KANSAS CORPORATION COMMISSION ONE POINT STABILIZED OPEN FLOW OR DELIVERABILITY TEST | r n | : . | • | | (| See Instruc | dons on heve | erse Side) | | | | • | |--|-------------------------------|--|--|--|--|---|---|---|-----------------------------|--|--| | √ Op | en Flow | | | Tarak Orași | | | | ADI A | lo 15 | , | , | | Deliverabilty | | Test Date:
October 7, 913 ≥.@ / <i>≥</i> | | | | . API N
119-2 | io. 15
20349 ~ 00 9 | 00 | | | | | Company
Red Hills Resources, Inc. | | | Lease
Harrington | | | | | | | Well Number | | | County
Meade | | | Section | | TWP
34S | | | RNG (E/W)
26W | | Acres Attributed
320 | | | ield
∕IcKinney | | Reservoir
Morrow | | | | | ering Conne
Istream | | | | | | Completion Date
/3/1979 | | Plug Bac
5980 | k Total Dep | oth | | Packer Set at none | | V | | | | | Casing Si
.5" | 10.5# | | Internal Diameter 4.05" | | | Set at
5979 | | Perforations
5836 | | en en e commit dels ense de la Code français augus | | | ubing Si | oing Size Weight 3/8" 4.7# | | Internal E
1.995" | Diameter | Set at 586 0 | 5860 | | | То | | | | ype Completion (Describe) | | | Type Fluid Production Salt Water | | | | Pump Unit or Traveling Plunger? Yes / No Pumping Unit | | | | | | roducing Thru (Annulus / Tubing) | | | % C | % Carbon Dioxide | | | % Nitroge | | .Gas Gr | Gas Gravity - G _g | | | /ertical D | Depth(H) | | | | Pres | ssure Taps | | *************************************** | | (Meter I | Run) (Prover) Size | | oressure | Buildup: | Shut in 10 | -7 | 0 13 at 9 | :30 am | (AM) (PM) | Taken 10 | -8 | 20 | 13 _{at} 9:30 a | m (AM) (PM) | | Vell on L | | | | | | | | | | | (AM) (PM) | | | | , | | | OBSERVE | ED SURFACE | | · · · · · · · · · · · · · · · · · · · | r | Duration of Shut- | in Hours | | Static /
lynamic
roperty | Size Meter Diffe | | Differential in | Flowing
Temperature | Well Head
Temperature | Casir
Wellhead F
(P _w) or (P _r | Pressure Wellhead Pressure | | Pressure | Duration .
(Hours) | Liquid Produced | | Shut-In | (11701100) | psig (Pm) | Inches H ₂ 0 | | | psig
40 | psia | psig | psia | | | | Flow | | | | | | | | | | | | | | | | | | FLOW ST | REAM ATTRI | BUTES | | | | | | Plate
Coefficci
(F _b) (F
Mcfd | ient
p) Pr | Circle one: Meter or Prover Pressure psia Press Extensi | | Grav
Fact | or | Flowing
Temperature
Factor
F ₁₁ | Deviation
Factor
F _{pv} | | Metered Flow
R
(Mcfd) | GOR
(Cubic Fe
Barrel) | Flowing Fluid Gravity G, | | | | | | | | | | | | | | | | : | (P _w)² = | | (OPEN FLO | | /ERABILITY) | CALCULA
- 14.4) + | | | (P _a) | ? = 0.207 · | | o″)s ≔ ' | | , ,,,,, | Choose formula 1 or 2 | , | | 1 | · | | FIT | | Open Flow | | (P _c)2- (F | " | P _c) ² - (P _w) ² | 1. P _c ² -P _a ² | . LOG of
formula
1. or 2. | | Slope | | n x LC | oG | Antilog | Deliverability Equals R x Antilog | | | " | | | formula
1. or 2.
and divide | P _c ² -P _w ² | Slope
Assi | e "n" = € | n x LC | oe | Antilog | Deliverability
Equals R x Antilog
(Mofd) | | or | " | P _c) ² - (P _w) ² | 1. P _c ² -P _d ² 2. P _c ² -P _d ² | formula
1. or 2.
and divide | P.2-P.2 | Slope
Assi | e = "n"
or
gned | n x LC | og _ | Antilog | Equals R x Antilog | | (P _c) ² - (F
or
(P _c) ² - (F | 2,)2 | | 1. P. ² - P. ² 2. P. ² - P. ² divided by: P. ² - P. ² | formula 1, or 2, and divide by: | P. 2 - P. 2 | Slope
Assi
Standa | e = "n"
or
gned
rd Slope | n x LC | | | Equals R x Antilog
(Mefd) | | (P _c) ² - (F
or
(P _c) ² - (F | P _d) ² | | 1. P. ² - P. ² 2. P. ² - P. ² divided by: P. ² - P. Mcfd @ 14. | lormula
1. or 2.
and divide
by: | C W | Slope
Assi
Standa | e = "n" of gned rd Slope | | | | Equals R x Antilog
(Mofd) | | (P _c) ² - (F
or
(P _c) ² - (F | w
undersigne | d authority, o | 1. P. ² - P. ² 2. P. ² - P. ² divided by: P. ² - P. Mcfd @ 14. | lormula 1. or 2. and divide by: 65 psia Company, s | tates that h | Slope
Assi
Standa | e = "n" or- gned , rd Slope ity horized to | make the | | | Equals R x Antilog
(Mofd) | | (P _c) ² - (F
or
(P _c) ² - (F | w
undersigne | d authority, o | 1. P. ² - P. ² 2. P. ² - P. ² divided by: P. ² - P. ² Mcfd @ 14. | lormula 1. or 2. and divide by: 65 psia Company, s | tates that h | Slope
Assi
Standa | e = "n" or- gned , rd Slope ity horized to | make the | above repor | | Equals R x Antilog
(Mcfd) | | (P _c) ² - (F
or
(P _c) ² - (F | w
undersigne | d authority, o | 1. P _c ² - P _c ² 2. P _c ² - P _d divided by: P _c ² - P _w Mcfd @ 14. In behalf of the aid report is true | lormula 1. or 2. and divide by: 65 psia Company, s | tates that h | Slope
Assi
Standa | e = "n" or- gned , rd Slope ity horized to | make the | above repor | | Equals R x Antilog
(Mcfd) | | $(P_c)^2$ - (P_c) 2 (P_c) | w
undersigne | d authority, o | 1. P. ² - P. ² 2. P. ² - P. ² divided by: P. ² - P. Mcfd @ 14. In behalf of the aid report is true | lormula 1. or 2. and divide by: 65 psia Company, s | tates that h | Slope
Assi
Standa | e = "n" or- gned , rd Slope ity horized to | make the | above repor | Mcfd @ 14.65 psi
t and that he ha
McKun | Equals R x Antilog
(Mcfd) | | I declare under penalty of perjury under the laws of the state of Kansas that I am authorized to request exempt status under Rule K.A.R. 82-3-304 on behalf of the operator Red Hills Resources, Inc. | |---| | and that the foregoing pressure information and statements contained on this application form are true and | | correct to the best of my knowledge and belief based upon available production summaries and lease records | | of equipment installation and/or upon type of completion or upon use being made of the gas well herein named. I hereby request a one-year exemption from open flow testing for the Harrington #1-24 | | | | gas well on the grounds that said well: | | (Check one) | | is a coalbed methane producer | | is cycled on plunger lift due to water | | is a source of natural gas for injection into an oil reservoir undergoing ER | | is on vacuum at the present time; KCC approval Docket No | | is not capable of producing at a daily rate in excess of 250 mcf/D | | To the coupanie of producing at a daily tale in shoots of 200 man | | I further agree to supply to the best of my ability any and all supporting documents deemed by Commission | | staff as necessary to corroborate this claim for exemption from testing. | | | | | | Date: December 2, 2013 | | | | | | | | Signature: Wallaw H. Met Janiey | | Title: Vice-President | | | | | | | ## Instructions: If a gas well meets one of the eligibility criteria set out in KCC regulation K.A.R. 82-3-304, the operator may complete the statement provided above in order to claim exempt status for the gas well. At some point during the current calendar year, wellhead shut-in pressure shall have been measured after a minimum of 24 hours shut-in/buildup time and shall be reported on the front side of this form under **OBSERVED SURFACE DATA**. Shut-in pressure shall thereafter be reported yearly in the same manner for so long as the gas well continues to meet the eligibility criterion or until the claim of eligibility for exemption **IS** denied. The G-2 form conveying the newest shut-in pressure reading shall be filed with the Wichita office no later than December 31 of the year for which it's intended to acquire exempt status for the subject well. The form must be signed and dated on the front side as though it was a verified report of annual test results. **KCC WICHITA** DEC 04 2013 RECEIVED