RECEIVED

KANSAS CORPORATION COMMISSION ONE POINT STABILIZED OPEN FLOW OR DELIVERABILITY TEST

igens.

	Ope	n Flow											
<u> </u>	Deliverabilty					Test Date: 11/24/13			API No. 15 047-20182 ~ 900!				
Con BE	Company BEREN CORPORATION						Lease SMITH	-WOO[)		1	Well N	lumber
	County Location EDWARDS C NE SE			Section 12		TWP 26S		RNG (E/W) 16W			Acres N/A	Attributed	
Field	Field WIL POOL EXT				Reservoir CHEROKEE SD				Gas Gathering Cor ONEOK		ection		
Corr	npletion /17/19	n Date	<u>. </u>			k Total Dep			Packer S NONE	Set at			
	Casing Size		Weight 15.5		Internal Diameter 5.012		Set at 4616		Perforations 4044		то 4366		
Tubi	Tubing Size 2.375		Weight		Internal Diameter 1.995		Set at 4340		Perforations OPEN		Т		
Туре	Type Completion (Describe)					d Productio				nit or Traveling	Plunger?	Yes / No	
Pioc	Producing Thru (Annulus / Tubing)				% c	ide	% Nitrogen 2.931			Gas Gravity - G 0.6518			
Vert	CASING Vertical Depth(H)			Pressure Taps			2.901		(N	Vieter Run) (Prover) Size		
N/A			05-4 1- 11/2	23/	. 13 . 9	:30 am	/AAA /510	1 [^]	1/24/	20	<u> </u>	N/A :30 am	4440 4540
	ssure B II on Lin	-	Snut in	2									(AM) (PM) (AM) (PM)
												2/	
- Cin	Static / Orifice Circle and		Circle ane:	Pressure	Flowing			Casing		Tubing D		DITATION OF SHILL-III	
Dyna	amic	Size (inches)	Meter Prover Pressu psig (Pm)	Differential in Inches H ₂ 0		Temperature t	Wellhead F (P_) or (P,			ad Pressure r (P ₁) or (P _c) psia	Duratio (Hours		uid Produced (Barrels)
Shu	ut-In	·					120	····			24		
Fk	low												
							1				1		
<u> </u>			J			FLOW STE	REAM ATTRI	BUTES					
	Plate ceffiecie (F _b) (F _p) Mcfd		Circle one: Mater or over Pressure psla	Press Extension ✓ P _m x h	Grav Fac	vity tor	REAM ATTRI Flowing Temperature Factor F _{tt}	Dev Fa	riation actor = pv	Metered Flor R (Mcfd)	(Ci	GOR ubic Feet/ Barrel)	Flowing Fluid Gravity G
	oeffiecie (F _b) (F _p)		Meter or over Pressure	Extension	Fac	vity tor	Flowing Temperature Factor	Dev Fa	ctor	R	(Ci	ubic Feet/	Fluid Gravity
(1	oeffiecie (F _b) (F _p) Mcfd		Meter or over Pressure psla	Extension	(OPEN FL	ovity tor OW) (DELIV	Flowing Temperature Factor F _{tt}	Dev Fa } CALCUL	ATIONS	R	(Ci	ubic Feet/ Barrel) $(P_a)^2 = 0.$	Fluid Gravity G _m
(P _c) ²	oeffiecie (F _b) (F _p) Mcfd	:	Meter or cover Pressure psia $(P_w)^2 = P_c)^2 - (P_w)^2$	Extension P _m x h : Choose formula 1 or 2 1. P _c ² - P _a ² 2. P _c ² - P _a ²	(OPEN FL P _d = LOG of formula 1. or 2. and divide	ovity tor OW) (DELIV	Flowing Temperature Factor F ₁₁ /ERABILITY) % (P Backpres Slop Ass	Dev Fa {	ATIONS	R (Mcfd)	(Ci	(P _a) ² = 0. (P _d) ² = 0.	Fluid Gravity G _m
(P _c) ²	poeffiecie (F _b) (F _p) Mofd 2 = P _c) ² - (P _e	:	Meter or cover Pressure psia $(P_w)^2 = P_c)^2 - (P_w)^2$	Extension P _m x h : Choose formula 1 or 2 1. P _c ² - P _a ²	(OPEN FL P _d = LOG of formula 1. or 2. and divide	OW) (DELIN	Flowing Temperature Factor F ₁₁ /ERABILITY) % (P Backpres Slop Ass	CALCUL c - 14.4) ssure Curve e = "n" or signed	ATIONS	R (Mcfd)	(C	(P _a) ² = 0. (P _d) ² = 0.	Fluid Gravity G. 207 Den Flow eliverability als R x Antilo
(P _c) ² (P	oeffiecie (F _b) (F _p) Mcfd 2 = P _c) ² - (P _e or P _c) ² - (P _e	: :: :) ² (Meter or cover Pressure psia $(P_w)^2 = P_c)^2 - (P_w)^2$	Extension P _m x h : Choose formula 1 or 2 1. P _c ² - P _a ² 2. P _c ² - P _a ² divided by: P _c ² - P _a ²	(OPEN FL: P _d = LOG of formula 1, or 2, and divide by:	OW) (DELIN	Flowing Temperature Factor F(1) /ERABILITY) % (P Backpres Slop Ass Standa	CALCUL Calculation Calculatio	ATIONS	R (Mcfd)	Antilog	(P _a) ² = 0. (P _a) ² =	Fluid Gravity G. 207 Den Flow eliverability als R x Antilo
(P _c) ² (P	oeffiecie (F _b) (F _p) Mcfd 2 = P _c) ² - (P _c or P _c) ² - (P _c	: : : : : : : : : : : : : : : : : : :	Meter or pover Pressure psia $(P_w)^2 = P_c)^2 - (P_w)^2$	Extension P _m x h Choose formula 1 or 2 1. P _c ² - P _s ² 2. P _c ² - P _s ² sivided by: P _c ² - P _s Mcfd @ 14.	(OPEN FL P _o = LOG of tormula 1. or 2. and divide by:	OW) (DELIN	Flowing Temperature Factor F ₁₁ /ERABILITY) % (P Backpres Slop	CALCUL C - 14.4) + Source Curve De = "n" Or Signed and Slope	ATIONS - 14.4 =	R (Mcfd)	Antilog	(P _a) ² = 0. (P _a) ² =	Fluid Gravity G. 207 Den Flow eliverability als R x Antilo (Mcfd)
(P _c) ² (P	oeffiecie (F _b) (F _p) Mcfd 2 = or P _c)2- (P _d or P _c)2- (P _d	::	Meter or over Pressure psia $(P_w)^2 = P_c^2 \cdot (P_w)^2$ and authority, or	Extension P _m x h : Choose formula 1 or 2 1. P _c ² - P _s ² 2. P _c ² - P _s ² stricted by: P _c ² - P _s Mcfd @ 14.	(OPEN FL P _d = LOG of formula 1. or 2. and divide by: 65 psia Company, s	OW) (DELIN	Flowing Temperature Factor Fit /ERABILITY) % (P. Backpres Slop	CALCUL C - 14.4) + ssure Curve the = "n" or or or sligned and Slope	ATIONS 14.4 = n x	R (Mcfd)	Antilog	(P _a) ² = 0. (P _a) ² =	Fluid Gravity G. 207 Den Flow eliverability als R x Antilic (Mcfd)
(P _c) ² (P	oeffiecie (F _b) (F _p) Mcfd 2 = or P _c)2- (P _d or P _c)2- (P _d	::	Meter or over Pressure psia $(P_w)^2 = P_c^2 \cdot (P_w)^2$ and authority, or	Extension P _m x h Choose formula 1 or 2 1. P _c ² - P _s ² 2. P _c ² - P _s ² sivided by: P _c ² - P _s Mcfd @ 14.	(OPEN FL P _d = LOG of formula 1. or 2. and divide by: 65 psia Company, s	OW) (DELIN	Flowing Temperature Factor Fit /ERABILITY) % (P. Backpres Slop	CALCUL C - 14.4) + ssure Curve the = "n" or or or sligned and Slope	ATIONS 14.4 = n x	R (Mcfd)	Antilog	(P _a) ² = 0. (P _a) ² =	Fluid Gravity G _m 207 Den Flow eliverability als R x Antilo (Mcfd)

	leclare under penalty of perjury under the laws of the state of Kansas that I am authorized to request
	ot status under Rule K.A.R. 82-3-304 on behalf of the operator BEREN CORPORATION
	at the foregoing pressure information and statements contained on this application form are true and
	t to the best of my knowledge and belief based upon available production summaries and lease records
-	ipment installation and/or upon type of completion or upon use being made of the gas well herein named.
	ereby request a one-year exemption from open flow testing for the SMITH-WOOD 1
gas we	ell on the grounds that said well:
	(Check one)
	is a coalbed methane producer
	is cycled on plunger lift due to water
	is a source of natural gas for injection into an oil reservoir undergoing ER
	is on vacuum at the present time; KCC approval Docket No
	is not capable of producing at a daily rate in excess of 250 mcf/D
	urther agree to supply to the best of my ability any and all supporting documents deemed by Commission
staff a	s necessary to corroborate this claim for exemption from testing.
Date: _	12/10/13
	$M \cdot I \cdot M I \cdot .$
	Signature: Bett Bly
	Title: _PETROLEUM ENGINEER
	Title:

Instructions:

If a gas well meets one of the eligibility criteria set out in KCC regulation K.A.R. 82-3-304, the operator may complete the statement provided above in order to claim exempt status for the gas well.

At some point during the current calendar year, wellhead shut-in pressure shall have been measured after a minimum of 24 hours shut-in/buildup time and shall be reported on the front side of this form under **OBSERVED SURFACE DATA**. Shut-in pressure shall thereafter be reported yearly in the same manner for so long as the gas well continues to meet the eligibility criterion or until the claim of eligibility for exemption **IS** denied.

The G-2 form conveying the newest shut-in pressure reading shall be filed with the Wichita office no later than December 31 of the year for which it's intended to acquire exempt status for the subject well. The form must be signed and dated on the front side as though it was a verified report of annual test results.

DEC 13 2013