KANSAS CORPORATION COMMISSION ONE POINT STABILIZED OPEN FLOW OR DELIVERABILITY TEST | Type Test | : | | | | | (| See Inst | ructi | ons on Re | verse Sid | e) | | | | | | | |--|-----------------|---|--------------------|--|---|---|-----------------------|---|--|--------------------------|--|--|------------------------|--------------------------------|---|---|--| | ✓ Open Flow | | | | Test Date: API No. 15 | | | | | | | | | | | | | | | Deliverabilty | | | | 2/20 to 2/21/14 | | | | | 007-23,133-00-00 | | | | | | | | | | Company
Pollok E | | , LL | С | | | | | | Lease
Benson | 1 | | | | 3-9 | Well Nu | ımber | | | County Location Barber SWNWSW | | | | Section
9 | | | TWP
35S | , | | | Acres Attributed | | | | | | | | Field ,
Aetna Gas Area | | | | | Reservoir
Miss/Cherokee | | | | Gas Gathering Conne
Atlas | | | า | | | | | | | Completion Date 7/03/07 | | | | | Plug Bac
5072 | k Total [| Depth | n Packer Set at none | | | Set at | | | | | | | | Casing Size Weight 4.5 | | | | ······································ | Internal Diameter | | | Set : | at
9 | | Perforations
4882 | | т _о
4993 | | | | | | Tubing Size Weight 2.375 | | | | | Internal Diameter | | | Set at
4860 | | | Perforations | | То | | | | | | Type Con
single | npletio | n (De | escribe) | | | Type Flui
Oil/SW | Type Fluid Production | | | | Pump Unit or Traveling PI
Yes - pump unit | | | Plunger? Yes / No | | | | | | Thru | (Anı | nulus / Tubii | na) | | | arbon D | ioxic | de | <u> </u> | % Nitrogen | | | Gas Gravity - G | | | | | annulus | | (, | | .51 | | .098 | | | | | 1.851 | | | .646 | | | | | Vertical Depth(H) | | | | Pressure Taps
flange | | | | | | | | (Meter Run) (Prover) Size 2" | | | | | | | Pressure | Buildu | p: | Shut in | 17 | 2 | 0_14_at_1 | | <u>_</u> _ | | Taken_2 | /20 | 20 | 14 | at 10:15 | am | (AM) (PM) | | | Well on L | ine: | • | Started 2/2 | 20 | | 0 <u>14</u> at <u>1</u> | | | | | | 20 | | | | (AM) (PM) | | | | | | | | | | OBSE | RVE | SURFAC | E DATA | | | Dura | ation of Shut- | _{in} _72 | Hours | | | Static / Orifi | | | _ Meter | | Pressure
Differential
in | Flowing
Temperature | | | Casing Wellhead Pressure (P _w) or (P ₁) or (P _c) | | Wellh | Tubing
Wellhead Pressure
(P,) or (P,) or (P,) | | Duration
(Hours) | | Liquid Produced
(Barrels) | | | Property (inche | | es) Prover Pres
psig (Pm | | 1 | | t t | | psig | | psia | psig | | | (110015) | | (50.7010) | | | Shut-In | yt-In | | | | | | | | 601.3 | 615.7 | | | 72 | | | | | | Flow | Flow .375 | | 22.5 | | 11.2 | 31 | 31 | | 171.1 | 185.5 | | | 24 | | | | | | | | | | | ······································ | | FLOW | STRI | EAM ATTR | RIBUTES | | | | | | | | | Plate
Coeffiecient
(F _b) (F _p)
Mcfd | | Circle one:
Meter or
Prover Pressure
psìa | | | Press
Extension
✓ P _m x h | Gravity
Factor
F _o | | Flowing
Temperature
Factor
F ₁₁ | | Fa | viation
actor
F _{pv} | | | w GOR
(Cubic Fee
Barrel) | | Flowing
Fluid
Gravity
G _m | | | .6860 | | 36 | 36.9 | | 20.33 | 1.244 | | 1.029 | | | 18 | | | | | <u> </u> | | | | | | | | | (OPEN FL | OW) (DE | | ······································ | CALCIII | ATIONS | 1 | | | | <u>i</u> | | | $(c_c)^2 = _{0}^{2}$ | 79.086 | <u> </u> | (P _w)² | 3 | 34.410 : | P _d = | | % | | P _c - 14.4) + | | : | | (P _a): | 2 = 0.2
2 = | 07
 | | | $(P_c)^2 - (P_a)^2$
or
$(P_c)^2 - (P_d)^2$ | | (P _c) ² - (P _w) ² | | : | nose formula 1 or 2:
1. $P_c^2 - P_a^2$
2. $P_c^2 - P_d^2$
the d by: $P_c^2 - P_a^2$ | LOG of formula 1. or 2. and divide by: Pc²-Pw² | | 2 | Backpressure Ci
Slope = "n"
or
Assigned
Standard Slop | | n x LOG | | Antilog | | Open Flow
Deliverability
Equals R x Antilog
(Mcfd) | | | | 378.879 | | 344.676 | | 1.099 | | .0409 | | | .850 | | .03 | .0347 | | 1.08 | | 19 | | | | | | | | | | | | Assigr | ned | | | | | | | | | pen Flov | _v 19 | | | | Mcfd @ 14.0 | 65 psia | <u></u> | | Deliverat | oility | | | Mcfd | @ 14.65 psi | а | | | | | | • | • | | | | | | • | | // _ | he above repo | ort an | d that he ha | | | | | e facts st | ated t | herei | in, and that s | aid | report is true | and correc | t. Execu | ited 1 | this the $\frac{2}{}$ | 6th | May of F | ebruary | ŀ | | | 20 | | | | | | Witness | (if any | у) | | | _ | - | | lly | William For | Compan | у | (CC | WICH | | | | | | For Com | missic | on | | | - | - | 2 | evm, | Che | cked by | | MAR | WICH
0 6 2014 | | | | | | | | | | | | | | | | | | | CEIVE | | ## **Meter Analysis** January, 2014 | | The state of s | |--|--| | | ALC: LEGISLES | | | Control of the last las | | Avaid Syctom | 157,600,000 | | The state of s | A 40 | | | APR 1 2 2 2 2 2 4 | | ,一个大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大 | 44.5 | | | | | - 「 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | | | | - 100.00 | | Motor 05242722 | | | Weter: Joz42722 | . 1.6 | | - 1 - 1115年記された。 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 1 1900 | | 一事,一定就是主义的人,一定是我们的人,也是一定是我们的人,也是一定是我们的人,也是一定是我们的人,也是一定是我们的人,也是我们的人,也是我们的人,也是我们的人 | 100000 | | 。一直一直的大学的一个大学,我们就是一个大学的一个大学的一个大学的一个大学的一个大学的一个大学的一个大学的一个大学的 | 1.17 | | | Mol % | Liquid Content | | | |------------------|--------|----------------|----------------------|---------| | Carbon Dioxide | 0.098 | 0.0167 | Pressure Base | 14.730 | | Nitrogen | 1.851 | 0.2036 | Temperature Base | 60.00 | | Methane | 88.470 | 14.9945 | | | | Ethane | 5.492 | 1.4683 | • | | | Propane | 2.301 | 0.6338 | Relative Density | 0.6463 | | Iso-Butane | 0.263 | 0.0861 | Dry Heating Value | 1124.09 | | N-Butane | 0.703 | 0.2215 | As Del Heating Value | 1121.37 | | Iso-Pentane | 0.163 | 0.0595 | Sat Heating Value | 1104.53 | | N-Pentane | 0.227 | 0.0823 | | | | Hexane | 0.432 | 0.1884 | • | | | Heptane | | | C2+ Liquid Content | 2.7399 | | Octane | | | C5+ Liquid Content | 0.3302 | | Nonane | | | C6+ Liquid Content | 0.1884 | | Decane | | | 26# Gasoline | 0.5229 | | Oxygen | | | H2S ppm | 1.0 | | Hydrogen | | | | | | Helium | | | | | | Argon | | | | | | Water Vapor | | | | | | Hydrogen Sulfide | | | | | KCC WICHITA MAR 0 6 2014 RECEIVED