth 5872			Packer Set at None				
Casing Size Weight				Internal (Diameter	Set at Perforations				To		
4.5 10.5			4.052 Internal Diameter		6002		5779		5788		8	
Tubing S	_	Weig 1	î.7		1,995	Set at	785	Perto	rations	То		
Type Cor		(Describe)			id Production		705	Pump Ur	it or Traveling	Plunger? Yes	/No	
Producing	Tubi	Annulus / Tubing))	% Carbo	n Dioxide	- ;		% Nitrog	ÞÍ	Gas G	navity - (3,
Vertical D			·		Press	ure Taps				(Meter	_	rover) Size
			110/12	·	<u></u>	ipe		/ / / / /	111		3_	
Pressure	Buildup		e/10/12 19					' '				
Well on L	ine:	Started	19	at		(AM) (PM) 1	Taken		19 .	at	((AM) (PM)
					OBSERVE	D SURFACE	DATA			Duration of Shut-	-in	Hours
Static / Dynamic Property	Orifica Size inches	Prover Press	1 """ 1	Flowing Temperature t	Well Head Temperature t	Casing Weilhead Pressure (P _w) or (P _t) or (P _c)		Tubing Wellhead Pressure (P _a) or (P _t) or (P _c)		Ouration (Hours)	Ouration Liquid Prod	
Shut-In		heid	Inches H _s 0			peig	pelá	polig polis		24		
Flow								100				
			,		FLOW STR	EAM ATTRIE	UTES			-,		
Plate Coefficient (F _a) (F _a) Mcfd		Circle one: Meter of Prover Pressure psia	Press Extension V P _n x H _n	Gravity Factor F _g		Flowing emperature Factor F _{1,1}	T Deviation		Metered Flow R (Mcfd)	GOR (Cubic Fe Barrel)		Flowing Fluid Gravity G _m
		···	<u> </u>									
(P _e)² =		: (P _w)²≖		(OPEN FLO		ERABILITY) (P			•	(P _a) (P _a)	2 = 0.2	.07
(P _e)²- (P _a)²		(P _c)*- (P _a)*	Chaose formula 1 or 2:	LOG of		_% (P _q - 14.4) + Backpressure Curve Slope = "n"				\' 4'	Open F	
or (P _e) ² - (P _e) ²			2. Pi.Pi awaway: Pi.Pi	formula 1. or 2.	P. 2 . P. 2	Assigned Standard Slope		n x LOG		Antilog	Deliverability Equals R x Antilog Mcfd	
				-				1				
Open Flow	<u> </u>		Mcfd @ 14.69	5 psia	 -	Deliverabilit	,	<u> </u>		old @ 14.65 psia	<u> </u>	
		ed authority on	behalf of the Co		es that he !-			es the she	77			of the feets
			is true and corre			28	day of		bruar v	HEL TH THE KNOW		ir une racus 19 <i>20/3</i>
- WALL	oni, eiri	Witness (i		GI. EXECUTE		_	Lay or	obe	ty	Tajor		EIVEN
						<u></u>			For 96	nos/ff	MAR	በሉ ኃንሎን
		For Comm	nission						Checks	d by	-446	V 1 Z015

I hereby request a permanent exemption from open flow testing for the Harden 1-32 pas well on the grounds that said well: (Check one) is a coalbed methane producer is cycled on plunger lift due to water is a source of natural gas for injection into an oil reservoir undergoing ER is on vacuum at the present time; KCC approval Docket No. X is incapable of producing at a daily rate in excess of 150 mct/D	•		under the laws of the		·	
the best of my knowledge and belief based upon gas production records and records of equipment installation and/or of type completion or upon use of the gas well herein named. I hereby request a permanent exemption from open flow testing for the	•				•	
I hereby request a permanent exemption from open flow testing for the				-		
(Check one) is a coalbed methane producer is cycled on plunger lift due to water is a source of natural gas for injection into an oil reservoir undergoing ER is on vacuum at the present time; KCC approval Docket No. is incapable of producing at a daily rate in excess of 150 mcf/D Date: 2/28/13.						
(Check one) is a coalbed methane producer is cycled on plunger lift due to water is a source of natural gas for injection into an oil reservoir undergoing ER is on vacuum at the present time; KCC approval Docket No. is incapable of producing at a daily rate in excess of 150 mcf/D Date: 2/28/13.	I hereby request a	ı permanent exem	ption from open flow	testing for the	Harden 1-32	
is a coalbed methane producer is cycled on plunger lift due to water is a source of natural gas for injection into an oil reservoir undergoing ER is on vacuum at the present time; KCC approval Docket No. X is incapable of producing at a daily rate in excess of 150 mcf/D Date: 2/28/13		•				
is a coalbed methane producer is cycled on plunger lift due to water is a source of natural gas for injection into an oil reservoir undergoing ER is on vacuum at the present time; KCC approval Docket No. X is incapable of producing at a daily rate in excess of 150 mcf/D Date: 2/28/13	(Chack an	n.)				
is cycled on plunger lift due to water Is a source of natural gas for injection into an oil reservoir undergoing ER Is on vacuum at the present time; KCC approval Docket No Is incapable of producing at a daily rate in excess of 150 mcf/D Date:			ne producer			
is a source of natural gas for injection into an oil reservoir undergoing ER is on vacuum at the present time; KCC approval Docket No. X is incapable of producing at a daily rate in excess of 150 mcf/D Date: 2/28//3			•			
is incapable of producing at a daily rate in excess of 150 mcf/D Date: $\frac{2/28//3}{\sqrt{13}}$		• •		nto an oil reservo	ir undergoing ER	
Date: $\frac{2/28/13}{2}$	is	on vacuum at the	present time; KCC	approval Docket	No	
$\mathcal{O}(1, t, \infty)$	X is	incapable of prod	lucing at a daily rate	in excess of 150	mcf/D	e e e e e e e e e e e e e e e e e e e
$\mathcal{O}(1, t, \infty)$						
$\mathcal{O}(1, t, \infty)$						
$\mathcal{O}(1, t, \infty)$	المعام					
$\mathcal{O}.I.+ \mathcal{M}.$	Date:2/28//	3			÷	
$\mathcal{O}.I.+\mathcal{O}$				•		,
$\Omega.1+m$						e garen er
$\Omega.1+m$						gradining the same of the
$\mathcal{L}_{\mathcal{L}}}}}}}}}}$						
Signature:			Signature:	Separt 1	Jagar	
Title: Production Records Manager						

Instructions:

All active gas wells must have at least an original G-2 form on file with the conservation division. If a gas well meets the eligibility criteria set out in KCC regulation K.A.R. 82-3-304, the operator may complete the statement provided above in order to obtain a testing exemption.

At some point during the succeeding calendar year, wellhead shut-in pressure shall be measured after a minimum of 24 hours shut-in/buildup time and shall be reported on the front side of this form under "observed surface data." Shut-in pressure shall thereafter be reported yearly in the same manner.

The G-2 form conveying the newest shut-in pressure reading shall be filed with the Wichita office no later than thirty (30) days after the taking of the pressure reading. The form must be signed and dated on the front side as though it was a verified report of test results.