Kansas Corporation Commission One Point Stabilized Open Flow or Deliverability Test

Type Test:					(S	See In:	structions	s on R	everse	Side)		-					
Open F				Test Dat	te:		06/19/	/2013				API No.		15	08121	6130	000
Company OXY USA Ir	nc						Lease HICKMA	AN B	6						٧	/ell Ni	umber
County Haskell	330	Location			Section 28			WP 80S				G (E/W) 33W			Α	cres / 6 4	Attributed IO
Field /ICTORY					Reservoir Morrow/		ster					s Gathering l eok	Connec	ction			
Completion D 10/21/2005	ate				Plug Back 5,575 '	k Tota	l Depth				Pac	cker Set at					
Casing Size 5 1/2"		Weigh 10.5 #			Internal Di 4.052 '			Set a 5 ,700 '				Perforation: 5,380'	S		To 5,4	20'	
ubing Size		Weigh 4.7 #	t		Internal Di 1.995"	iamet	er	Set a 5, 4	at 146'			Perforation	\$		То		
ype Complet	•	,			Type Fluid WATER	d Prod	luction				Pur	mp Unit or T	raveling - Bea				Yes / No
roducing The	ru (Annu n nulus	lus / Tubing	g)		%		on Dioxid 15%	е	·			Nitrogen 8.082%		G	as Grav		àg
ertical Depth 5,400'	n (H)					ļ	Pressure Flang							A)		un) (P	rover) Size
ressure Build	dup:	Shut in	06/18	3	20 13	at	9:00	•	•	Taken		06/19	20	13	at S	9:00	
Vell on Line:		Shut in			20	at _				Taken			20		_ at _		
						OB:	SERVED	SURF	FACE	DATA			Ouration	of St	nut-in _	24	Hours
Static / Dynamic	Orifice Size	e <i>Meter</i> Differer Prover Pressure in			ntial Flowing Temperature		Well Head Temperature) (Casing Wellhead Pressure (P _w) or (P ₁) or (P _c)		(P _w) or (P _t) or (P _c)			Duration		Liquid Produced	
Shut-In	(inches)	psig (P	'm)	Inches H	l ₂ O		t	1	sig 9.0	psia 43.4		psig 10.0	psia 24.4		(Hours)	(Barrels)
Flow							W STRE		TTOIC	LITEO							
	1		<u> </u>			FLU		1	IIRIE	UIES	<u> </u>		1				-
Plate Coefficient (F _b) (F _p) McId	oefficient Meter or Ex (F_b) (F_p) Prover Pressure		Pres Extens	sion .	Gravity Factor F _o		Flowing Temperature Factor F _{tt}		Deviation Factor F _{pv}			Metered Flow R (McId)		GOR (Cubic Feet/Barrel)			Flowing Fluid Gravity G _m
			<u> </u>		(OPEN FL	LOW)	(DELIVE	RABII	LITY)	CALCL	 JLA1	TIONS			(F	P_a)2 =	0.207
P _c) ² =	:	$(P_{w})^{2} =$	0.0	:	P _d =		%			.4) + 1			:			o _d) ² =	0
$(P_c)^2 - (P_a)^2$ or $(P_c)^2 - (P_d)^2$	(P _e) ² -	(P _w) ²	ose Formul 1. P _c ² - P 2. P _c ² - P vided by: P _c	. 2 + . 2 d	LOG of formula 1. or 2. and divide by:	P _c ²	- P _w ²	Slo	essure (ope = "n" or ssigned dard Slo		пх	LOG		Antil	og	Eq	Open Flow Deliverability uals R x Antilog (Mcfd)
													ē				
pen Flow		0	Mcfd	@ 14.6	5 psia		Del	liverabi	lity				Mcfd	@ 14	.65 psia		
e facts stated the						any, stat		14	thorized day		the ab	nove report and Nover		s knowl	edge of		2013
•		Witn	ness				_					C	XY US		c		•
	·-··	For Com	mission				-	ረር:C	:W	'ICH	IT.	A A	mee L	anno	<u> </u>	mı	fan

NOV 25 2013

RECEIVED

reby request a one-year exemp	A* (D	letion or upon use being ma	e	
	xion from open flow	HICKMAN B 6	for the gas well on the grounds	s tnat
)				
a coalbed methane producer				
cycled on plunger lift due to wa	ater			
a source of natural gas for inje	ection into an oil reservoir	undergoing ER		
on a vacuum at the present tir	ne; KCC approval Docket	No.		
not capable of producing at a	daily rate in excess of 250	mcf/D		
November 14, 2013	-			
\$ \$ \$ \$ all	s a source of natural gas for injection a vacuum at the present tines not capable of producing at a capable to supply to the best of mathric claim for exemption from te	s a coalbed methane producer s cycled on plunger lift due to water s a source of natural gas for injection into an oil reservoir s on a vacuum at the present time; KCC approval Docket s not capable of producing at a daily rate in excess of 250 agree to supply to the best of my ability any and all supportions claim for exemption from testing.	is a coalbed methane producer is cycled on plunger lift due to water is a source of natural gas for injection into an oil reservoir undergoing ER is on a vacuum at the present time; KCC approval Docket No. is not capable of producing at a daily rate in excess of 250 mcf/D in agree to supply to the best of my ability any and all supporting documents deemed by this claim for exemption from testing.	is a coalbed methane producer is cycled on plunger lift due to water is a source of natural gas for injection into an oil reservoir undergoing ER is on a vacuum at the present time; KCC approval Docket No. is not capable of producing at a daily rate in excess of 250 mcf/D is agree to supply to the best of my ability any and all supporting documents deemed by Commission staff as necessary to this claim for exemption from testing.

Instructions: If a gas well meets one of the eligibility criteria set out in the KCC regulation K.A.R. 82-3-304, the operator may complete the statement provided above in order to claim exempt status for the gas well.

At some point during the current catendar year, wellhead shut-in pressure shall have been measured after a minimum of 24 hours shut-in/buildup time and shall be reported on the front side of this form under **OBSERVED SURFACE DATA**. Shut-in pressure shall thereafter be reported yearly in the same manner for so long as the gas well continues to meet the eligibility criterion or until the claim of eligibility for exemption **IS** denied.

The G-2 form conveying the newest shut-in pressure reading shall be filed with the Wichita office no later than December 31st of the year for which it's intended to acquire exempt status for the subject well. The form must be signed and dated on the front side as though it was a verified report of annual test results.

NOV 25 2013
RECEIVED