RECEIVED

KANSAS CORPORATION COMMISSION ONE POINT STABILIZED OPEN FLOW OR DELIVERABILITY TEST

Since process

1 1 One	en Flow										
= '	iverabilty			Test Date 6-4-13) :				No. 152135	8	
Company Quail Oi		I.C.				Lease Jacob C	olter	10	200 2 1000		Well Number
County Comanc		Location NE NE S		Section 1		TWP 33S		RNG (E/	W)		Acres Attributed
Field Colter			Reservoir	Reservoir Paw-FS-Miss				hering Conne			
Completion Date 8-22-03				k Total Dept	h		Oneok Packer S N/A				
Casing Size Weight			Internal Diameter		Set at 5488'		Perforations 5103'		To 5259'		
4.5" Tubing Size		Weight		3.927" Internal Diameter		Set at		Perforations 5285'		То	
2.375 Type Com	- '				d Production	5300'		Pump Un		5288' Plunger? Yes	/ No
Producing	Thru 🚧	ed (Ga inulus / Tubing)	<u>(s)</u>		arbon Dioxi	de		% Nitrog	en		avity - G _g
Annulus Vertical Depth(H)				1.002	Press	2.05 ure Taps		2.053			Run) (Prover) Size
5259'		6.4		40 4	Flanc					2"	
Pressure I	•		2							13 at 12:30	(ÂM) (PM)
Well on Li	ne:	Started	2	0 at		(AM) (PM) T	aken		20	at	(AM) (PM)
		·			OBSERVE	D SURFACE	DATA			Duration of Shut-	in Hours
Static / Dynamic Property	Orifice Size (inches)	Meter Differential		Flowing Well Head Temperature t t		Casing Wellhead Pressure (P _w) or (P _t) or (P _c) psig psia		Tubing Wellhead Pressure (P_w) or (P_1) or (P_c) psig psia		Duration (Hours)	Liquid Produced (Barrels)
Shut-In						140	port	N/A	pu.s.	24	
Flow											
					FLOW STR	EAM ATTRIE	UTES	Т			
		Circle one:	Press Extension	Gravity Factor F _g		Flowing emperature		iation ctor	Metered Flov R	I	Flowing
Plate Coeffiecie (F _b) (F _p Mcfd		Meter or over Pressure psia	✓ P _m xh		ior	Factor F ₁₁		pv	(Mcfd)	(Cubic Fe Barrel)	et/ Fluid Gravity G
Coeffiecie (F _b) (F _p		over Pressure		F	i	Factor F ₁₁	F	pv	(Mcfd)		ev Gravity
Coeffiecie (F _b) (F _p		over Pressure		F	OW) (DELIV	Factor F ₁₁ ERABILITY)	F	ATIONS	(Mcfd) :	Barrel)	Gravity G _m 2 = 0.207
Coeffiecie (F _b) (F _p Mcfd) Pn	over Pressure psia $(P_w)^2 = \frac{Ch}{P_c)^2 - (P_w)^2}$		(OPEN FLC P _d = LOG of formula 1. or 2. and divide	OW) (DELIV	Factor F ₁₁ ERABILITY)	CALCUL - 14.4) + sure Curve = "n" sr	ATIONS 14.4 =		Barrel)	Gravity G _m 2 = 0.207
Coefficients $(F_b) (F_p) (F_p) (F_p) (F_p)^2 = (P_p)^2 - (P_p)$) Pn	over Pressure psia $(P_w)^2 = \frac{Ch}{P_c)^2 - (P_w)^2}$	P _m x h : ::::::::::::::::::::::::::::::::	(OPEN FLC P _d = LOG of formula 1. or 2. and divide	DW) (DELIVI	Factor F ₁₁ ERABILITY) (6 (P _c Backpress Slope	CALCUL - 14.4) + sure Curve = "n" sr	ATIONS 14.4 =		(P _a)	Gravity G 2 = 0.207 2 = Open Flow Deliverability Equals R x Antilog
Coefficients $(F_b) (F_p) (F_p) (F_p)^2 = (P_c)^2 - ($: : : : : : : : : : : : : : : : : : :	over Pressure psia $(P_w)^2 = \frac{Ch}{P_c)^2 - (P_w)^2}$: Coose formula 1 or 2	(OPEN FL: P _d = LOG of formula 1. or 2. and divide by:	DW) (DELIVI	Factor F ₁₁ ERABILITY) (6 (P _c Backpress Slope	CALCUL - 14.4) + urre Curve = "n" r gned d Slope	ATIONS 14.4 =	.og []	(P _a) Antilog	Gravity G _m R = 0.207 R = Open Flow Deliverability Equals R x Antilog (Mcfd)
Coefficient (F _b) (F _p) (F _p) (P _c) ² = $(P_c)^2 - (P_c)^2 -$: : : : : : : : : : : : : : : : : : :	(P _w) ² =	P _m x h : cose formula 1 or 2 1. P _c ² - P _a ² 2. P _c ² - P _a ² ided by: P _c ² - P _a ²	(OPEN FL: Pd = LOG of formula 1. or 2. and divide by:	DW) (DELIV	Factor F ₁₁ ERABILITY) (6 (P _c Backpress Slope	CALCUL - 14.4) + ure Curve = "n"	ATIONS 14.4 =	.og [(P _a)	Gravity G _m P = 0.207 Popen Flow Deliverability Equals R x Antilog (Mcfd)
Coefficient (F _b) (F _p) (F _p) (P _c) ² = $ (P_c)^2 - (P_c)^2 - (P_c)^2 - (P_c)^2 $ Open Flow	: (a) 2 (I) (b) 2 (I) (c) 4 (I) (d) 2 (I)	(P _w) ² =	P _m xh : cose formula 1 or 2 1. P _c ² -P _s ² 2. P _c ² -P _s ided by: P _c ² -P _s behalf of the	(OPEN FL: P _d = LOG of formula 1. or 2. and divide by: 65 psia Company, s	DW) (DELIV) Pc2-Pg2	Factor F,1 ERABILITY) (6 (Pc Backpress Slope Assig Standar Deliverabilities is duly auth	CALCUL - 14.4) + ure Curve = "n" r	ATIONS 14.4 = n x L	e above repo	(P _a) (P _d) Antilog	Gravity G _m P = 0.207 Popen Flow Deliverability Equals R x Antilog (Mcfd)
Coefficient (F _b) (F _p) (F _p) (P _c) ² = $ (P_c)^2 - (P_c)^2 - (P_c)^2 - (P_c)^2 $ Open Flow	: (a) 2 (I) (b) 2 (I) (c) 4 (I) (d) 2 (I)	over Pressure psia $(P_w)^2 = {Ch}$ $P_c)^2 - (P_w)^2$ du	P _m xh : cose formula 1 or 2 1. P _c ² -P _s ² 2. P _c ² -P _s ided by: P _c ² -P _s behalf of the	(OPEN FL: P _d = LOG of formula 1. or 2. and divide by: 65 psia Company, s	DW) (DELIV) Pc2-Pg2	Factor F,1 ERABILITY) (6 (Pc Backpress Slope Assig Standar Deliverabilities is duly auth	CALCUL - 14.4) + ure Curve = "n" r	ATIONS 14.4 = n x L	.og [(P _a) (P _d) Antilog	Gravity G _m R = 0.207 R = Open Flow Deliverability Equals R x Antilog (Mcfd)

	eclare under penalty of perjury under the laws of the state of Kansas that I am authorized to request status under Rule K.A.R. 82-3-304 on behalf of the operator Quail Oil & Gas, LC
nd tha	at the foregoing pressure information and statements contained on this application form are true and
orrect	to the best of my knowledge and belief based upon available production summaries and lease records
	oment installation and/or upon type of completion or upon use being made of the gas well herein named.
l he	ereby request a one-year exemption from open flow testing for the
as we	II on the grounds that said well:
	(Check one)
	is a coalbed methane producer
·	is cycled on plunger lift due to water
	is a source of natural gas for injection into an oil reservoir undergoing ER
	is on vacuum at the present time; KCC approval Docket No
	is not capable of producing at a daily rate in excess of 250 mcf/D
1.40	orthor agree to supply to the heat of my shility any and all supporting decuments deemed by Commission
	rther agree to supply to the best of my ability any and all supporting documents deemed by Commission necessary to corroborate this claim for exemption from testing.
tan as	necessary to corroborate this claim for exemption from testing.
noto:	2-19-2013
'ale	- 10 - 20 10
	Signature: Wuy Vall
	Title: _Manager

Instructions:

If a gas well meets one of the eligibility criteria set out in KCC regulation K.A.R. 82-3-304, the operator may complete the statement provided above in order to claim exempt status for the gas well.

At some point during the current calendar year, wellhead shut-in pressure shall have been measured after a minimum of 24 hours shut-in/buildup time and shall be reported on the front side of this form under **OBSERVED SURFACE DATA**. Shut-in pressure shall thereafter be reported yearly in the same manner for so long as the gas well continues to meet the eligibility criterion or until the claim of eligibility for exemption **IS** denied.

The G-2 form conveying the newest shut-in pressure reading shall be filed with the Wichita office no later than December 31 of the year for which it's intended to acquire exempt status for the subject well. The form must be signed and dated on the front side as though it was a verified report of annual test results.

DEC 24 2013

RECEIVED