RECEIVED ## KANSAS CORPORATION COMMISSION ONE POINT STABILIZED OPEN FLOW OR DELIVERABILITY TEST | Type Test | • | | | (, | | , o, , o , o , o , o , | verse Side | 7 | | | | | |--|--|--|---|--|-----------------------------------|--|---|--|-----------------------------|----------------------------------|---|--| | Ор | en Flow | | | Tont Date | | | | A DLA | lo 15 | • | • | | | √ De | ✓ Deliverabilty | | | Test Date:
11/21/13 | | | | | No. 15
75-20594-(| 00-00 | | | | Company
Linn Operating Inc | | | | | Lease
HCU | | | | | 3020 | Well Number | | | County Location Hamilton SWSWNENW | | | | Section
30 | | TWP
22S | | RNG (E/W)
40W | | | Acres Attributed 640 | | | | | | | | Reservoir
Winfield | | | | ering Conni
ield Servic | | | | | Completion Date
6/2/96 | | | | Plug Back
2801 | k Total Dept | h | , | Packer Set at | | | | | | Casing S
4.5 | asing Size Weight 5 10.5 | | | Internal D
4.052 | Diameter | Set at 2843' | | Perforations
2618' | | то
2638 | то
2638' | | | Tubing Size Weight 2 3/8 4.7 | | | Internal D | Diameter | Set at 2784' | | Perforations | | То | То | | | | Type Completion (Describe) Single Gas | | | | Type Flui | Type Fluid Production Gas - Water | | | | t or Traveling | Plunger? Ye | s / No | | | Producing Thru (Annulus / Tubing) | | | | % C | % Carbon Dioxide | | | | n , | | Gas Gravity - G _g | | | Annulus
Vertical D | | | | * * | | sure Taps | | | · | | r Run) (Prover) Size | | | 2628
Pressure | Buildun: | Shut in | /20 | 13 _{at} 1 | Fland
1:00 AM | | Taken 11 | 1/21 | 20 | | O AM (AM) (PM) | | | Well on L | 4 | | 1 | | | | | | | | (AM) (PM) | | | | | | <u>.</u> | | OBSERVE | D SURFACI | E DATA | | | Duration of Shu | ut-in 24 Hours | | | Static /
Dynamic
Property | Orifice
Size
(inches) | Circle one. Meter Prover Press | Differential in | Flowing
Temperature
t | Well Head
Temperature
t | Casing Wellhead Pressure (P _w) or (P ₁) or (P _c) | | Tubing Wellhead Pressure (P _w) or (P _t) or (P _c) | | Duration
(Hours) | Liquid Produced
(Barrels) | | | Shut-In | , , , , , | psig (Pm |) Inches H ₂ 0 | | | psig
32 | psia
46.4 | psig
Pump | psia | 24 | | | | | | | | | | 1. 1 | | 1 | | | | | | Flow | | | | | | , | | | , | | | | | Flow | | | | | FLOW STR | REAM ATTR | IBUTES | | | | | | | Plate
Coeffiec
(F _b) (F | ient | Circle one:
Meter or
rover Pressure
psia | Press Extension Pmxh | Grav
Fact
F _c | vity T | Flowing Femperature Factor F ₁₁ | Dev
Fa | iation
ictor
=
pv | Metered Flor
R
(Mcfd) | w GO
(Cubic
Barre | Feet/ Fluid | | | Plate
Coeffiec
(F _b) (F | ient | Meter or
rover Pressure | Extension | Fact
F _s | vity T | Flowing
Femperature
Factor
F ₁₁ | Dev
Fa
F | ictor .
=
pv | R | (Cubic | Feet/ Fluid Gravity | | | Plate
Coeffiec
(F _b) (F | ient | Meter or
rover Pressure | Extension √ P _m x h | Fact
F _s | ovity tor | Flowing Femperature Factor F ₁₁ | Dev
Fa
F | ATIONS | R | (Cubic
Barri | Feet/ Fluid Gravity | | | Plate
Coeffiec
(F _b) (F
Mcfd | ient (p) P(| Meler or
rover Pressure
psia | Extension √ P _m x h | (OPEN FLO P _d = LOG of formula 1. or 2. and divide | ovity tor | Flowing Femperature Factor F,, ERABILITY % (F Backpre Slop As | Dev
Fa
F | ATIONS 14.4 = | R
(Mcfd) | (Cubic
Barri | Feet/ Fluid Gravity G_m G_m G_m | | | Plate Coeffiec (F_b) (F Mcfd $(P_c)^2 = $ $(P_c)^2 \cdot ($ or | ient (p) P(| Meter or
rover Pressure
psia
(P _w) ² | Extension P _m x h Choose formula 1 or 1 1. P _c ² - P _a ² 2. P _c ² - P _c ² | (OPEN FLO P _d = LOG of formula 1. or 2. and divide | OW) (DELIV | Flowing Femperature Factor F,, ERABILITY % (F Backpre Slop As | Dev
Fa
F
C - 14.4) +
Ssure Curve
pe = "n"
- or | ATIONS 14.4 = | R
(Mcfd) | (Cubic
Barro
(P | Feet/ Fluid Gravity G_m $a_a^2 = 0.207$ $a_d^2 = 0.207$ Open Flow Deliverability Equals R x Antilog | | | Plate Coeffice (P_b) (P_c) = $(P_c)^2 = (P_c)^2 - ($ | : Pa)2 | Meter or
rover Pressure
psia
(P _w) ² | Extension P _m x h Choose formula 1 or a 1. P _c ² - P _a 2. P _c ² - P _c divided by: P _c ² - P _w | (OPEN FLO P _d = LOG of formula 1, or 2, and divide by: | OW) (DELIV | Flowing Femperature Factor F ₁₁ ERABILITY % (F Backpre Slog | Dev
Fa
F
) CALCUL
P _c - 14.4) +
ssure Curve
pe = "n"
or | ATIONS 14.4 = | R
(Mcfd) | (Cubic
Barre
(P
Antilog | Freet/ Fluid Gravity G_m Open Flow Deliverability Equals R x Antilog (Mcfd) | | | Plate Coeffiec (F_b) (F Mcfd $(P_c)^2 = $ $(P_c)^2 \cdot ($ or | : Pa)2 | Meter or
rover Pressure
psia
(P _w) ² | Extension P _m x h Choose formula 1 or 1 1. P _c ² - P _a ² 2. P _c ² - P _c ² | (OPEN FLO P _d = LOG of formula 1, or 2, and divide by: | OW) (DELIV | Flowing Femperature Factor F,, ERABILITY % (F Backpre Slop As | Dev
Fa
F
) CALCUL
P _c - 14.4) +
ssure Curve
pe = "n"
or | ATIONS 14.4 = | R
(Mcfd) | (Cubic
Barro
(P | Freet/ Fluid Gravity G_m Open Flow Deliverability Equals R x Antilog (Mcfd) | | | Plate Coeffice (F_b) (F_c) $(F_c)^2 = (F_c)^2 - (F_$ | eent Policy Poli | Meter or rover Pressure psia (Pw)2 (Pc)2 - (Pw)2 | Extension P _m x h Choose formula 1 or 2 1. P _c ² - P _a 2. P _c ² - P _d divided by: P _c ² - P _w Mcfd @ 14 on behalf of the | (OPEN FLC P _d = LOG of formula 1. or 2. and divide by: 65 psia Company, s | OW) (DELIV | Flowing Femperature Factor F ₁₁ ERABILITY % (F Backpre Slop As Stand Deliverab | Dev Fa F | ATIONS 14.4 = n x L | R (Mcfd) | (Cubic Barri | Fluid Gravity Gm Pa) ² = 0.207 Pa) ² = Open Flow Deliverability Equals R x Antilog (Mcfd) Desia | | | Plate Coeffice (F_b) (F_c) $(F_c)^2 = (F_c)^2 - (F_$ | eent Policy Poli | Meter or rover Pressure psia (Pw)2 (Pc)2 - (Pw)2 | Extension P _m x h Choose formula 1 or z 1. P _c ² - P _a 2. P _c ² - P _c divided by: P _c ² - P _w Mcfd @ 14 | (OPEN FLC P _d = LOG of formula 1. or 2. and divide by: 65 psia Company, s | OW) (DELIV | Flowing Femperature Factor F ₁₁ ERABILITY % (F Backpre Slop As Stand Deliverab | Dev Fa F | ATIONS 14.4 = | R (Mcfd) | (Cubic Barri | Freet/ Fluid Gravity G _m Ca Cap C | | | Plate Coeffice (F_b) (F_c) $(F_c)^2 = (F_c)^2 - (F_$ | eent Policy Poli | Meter or rover Pressure psia (Pw)2 (Pc)2 - (Pw)2 | Extension P _m x h | (OPEN FLC P _d = LOG of formula 1. or 2. and divide by: 65 psia Company, s | OW) (DELIV | Flowing Femperature Factor F ₁₁ ERABILITY % (F Backpre Slop As Stand Deliverab | Dev Fa F | ATIONS 14.4 = n x L | e above repo | (Cubic Barri | Fluid Gravity Gm Pa) ² = 0.207 Pa) ² = Open Flow Deliverability Equals R x Antilog (Mcfd) Desia | | | | er penalty of perjury under the laws of the state of Kansas that I am authorized to request | |---------------------|---| | | er Rule K.A.R. 82-3-304 on behalf of the operator Linn Operating, Inc. | | _ | oing pressure information and statements contained on this application form are true and | | | of my knowledge and belief based upon available production summaries and lease records | | • • | llation and/or upon type of completion or upon use being made of the gas well herein named. | | | st a one-year exemption from open flow testing for the HCU 3020-C | | gas well on the gro | ounds that said well: | | (0) | | | (Check | | | | is a coalbed methane producer | | | is cycled on plunger lift due to water | | | is a source of natural gas for injection into an oil reservoir undergoing ER | | | is on vacuum at the present time; KCC approval Docket No. | | ✓ | is not capable of producing at a daily rate in excess of 250 mcf/D | | I foundly a manager | | | _ | to supply to the best of my ability any and all supporting documents deemed by Commission | | statt as necessary | to corroborate this claim for exemption from testing. | | 10/ | 110 | | Date: 12/2/ | | | * | | | | | | | | | | Signature: Mann Hiearton | | | · | | <i>i</i> | Title: Regulatory Compliance Advisor | | | | | | | Instructions: If a gas well meets one of the eligibility criteria set out in KCC regulation K.A.R. 82-3-304, the operator may complete the statement provided above in order to claim exempt status for the gas well. At some point during the current calendar year, wellhead shut-in pressure shall have been measured after a minimum of 24 hours shut-in/buildup time and shall be reported on the front side of this form under **OBSERVED SURFACE DATA**. Shut-in pressure shall thereafter be reported yearly in the same manner for so long as the gas well continues to meet the eligibility criterion or until the claim of eligibility for exemption **IS** denied. The G-2 form conveying the newest shut-in pressure reading shall be filed with the Wichita office no later than December 31 of the year for which it's intended to acquire exempt status for the subject well. The form must be signed and dated on the front side as though it was a verified report of annual test results. DEC 13 2013