

KANSAS CORPORATION COMMISSION
OIL & GAS CONSERVATION DIVISION

1084504

Form ACO-4 Form must be typed March 2009

APPLICATION FOR COMMINGLING OF Commingling ID # CO061203 PRODUCTION (K.A.R. 82-3-123) OR FLUIDS (K.A.R. 82-3-123a)

OPERATOR: License #_33343	API No. 15 - 15-205-25423-00-01
Name: PostRock Midcontinent Production LLC	Spot Description:
Address 1: Oklahoma Tower	NE_SW_SE_NE Sec. 15 Twp. 28 S. R. 16 Fast West
Address 2: 210 Park Ave, Ste 2750	2000 Feet from North / South Line of Section
City: OKLAHOMA CITY State: OK Zip: 73102 +	
Contact Person: CLARK EDWARDS	County: Wilson
Phone: (620) 4324200	Lease Name: MORRIS WILTSE Well #: 15-1
/	
 Name and upper and lower limit of each production interval to 	be commingled:
Formation: RIVERTON	(Perfs): 1227-1229
Formation: WEIR	(Perfs); 1068-1070
Formation: WEIR	(Perfs): 1088-1090
Formation: FLEMING	(Perfs): 972-974
Formation: CROWEBURG	(Perfs): 935-938
Tomation.	(1 010),
2. Estimated amount of fluid production to be commingled from	each interval:
Formation: RIVERTON	BOPD: 0 MCFPD: 4.625 BWPD: 5
Formation: WEIR	BOPD. U MCEPD. 4.625 RWPD. 5
Formation: WEIR	BOPD: 0 MCFPD: 4.625 BWPD: 5
Formation: FLEMING	BOPD: 0 MCFPD: 4.625 BWPD: 5
Formation: CROWEBURG	BOPD: 0 MCFPD: 4.625 BWPD: 5
Formation.	BOPD NOPPO
 Plat map showing the location of the subject well, all other we the subject well, and for each well the names and addresses 	ells on the subject lease, and all wells on offsetting leases within a 1/2 mile radius of of the lessee of record or operator.
 Signed certificate showing service of the application and affid 	davit of publication as required in K.A.R. 82-3-135a.
For Commingling of PRODUCTION ONLY, include the following:	
5. Wireline log of subject well, Previously Filed with ACO-1:	Yes □ No
6. Complete Form ACO-1 (Well Completion form) for the subject	it well.
For Commingling of FLUIDS ONLY, include the following:	
7. Well construction diagram of subject well.	
8. Any available water chemistry data demonstrating the compa	tibility of the fluids to be commingled.
AFFIDAVIT: I am the affiant and hereby certify that to the best of my current information, knowledge and personal belief, this request for commingling is true and proper and I have no information or knowledge, which is inconsistent with the information supplied in this application.	Submitted Electronically
KCC Office Use Only	Protests may be filed by any party having a valid interest in the application. Protests must be
☐ Denied	in writing and comply with K.A.R. 82-3-135b and must be filed wihin 15 days of publication of the notice of application.
15-Day Periods Ends: 6/28/2012	
Rick Hestermann 06/28/2012	2

CONFIDENTIAL

Kansas Corporation Commission
Oil & Gas Conservation Division

083367

Form ACO-1 June 2009 Form Must Be Typed Form must be Signed All blanks must be Filled

WELL COMPLETION FORM WELL HISTORY - DESCRIPTION OF WELL & LEASE

API No. 15 - _____15-205-25814-00-01 33343 OPERATOR: License #_ PostRock Midcontinent Production LLC Spot Description:_ Name: NE_SW_NE_SE_Sec._5 Twp._28_S. R._17 V East West Oklahoma Tower Address 1: 210 Park Ave, Ste 2750 ___ Feet from 🏻 North / 🗹 South Line of Section Address 2:_ Zip: 73102 City: OKLAHOMA CITY State: OK __ Feet from 🔽 East / 🗌 West Line of Section Contact Person: CLARK EDWARDS Footages Calculated from Nearest Outside Section Corner: Phone: (__620 4324200 □NE □NW ☑SE □SW CONTRACTOR: License #_ 34453 MARPLE LIVING TRUST PostRock Energy Services Corporation Wellsite Geologist: N/A Field Name: . Producing Formation: SUMMITT, MULKY, BARTLESVILLE Purchaser: ___ Elevation: Ground: 1003 _____ Kelly Bushing: 0 Designate Type of Completion: ___ Plug Back Total Depth: 1069 Total Depth: 1190 New Well Re-Entry ✓ Workover Amount of Surface Pipe Set and Cemented at: 21 □ wsw ☐ swd ☐ SIOW Multiple Stage Cementing Collar Used? ☐ Yes ✓ No Gas ☐ D&A ENHR SIGW **V** og ☐ gsw Temp. Abd. If yes, show depth set: _ CM (Coal Bed Methane) If Alternate II completion, cement circulated from: ___ Cathodic Other (Core, Expl., etc.): If Workover/Re-entry: Old Well Info as follows: Operator: __POSTROCK **Drilling Fluid Management Plan** Well Name: MARPLE LIVING TRUST 5-1 (Data must be collected from the Reserve Pit) Original Comp. Date: 7/26/2004 Original Total Depth: 1069 ___ppm Fluid volume: _____ bbls Chloride content:_ Re-perf. Conv. to ENHR Conv. to SWD Deepening Dewatering method used: __ Conv. to GSW Location of fluid disposal if hauled offsite: Plug Back: _ _ Plug Back Total Depth Commingled Permit #: ___ Operator Name: ____ Permit #: _ Dual Completion _____ License #:____ ☐ SWD ☐ ENHR Permit #: __ _____ Permit #:____

AFFIDAVIT

3/27/2012 Completion Date or

Recompletion Date

I am the affiant and I hereby certify that all requirements of the statutes, rules and regulations promulgated to regulate the oil and gas industry have been fully complied with and the statements herein are complete and correct to the best of my knowledge.

Submitted Electronically

Date Reached TD

☐ GSW 3/27/2012

Recompletion Date

Spud Date or

KCC Office Use ONLY
✓ Letter of Confidentiality Received Date:
Confidential Release Date:
☐ Wireline Log Received
Geologist Report Received
UIC Distribution
ALT I I III Approved by: NAOMI JAMES Date: 06/06/2012

Conservation Division Finney State Office Building 130 S. Market, Rm. 207B Wichita, KS 67202-3802

Phone: 316-337-6200 Fax: 316-337-6211 http://kcc.ks.gov/

Sam Brownback, Governor

Mark Sievers, Chairman Ward Loyd, Commissioner Thomas E, Wright, Commissioner

June 05, 2012

CLARK EDWARDS
PostRock Midcontinent Production LLC
Oklahoma Tower
210 Park Ave, Ste 2750
OKLAHOMA CITY, OK 73102

Re: ACO1 API 15-205-25814-00-00 MARPLE LIVING TRUST 5-1 SE/4 Sec.05-28S-17E Wilson County, Kansas

Dear Production Department:

We are herewith requesting that the Well Completion Form ACO-1 and attached information for the subject well be held confidential for a period of two years.

Should you have any questions or need additional information regarding subject well, please contact our office.

Respectfully, CLARK EDWARDS Side Two

Operator Name: Po	stRock Midcontine	nt Production LLC	Lease	Name:	MARPLE LIV	ING TRUST	_Well #: 5-1	·		
Sec. 5 Twp. 28	s. R. <u>17</u>	✓ East	County	y: <u>Wilso</u>	on					
time tool open and cl recovery, and flow rat	osed, flowing and shut	d base of formations pe -in pressures, whether st, along with final chart well site report.	shut-in pres	ssure rea	ched static level,	hydrostatic press	sures, bottom h	noie temp	erature, fluid	
Drill Stem Tests Take		☐ Yes 📝 No			og Formatio	n (Top), Depth an	d Datum	;	Sample	
Samples Sent to Geological Survey			Nam N/A	e		Тор	ſ	Datum		
Cores Taken Electric Log Run Electric Log Submitte (If no, Submit Cop	-	☐ Yes								
List All E. Logs Run:										
		CASING	RECORD		w Used					
		Report all strings set			_	ion, etc.				
Purpose of String	Size Hote Drilled	Size Casing Set (In O.D.)		ight ./Ft.	Setting Depth	Type of Cement	# Sacks Used		and Percent Additives	
							_			
		ADDITIONA	L CEMENT	ING / SQL	JEEZE RECORD	<u>}</u>	<u></u>	<u>!</u>		
Purpose: —— Perforate	Depth Top Bottom	Type of Cement	pe of Cement # Sacks Used			Type and Percent Additives				
Protect Casing Plug Back TD	-									
Plug Off Zone	-									
					I					
Shots Per Foot		ON RECORD - Bridge Plu ootage of Each Interval Pe				cture, Shot, Cement mount and Kind of Ma		d	Depth	
	990-998				250 GAL 12% ACID/ 278 B	BLS SLICK WATER/ 4000 FRAC	GEL/ 12200# 20/40 SAND/4	100# 12/20 SAND	990-998	
			_					İ		
			•							
TUBING RECORD:	Size:	Set At:	Packer /		Liner Run:	Yes No				
Date of First, Resumed 3/30/2012	Production, SWD or ENF	IR. Producing Me	thod:	ng 🔲	Gas Lift 🔲 C	Other (Explain)				
Estimated Production Per 24 Hours	Oit B	ibls. Gas	Mcf	Wate	er B	bls. (Gas-Oil Ratio		Gravity	
DISPOSITI	ON OF GAS:		METHOD O	F COMPLE	ETION:		PRODUCTIO	ON INTER	VAL:	
Vented ✓ Sold	<u></u>	l	Perf.	☐ Duafiy	Comp. Cor	nmingled				
	bmit ACO-18.)	Other (Specify)		(Submit /	ACO-5) (Sub	mit ACO-4)				

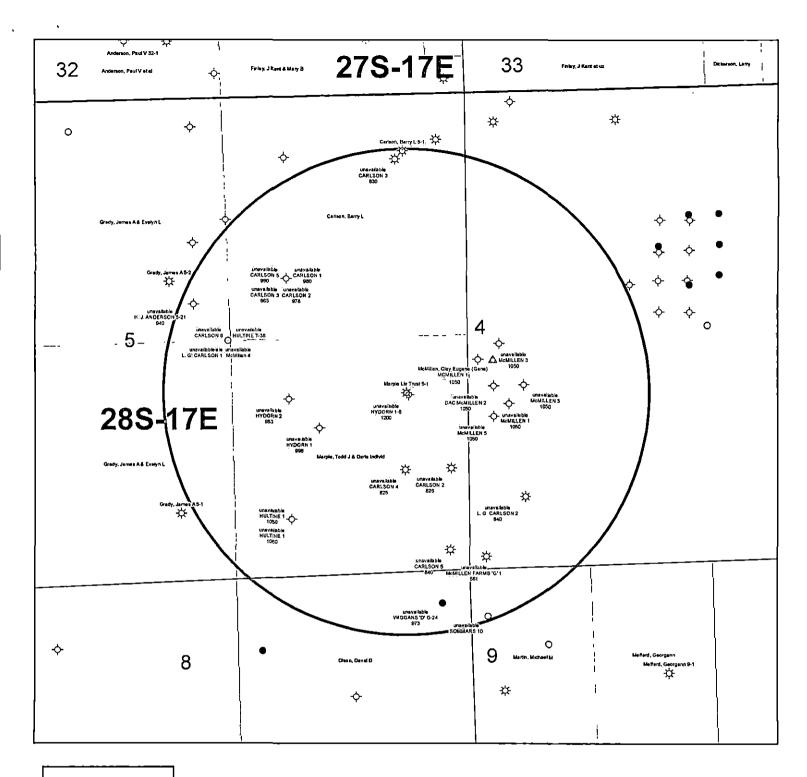
Saturation Index Calculations

Champion Technologies, Inc. (Based on the Tomson-Oddo Model)

Brine 1: Ward Feed Yard 34-1 Brine 2: Ward Feed Yard 4-1 Brine 3: Clinesmith 5-4

Brine 4: Clinesmith 1 Brine 5: Clinesmith 2

-			Ratio	-		T
,	20%	20%	20%	20%	20	J .
Component (mg/L)	Brine 1	Brine 2	Brine 3	Brine 4	Brine 5	Mixed Brine
Calcium	1836	2452	2044	1920	1948	1952
Magnesium	1096	872	1200	953	858	865
Barium	0	0	0	0	0	0
Strontium	0	_	0	0	0	0
Bicarbonate	190	234	259	268	254	253
Sulfate	1	1	8	1	1	1
Chloride	36299	48965	47874	45632	43147	43206_
CO ₂ in Brine	246	220	264	422 _.	405	401
Ionic Strength	1.12	1.48	1.46	1.38	1.31	1.31
Temperature (°F)	89	89	89	89	89	89
Pressure (psia)	50	50	120	120	120	119


Saturation Index

Date of the state						
Calcite	-1.71	-1.41	-1.48	-1.68	-1.69	-1.69
Gypsum	-3.71	-3.64	-2.82	-3.73	-3.72	-3.69
Hemihydrate	-3.70	-3.65	-2.83	-3.74	-3.71	-3.69
Anhydrite	-3.89	-3.79	-2.97	-3.89	-3.88	-3.85
Barite	N/A	N/A	N/A	N/A	N/A	N/A
Celestite	N/A	N/A	N/A	N/A	N/A	N/A

PTB

1 10						
Calcite	N/A	N/A	N/A	N/A	N/A	N/A
Gypsum	N/A	N/A	N/A	N/A	N/A	N/A
Hemihydrate	N/A	N/A	N/A	N/A	N/A	N/A
Anhydrite	N/A	N/A	N/A	N/A	N/A	N/A
Barite	N/A	N/A	N/A	N/A	N/A	N/A
Celestite	N/A	N/A	N/A	N/A	N/A	N/A

	A	В	С	В	E	F	G	Н	1 .	_ اب	Ιĸ
	Produced Fluids #		1	2	3	4	5				Cilck
_	Parameters	Units	Input	Input	Input	Input	Input		Click he	re	CIICK
_	Select the brines	Select fluid						Mixed brine:	to run SS	SP	- 11-1:
4	Sample ID	by checking						Cell H28 is			Click
5	Date	the box(es),	3/19/2012	3/4/2012	3/14/2012	1/20/2012	1/20/2012	STP calc. pH.			
6	Operator	Row 3	PostRock	PostRock	PostRock	PostRock	PostRock	Cells H35-38			Click
7	Well Name		Ward Feed	Ward Feed	Clinesmith	Clinesmith	Clinesmith	are used in	Goal Seek	SSP	
8	Location		#34-1 CBM	#4-1	#5-4	#1	#2	mixed brines			Click
	Field			CBM	Bartles	Bartles	Barties	calculations.			
10	Na*	(mg/l)*	19,433.00	27,381.00	26,534.00	25689.00	24220.00	24654.20	Initial(BH)	Final(WH)	SUSR
11	K* (if not known =0)	(mg/l)						0.00	Saturation Index	values	(Final-Initial)
12	Mg ²⁺	(mg/l)	1,096.00	872.00	1,200.00	953.00	858.00	995.91	Ca	Icite	1
13	Ca ²⁺	(mg/l)	1,836.00	2,452.00	2,044.00	1920.00	1948.00	2040.23	-0.73	-0.60	0.13
	Sr ²⁺	(mg/l)			-			0.00		rite	+
	Ba ²⁺							0.00		1116	+
10	Fe ²⁺	(mg/l)									+
	Zn ² *	(mg/l)	40.00	21.00	18.00	82.00	90,00	50,21		illte	-
•••		(mg/l)						0.00	-1.77	-1.80	-0.03
18	Pb ²⁺	(mg/l)						0.00	GyŢ	sum	.
19	CI	(mg/l)	36,299.00	48,965.00	47,874.00	45632.00	43147.00	44388.44	-3.19	-3.18	0.00
20	SO,2	(mg/l)	1.00	1.00	8.00	1.00	1.00	2.40	Hemil	hydrate	
21	F	(mg/i)						0.00	-3.96	-3.90	0.06
_	Br'	(mg/l)	-					0.00		ydrite	+
	SiO2	(mg/l) SiO2				 		0.00	-3.47	-3.36	0.12
	HCO3 Alkalinity**	(mg/l as HCO3)	100.00	77400	250.00	3/8 00	254.00				+ 0.12
			190.00	234.00	259.00	268.00	254.00	241.03	Cele	estite	+
	CO3 Alkalinity	(mg/l as CO3)		ļ		 	l			<u> </u>	+
	Carboxylle acids**	(mg/l)				 		0.00		Sulfide	-
27	Ammonia	(mg/L) NH3						0.00	-0.16	-0.22	-0.06
28	Borate	(mg/L) H3BO3						0.00	Zine :	Sulfide	
29	TDS (Measured)	(mg/l)						72781			
30	Calc. Density (STP)	(g/ml)	1.038	1.051	1.050	1.048	1,045	1.047	Calcium	· Nuoride	1
31	CO ₂ Gas Analysis	(%)	19.97	18.76	22.41	35.53	33.79	26.16			
32	H₂S Gas Anaiysis***	(%)	0.0289	0.0292	0.0296	0.0306	0.0151	0.0269	Iron Ca	rbonate	
33	Total H2Saq	(mgH2S/l)	1.00	1.00	1.00	1.00	0.50	0.90	-0.74	-0.51	0.23
34	pH, measured (STP)	pН	5.67	5.76	5.72	5.54	5.55	5.63	Inhibitor no	eded (mg/L)	\Box
	01	U-COZ%+AIK.	_					`	Calcite	NTMP	7
	Choose one option to calculate S1?						_				
35 36		-	- 0	D.	0		0				_
_	Gas/day(thousand ef/day) Oil/Day	(Mcf/D) (B/D)				L	-	0	0.00	0.00 BHPMP	4
	Water/Day	(B/D)	100	100	100	100	100	500	Barite 0.00	0.00	4
	For mixed brines, enter val						100	(Enter H40-1143)		Н	٦ .
	Initial T	(F)	66.0	71.0	70.0	41.0	49.0	60.0	5.69	5.60	7
41	Final T	(E)	66.0	71.0	70.0	41.0	49.0			Comtinuina	4
42		(F)			, 0.0			89.0	Viscosity (Cenuroise)	
	Initial P	(psia)	25.0	25.0	25.0	25.0	25.0	25.0	Viscosity (1,196	0.826	-
43	Initial P Final P		25.0 25.0	25.0 25.0					1,196		-
44	Final P Use TP on Calcite sheet?	(psia) (psia) I-Yes;0-No			25.0	25.0	25.0	25.0 120.0	1,196 Heat Capaci 0,955	0.826 ty (cal/ml/°C) 0.959	- <u> </u> - <u> </u>
44 45	Final P Use TP on Calcite sheet? API Oil Grav,	(psia) (psia) I-Yes;0-No API grav.			25.0	25.0	25.0	25.0 120.0 30.00	1,196 Heat Capaci 0,955 Inhibitor ne	0.826 ty (cal/ml/ ⁰ C) 0.959 reded (mg/L)	- - -
44 45 46	Final P Use TP on Calcite sheet? API Oil Grav, Gas Sp.Grav,	(psia) (psia) 1-Yes;0-No API grav. Sp.Grav.	25.0		25.0	25.0	25.0	25.0 120.0 30.00 0.60	1,196 Heat Capaci 0,955 Inhibitor ne Gypsum	0.826 ty (cal/ml/°C) 0.959 eded (mg/L)	
44 45 46 47	Final P Use TP on Calcite sheet? API Oil Grav, Gas Sp.Grav. McOH/Day	(psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D)	25.0		25.0	25.0	25.0	25.0 120.0 30.00	1,196 Heat Capaci 0,955 Inhibitor ne Gypsum 0.00	0.826 ty (cal/ml/ ⁰ C) 0.959 seded (mg/L) HDTMP 0.00	
44 45 46 47 48	Final P Use TP on Calcite sheet? API Oil Grav, Gas Sp.Grav. MeOH/Day MEG/Day	(psia) (psia) 1-Yes;0-No API grav. Sp.Grav.	25.0		25.0	25.0	25.0	25.0 120.0 30.00 0.60	1,196 Heat Capaci 0,955 Inhibitor ne Gypsum 0.00 Anhydrite	0.826 ty (cal/ml/°C) 0.959 seded (mg/L) HDTMP 0.00 HDTMP	
44 45 46 47 48 49	Final P Use TP on Calcite sheet? API Oil Grav, Gas Sp.Grav, MeOH/Day MEG/Day Cone, Multipiler	(psia) (psia) I-Yes;0-No API grav. Sp.Grav. (B/D)	25.0		25.0	25.0	25.0	25.0 120.0 30.00 0.60	1,196 Heat Capaci 0,955 Inhibitor ne Gypsum 0.00	0.826 ty (cal/ml/ ⁰ C) 0.959 seded (mg/L) HDTMP 0.00	
44 45 46 47 48 49 50	Final P Use TP on Calcite sheet? API Oil Grav, Gas Sp.Grav, MeOH/Day MEG/Day Cone. Multipiler H* (Strong acid) *	(psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D)	25.0		25.0	25.0	25.0	25.0 120.0 30.00 0.60	1,196 Heat Capaci 0,955 Inhibitor ne Gypsum 0.00 Anhydrite	0.826 ty (cal/ml/°C) 0.959 seded (mg/L) HDTMP 0.00 HDTMP	
44 45 46 47 48 49 50 51	Final P Use TP on Calcite sheet? API Oil Grav, Gas Sp.Grav, MeOH/Day MEG/Day Cone. Multiplier H* (Strong acid)* OH* (Strong base)*	(psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N)	25.0		25.0	25.0	25.0	25.0 120.0 30.00 0.60	1,196 Heat Capaci 0,955 Inhibitor ne Gypsum 0.00 Anhydrite	0.826 ty (cal/ml/°C) 0.959 seded (mg/L) HDTMP 0.00 HDTMP	
44 45 46 47 48 49 50 51 52	Final P Use TP on Calcite sheet? API Oil Grav, Gas Sp.Grav, MeOH/Day MEG/Day Cone. Multiplier H* (Strong acid) OH (Strong base) Quality Control Checks at	(psia) (psia) I-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N)	25.0		25.0	25.0	25.0	25.0 120.0 30.00 0.60	1,196 Heat Capaci 0,955 Inhibitor ne Gypsum 0.00 Anhydrite	0.826 ty (cal/ml/°C) 0.959 seded (mg/L) HDTMP 0.00 HDTMP	
44 45 46 47 48 49 50 51 52 53	Final P Use TP on Calcite sheet? API Oil Grav, Gas Sp.Grav, MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid) OH (Strong base) Quality Control Checks at H ₂ S Gas	(psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP:	25.0		25.0	25.0	25.0	25.0 120.0 30.00 0.60	1,196 Heat Capaci 0,955 Inhibitor ne Gypsum 0.00 Anhydrite	0.826 ty (cal/ml/°C) 0.959 seded (mg/L) HDTMP 0.00 HDTMP	
44 45 46 47 48 49 50 51 52 53	Final P Use TP on Calcite sheet? API Oil Grav, Gas Sp.Grav, MeOH/Day MEG/Day Cone. Multiplier H* (Strong acid) OH (Strong base) Quality Control Checks at	(psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/l)	25.0		25.0	25.0	25.0	25.0 120.0 30.00 0.60	1,196 Heat Capaci 0,955 Inhibitor ne Gypsum 0.00 Anhydrite	0.826 ty (cal/ml/°C) 0.959 seded (mg/L) HDTMP 0.00 HDTMP	
44 45 46 47 48 49 50 51 52 53 54 55	Final P Use TP on Calcite sheet? API Oil Grav, Gas Sp.Grav, MeOH/Day MEG/Day Cone. Multiplier H* (Strong acid) OH (Strong base) Quality Control Checks at H,S Gas Total H2Saq (STP)	(psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP:	25.0		25.0	25.0	25.0	25.0 120.0 30.00 0.60	1,196 Heat Capaci 0,955 Inhibitor ne Gypsum 0.00 Anhydrite	0.826 ty (cal/ml/°C) 0.959 seded (mg/L) HDTMP 0.00 HDTMP	
44 45 46 47 48 49 50 51 52 53 54 55 55 56 57	Final P Use TP on Calcite sheet? API Oil Grav, Gas Sp.Grav, McOH/Day MEG/Day Conc. Multiplier H* (Strong acid) OH* (Strong base) Quality Control Checks at H_S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caciulated	(psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3	25.0		25.0	25.0	25.0	25.0 120.0 30.00 0.60	1,196 Heat Capaci 0,955 Inhibitor ne Gypsum 0.00 Anhydrite	0.826 ty (cal/ml/°C) 0.959 seded (mg/L) HDTMP 0.00 HDTMP	
44 45 46 47 48 49 50 51 52 53 54 55 55 57 58	Final P Use TP on Calcite sheet? API Oil Grav, Gas Sp.Grav, MeOH/Day MEG/Day Cone. Multiplier H' (Strong acid) OH (Strong base) Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated ECationss	(psia) (psia) (psia) 1-Yes:0-No API grav. Sp.Grav. (B/D) (N) (N) (N) STP: (%) (mgH2S/l) (pH) (%) (mg/l) as HCO3 (equiv./l)	25.0		25.0	25.0	25.0	25.0 120.0 30.00 0.60	1,196 Heat Capaci 0,955 Inhibitor ne Gypsum 0.00 Anhydrite	0.826 ty (cal/ml/°C) 0.959 seded (mg/L) HDTMP 0.00 HDTMP	
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	Final P Use TP on Calcite sheet? API Oil Grav, Gas Sp.Grav, MeOH/Day MEG/Day Cone, Multiplier H* (Strong acid)* OH* (Strong base)* Quality Control Checks at H,S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated ECations= EAnions=	(psia) (psia) (psia) 1-Yes:0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/l) as HCO3 (equiv./l) (equiv./l)	25.0		25.0	25.0	25.0	25.0 120.0 30.00 0.60	1,196 Heat Capaci 0,955 Inhibitor ne Gypsum 0.00 Anhydrite	0.826 ty (cal/ml/°C) 0.959 seded (mg/L) HDTMP 0.00 HDTMP	
44 45 46 47 48 49 50 51 52 53 54 55 55 56 57 58 59 60	Final P Use TP on Calcite sheet? API Oil Grav, Gas Sp.Grav, MeOH/Day MEG/Day Cone, Multiplier H* (Strong acid)* OH* (Strong base)* Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated Alkalinity Caclulated ECations= ECations= ECations= Calc TDS=	(psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) (N) STP: (%) (mgH2S/l) (pH) (%) (mg/l) as HCO3 (equiv./l) (equiv./l) (mg/l)	25.0 0 0	25.0	25.0 25.0	25.0 25.0	25.0 25.0	25.0 120.0 30.00 0.60 0	1,196 Heat Capaci 0,955 Inhibitor ne Gypsum 0.00 Anhydrite	0.826 ty (cal/ml/°C) 0.959 seded (mg/L) HDTMP 0.00 HDTMP	
44 45 46 47 48 49 50 51 52 53 54 55 55 56 60 61	Final P Use TP on Calcite sheet? API Oil Grav, Gas Sp.Grav, MeOH/Day MEG/Day Cone. Multiplier H* (Strong acid) OH (Strong base) Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Caclulated ECations= EAnions= Calc TDS= Inhibitor Selection	(psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input	25.0 0 0	25.0	25.0 25.0	25.0 25.0 Unit Converter	25.0 25.0	25.0 120.0 30.00 0.60 0	1,196 Heat Capaci 0,955 Inhibitor on Gypsum 0.00 Anhydrite 0.00	0.826 ty (cal/ml/°C) 0.959 seded (mg/L) HDTMP 0.00 HDTMP	
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 60 61 62	Final P Use TP on Calcite sheet? API Oil Grav, Gas Sp.Grav, McOH/Day MEG/Day Cone. Multiplier H* (Strong acid) OH* (Strong base) Quality Control Checks at H,S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Cachulated ECations= EAnions= Calc TDS= Inhibitor Selection Protection Time	(psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) (N) STP: (%) (mgH2S/l) (pH) (%) (mg/l) as HCO3 (equiv./l) (equiv./l) (mg/l)	25.0 0 0	25.0 	25.0 25.0 Inhibitor NTMP	25.0 25.0 25.0 Unit Converter	25.0 25.0 25.0	25.0 120.0 30.00 0.60 0 0	1,196 Heat Capaci 0,955 Inhibitor ne Gypsum 0,00 Anhydrite 0,00	0.826 ty (cal/ml/°C) 0.959 seded (mg/L) HDTMP 0.00 HDTMP	
44 45 46 47 48 49 50 51 52 53 54 55 56 60 61 62 63	Final P Use TP on Calcite sheet? API Oil Grav, Gas Sp.Grav, MeOH/Day MEG/Day Cone. Multiplier H* (Strong acid) OH* (Strong base) Quality Control Checks at H.S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Cachulated ECations= EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer	(psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input 120	Unit min	# 1 2	25.0 25.0 Inhibitor NTMP BHPMP	25.0 25.0 25.0 Unit Converter From Unit	25.0 25.0 25.0 (From metric Value 80	25.0 120.0 30.00 0.60 0 0 0 to English) To Unit	1,196 Heat Capaci 0,955 Inhibitor ne Gypsum 0,00 Anhydrite 0,00	0.826 ty (cal/ml/°C) 0.959 seded (mg/L) HDTMP 0.00 HDTMP	
44 45 46 47 48 49 50 51 52 53 54 55 55 60 61 62 63	Final P Use TP on Calcite sheet? API Oil Grav, Gas Sp.Grav, McOH/Day MEG/Day Cone. Multiplier H' (Strong acid) OH (Strong base) Quality Control Checks at H ₂ S Gas Total H2Saq (STP) pH Calculated Alkalinity Caclulated ECations= EAnlons= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you?	(psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (equiv./I) Input 120	25.0 0 0	# 1 2 3	Inhibitor NTMP BHPMP PAA	25.0 25.0 25.0 Unit Converter From Unit	25.0 25.0 25.0 (From metric Value 80 100	25.0 120.0 30.00 0.60 0 0 0 0 To English) To Unit	1,196 Heat Capaci 0,955 Inhibitor of Gypsum 0,00 Anhydrite 0,00	0.826 ty (cal/ml/°C) 0.959 seded (mg/L) HDTMP 0.00 HDTMP	
44 45 47 48 49 50 51 52 53 54 55 55 56 66 66 66 66 66 66 66	Final P Use TP on Calcite sheet? API Oil Grav, Gas Sp.Grav, MeOH/Day MEG/Day Conc. Multiplier H* (Strong acid)* OH* (Strong base)* Quality Control Checks at. H ₂ S Gas Total H2Saq (STP) pH Calculated Alkalinity Caclulated ECations= EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, Inhibitor # is:	(psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input 120	Unit min	# 1 2 3 4	Inhibitor NTMP BHPMP PAA DTPMP	Unit Converter From Unit C m m m m m m m m m m m m m	25.0 25.0 25.0 (From metric Value 80 100 100	25.0 120.0 30.00 0.60 0 0 0 To Unit	1,196 Heat Capaci 0,955 Inhibitor of Gypsum 0,00 Anhydrite 0,00 Value 176 3,531 629	0.826 ty (cal/ml/°C) 0.959 seded (mg/L) HDTMP 0.00 HDTMP	
44 45 46 47 48 50 51 52 53 55 55 56 61 62 63 64 65 66	Final P Use TP on Calcite sheet? API Oil Grav, Gas Sp.Grav, MeOH/Day MEG/Day Cone. Multiplier H* (Strong acid)* OH* (Strong base)* Quality Control Checks at. H _S Gas Total H2Saq (STP) pH Calculated Alkalinity Caclulated ECations= EAnions= Cale TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, Inhibitor # is: If you select Mixed,	(psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) (N) STP: (%) (mgH2S/li) (pH) (%) (mg/l) as HCO3 (equiv./l) (equiv./l) (mg/l) Input 120 1	Unit min	# 1 2 3 4 5 5	Inhibitor NTMP BHPMP PAA DTPMP PPCA	Unit Converter From Unit C m3 m3 MPa	25.0 25.0 25.0 25.0 25.0 25.0 25.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26	25.0 120.0 30.00 0.60 0 0 10 10 10 10 10 10 10 10 10 10 10 1	1,196 Heat Capaci 0,955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 Value 1176 3,531 629 145,074	0.826 ty (cal/ml/°C) 0.959 seded (mg/L) HDTMP 0.00 HDTMP	
44 45 46 47 48 49 50 51 52 53 55 55 55 60 61 62 63 64 65 66 67	Final P Use TP on Calcite sheet? API Oil Grav, Gas Sp.Grav, MeOH/Day MEG/Day Cone. Multiplier H* (Strong acid)* Out (Strong base)* Quality Control Checks at. H_S Gas Total H2Saq (STP) pH Calculated PCOZ Calculated Alkalinity Caclulated ECations= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, Inhibitor # is: If you select Mixed, I** Inhibitor # is:	(psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (ing/I) Input 120 1 4	Unit min 1-Yes;0-No #	# 1 2 3 4 5 6	Inhibitor NTMP BHPMP PAA DTPMP PPCA SPA	Unit Converter From Unit °C m³ MPa Bar	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	25.0 120.0 30.00 0.60 0 0 0 To Unit °F ft³ hbl(42 US gal) psia psia	1,196 Heat Capaci 0,955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 145,074 7,194	0.826 ty (cal/ml/°C) 0.959 seded (mg/L) HDTMP 0.00 HDTMP	
44 45 46 47 48 49 50 51 55 55 55 55 55 66 66 66 66 66 66 66 66	Final P Use TP on Calcite sheet? API Oil Grav, Gas Sp.Grav, McOH/Day MEG/Day Conc. Multiplier H* (Strong acid) * OH* (Strong base) * Quality Control Checks at H.S Gas Total H2Saq (STP) pH Calculated PCO2 Calculated Alkalinity Cactulated ECations= EAnions= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, inhibitor # is: If you select Mixed, I** inhibitor is:	(psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (mg/I) Input 120 1 4 1 50	Unit min 1-Yes:0-No # # %	25.0 # 1 2 3 4 5 6 7	Inhibitor NTMP BHPMP PAA DTPMP PPCA SPA HEDP	Unit Converter From Unit °C m³ MPa Bar Torr	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	25.0 120.0 30.00 0.60 0 0 0 10 10 10 10 10 10 10 10 10 10 10	1,196 Heat Capaci 0,955 Inhibitor on Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 145,074 7,194 193	0.826 ty (cal/ml/°C) 0.959 seded (mg/L) HDTMP 0.00 HDTMP	
44 45 46 47 48 49 50 51 52 53 55 55 55 55 66 66 67 68 69	Final P Use TP on Calcite sheet? API Oil Grav, Gas Sp.Grav, MeOH/Day MEG/Day Cone. Multiplier H* (Strong acid)* Out (Strong base)* Quality Control Checks at. H_S Gas Total H2Saq (STP) pH Calculated PCOZ Calculated Alkalinity Caclulated ECations= Calc TDS= Inhibitor Selection Protection Time Have ScaleSoftPitzer pick inhibitor for you? If No, Inhibitor # is: If you select Mixed, I** Inhibitor # is:	(psia) (psia) (psia) 1-Yes;0-No API grav. Sp.Grav. (B/D) (B/D) (N) (N) STP: (%) (mgH2S/I) (pH) (%) (mg/I) as HCO3 (equiv./I) (equiv./I) (ing/I) Input 120 1 4	Unit min 1-Yes;0-No #	# 1 2 3 4 5 6	Inhibitor NTMP BHPMP PAA DTPMP PPCA SPA	Unit Converter From Unit °C m³ MPa Bar	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	25.0 120.0 30.00 0.60 0 0 0 To Unit °F ft³ hbl(42 US gal) psia psia	1,196 Heat Capaci 0,955 Inhibitor ne Gypsum 0.00 Anhydrite 0.00 Value 176 3,531 629 145,074 7,194	0.826 ty (cal/ml/°C) 0.959 seded (mg/L) HDTMP 0.00 HDTMP	

KGS STATUS

- → DA/PA
- e EOR
- △ INJ/SWD
- OIL
- **★** OIL/GAS
- o OTHER

Marple Liv Trust 5-1 5-28S-17E 1" = 1,000'

POSTROCK

Current Completion

SPUD DATE: 6/14/2004

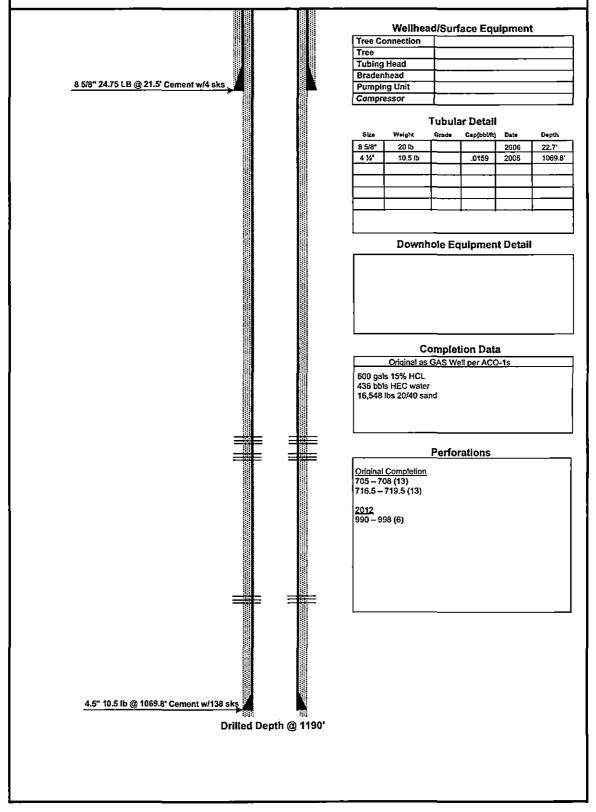
COMP. Date: 7/26/2004 API: 15-205-25814

WELL

: Marple Living Trust 5-1

FIELD

: Cherokee Basin

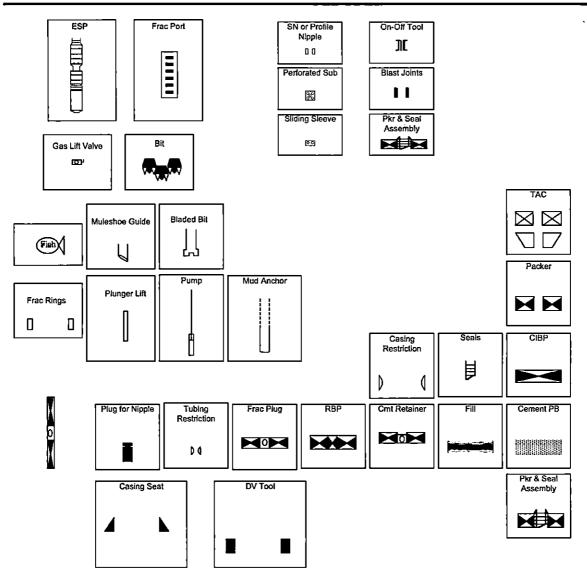

STATE COUNTY

: Wilson

: Kansas

LOCATION: 5-28S-17E (NE SW NE SE)

ELEVATION: GL - 1004'


PREPARED BY:	POSTROCK	
APPROVED BY:		

POSTROCK

LEGEND

PostRock^{*}

(
Affidavit of Notice Served	
Re: Application for: APPLICATION FOR COMMINGLING	
Well Name: WILTSE, MORRIS 15-1	Legal Location: SWSENE S15-T28S-R16E
The undersigned hereby certificates that he / she is a duly authorized agent to 2012 a true and correct copy of the application referenced all	
2012 , a true and correct copy of the application referenced at	bove was delivered or mailed to the following parties:
Note: A copy of this affidavit must be served as a part of the application.	
Name	Address (Attach additional sheets if necessary)
POSTROCK MIDCONTINENT PRODUCTION, LLC	210 PARK AVENUE, SUITE 2750, OKLAHOMA CITY, OK 73102-5641
GILBERT, HARLEY D & PATTY DBA LONGTON EXPLORATIONS	12110 ELK RD, FREDONIA, KS 66736
GARY L & JULIE RATLIFF	21491 WICHITA ROAD, CHANUTE, KS 66720
RODNEY FOLGER	16753 US 75 HWY, ALTOONA, KS 66710
MAX & ELAINE MARPLE	17421 US 75 HWY, ALTOONA, KS 66710
I further attest that notice of the filing of this application was published in the \underline{V}	VILSON COUNTY CITIZEN , the official county publication
of WILSON c	county. A copy of the affidavit of this publication is attached.
Signed this 13TH day of JUNE , 20	12
Ac	Dimitu BD Beal
DENISE V. VENNEMAN Subscribed and sworn to be	
July 1, 2012	Denise Vilenneman
Му	Commission Expires: 7-/-/2
	<u> </u>
	·
	1

et Operators, Unleased Mineral Owners and Landowners ad	creage
ch additional sheets if necessary) Name:	Legal Description of Leasehold:
pert, Harley D. & Patty dba Longton Explorations	SESWNE S15-T28S-R16E
ry L. Ratliff and Julie Ratliff	SEE ATTACHED
dney Folger	SEE ATTACHED
x and Elaine Marple	SEE ATTACHED
DENISE V, VENNEMAN ICIAL MY COMMISSION EXPIRES July 1, 2012	Notary Public My Commission Expires: May of JUNE 2012 20
·	
•	
	·

WILTSE, MORRIS 15-1 - APPLICATION FOR COMMINGLING OF PRODUCTION OR FLUIDS OFFSET OPERATORS, UNLEASED MINERAL OWERS & LAND OWNERS ACREAGE

(A portion of) The South 58 acres of the West half of the Southwest quarter (W/2 SW/4) of Section 14-28S-16E Gary L. Ratliff and Julie Ratliff, husband and wife, as Joint Tenants 21491 Wichita Road Chanute, KS 66720

(A portion of) the NW/4 of Section 15-28S-16E Rodney Folger 16753 US 75 Hwy Altoona, KS 66710

NW/4 NE/4 of Section 15-28S-16E
Max and Elaine Marple, husband and wife, as Joint Tenants
17421 US 75 HWY
Altoona, KS 66710

SW/4 SE/4 of Section 10-28S-16E
Max and Elaine Marple, husband and wife, as Joint Tenants
17421 US 75 HWY
Altoona, KS 66710

AFFIDAVIT

STATE OF KANSAS

County of Sedgwick

Mark Fletchall, of lawful age, being first duly sworn, deposeth and saith: That he is Record Clerk of The Wichita Eagle, a daily newspaper published in the City of Wichita, County of Sedgwick, State of Kansas, and having a general paid circulation on a daily basis in said County, which said newspaper has been continuously and uninterruptedly published in said County for more than one year prior to the first publication of the notice hereinaster mentioned, and which said newspaper has been entered as second class mail matter at the United States Post Office in Wichita, Kansas, and which said newspaper is not a trade, religious or fraternal publication and that a notice of a true copy is hereto attached was published in the regular and entire Morning issue of said The Wichita Eagle for 1 issues, that the first publication of said notice was

made as aforesaid on the 1st of

June A.D. 2012, with

subsequent publications being made on the following dates:

And affiant further says that he has personal knowledge of the statements above set forth and that they are true.

Fletchall

Subscribed and sworn to before me this

1st day of June, 2012

PENNY L. CASE Notary Public - State of My Appt. Expires

Notary Public Sedgwick County, Kansas

Printer's Fee: \$132.40

LEGAL PUBLICATION

PUBLISHED IN THE WICHITA EAGLE
JUNE 1, 2012 (3187768)

BEFORE THE STATE CORPORATION
COMMISSION OF THE STATE
OF KANSAS

NOTICE OF FILLING APPLICATION
RE. In the Mailer of Postrock Midconlinent
Production. LLC 'Application for
Commission of Production in the
Wilson Morris 15-1 located in Wilson
County Kensas
TO 'All-Oll' 86 Gast Producters. Unleased
Mineral Interest Owners, Landowners,
and all persons whomever concerned
You's and sale of you are fretely
notified that Postrock Midconlinent
Production, ELC has filled an application to
commission the Riverton, Bartlesvilley Wetr,
Flaming, Croweburth Bovier, Mulky and
Summit producing formations at the Wilson
Summit producing formations at the Wilson
Muntis 15-12, located in the NE SW SE NE;
153-7285-R165, Approximately '1227 FNL
8 792 FELL Wilson County, Kansas.
Any persons who object to or protest
this application shall be required to file their
objections or protest with the Conservation
Division or the State of Kansas within
filleen' (15) days from the date of this
publication. Those protests shall be filed
pursuent to Commission regulations and
must state specific reasons way granting
the application may couse wasts, violate
correlative rights or policial the abstract
povern intersection accordingly. All person
and/or companies wishing to protest this
application or required to file a written
povern intenseives accordingly. All person
and/or companies wishing to protest this
application or required to file a written
protest with the Conservation Division of
the Kansas Oil and Gas Commission.
Upon the receipt of any protest, the
Commission will convenie a hearing and
protestants will be expected, to ene; an
appearance, either through proper legic
counsel or as individuols, appearing on helr
counsel or as individuols, appearing on helr
own behalf.
Postrock Midconlinent fronterior.

PROOF OF PUBLICATION

STATE OF KANSAS Wilson County - SS

JOSEPH S. and RITA M. RELPH, of lawful age, being duly sworn upon oath that they are the Owners and Publishers of the WILSON COUNTY CITIZEN:

THAT said newspaper has been published at least weekly fifty (50) times a year and has been so published for at least five years prior to the first publication of the attached notice:

THAT said newspaper is a general circulation on a daily, or weekly, or monthly, or yearly basis in;

WILSON COUNTY, KANSAS and is NOT a trade, religious or fraternal publication and has been PRINTED and PUBLISHED in Wilson County, Kansas.

THE ATTACHED was published on the following dates in a regular issue of said newspaper:

1st publication was made on the) (AV day o
m	ry 20/2
2nd publication was made on the	day of
	. 20
3rd publication was made on the	day of
	20
4th publication was made on the	day of
	20
5th publication was made on the	day of
	20
6th publication was made on the	day of
	20-
TOTAL PUBLICATION FEE: \$	39 =
(Signed) Mura & Debury	·
Subscribed and sworn to before me, this	day of
June	
Rita M. Reepn	
My commission expires aug. 3	0 2014

(Published in the Wilson County Citizen on Thursday May 31, 2012)

BEFORE THE STATE CORPORATION COMMISSION OF THE STATE OF KANSAS

NOTICE OF FILING APPLICATION

RE In the Metter of Postrock Mideontinent Production LLC Application for Comminging, of Production in the Willie, Morris 15-1 located in Wilson County, Kanssa.

TO All Ol & Gas Producers, Unleased Mineral, Interest Owners, Landowners, and all persons whomever concerned.

You, and each of you, are hereby notified that Postrock. Midcontinent: Production. LLC has filled an application to commingle the Riverton, Bardesville, Weir, Fleming, Croweburg, Bevier, Mulky and Summit producing formations at the Wilse, Morris 15-1, located in the NESW SE. N.E. 815-728S-R16E, Approximately 1929 FNL & 792-YEL, Wilson County, Kansas.

Any persons who object to or protect this ap-

Any persons who object to or protest this application shall be required to file their objections or protest with the Conservation Division of the State Corporation Commission of the State of Kansas within titleen (15) days from the date of this publication. These protests shall be filed pursuant to Commission regulations and must state specific reasons why granting the application may cause waste, values correlative rights or politic the natural resources of the State of Kansas.

All persons interested or omcerned shall take notice of the foregoing and shall govern them selves accordingly. All person and/or companies wishing to protest this application are required to file a written protest with the Conservation Division of the Kansas Oil and Gas Commission.

Upon the receipt of any protest, the Conservation of the Cons

Upon the receipt of any protest, the Commission will tempers a hearing and protestants will be expected to enter an appearanced either through proper legal counsel or as individuals, appearing on their own behalf.

POSTROCK MIDCONTINENT PRODUCTION, LLC 210 Park Avenus, Suita 2750 Oklahoma City, Oklahoma 73102 (405) 680-7704 30 1 cpy

1 NAME & UPPE	R & LOWER LIMIT OF EACH P	RODUCTION INTERVAL TO BE COMM	1ING	LED			
FORMATION:	BEVIER	(PERFS):	921 -	923			
FORMATION:	MULKY	(PERFS):	354 -	859	•		
FORMATION:	SUMMITT	(PERFS):	839 -	843	•		
FORMATION:	BARTLESVILLE	(PERFS): 10	096 -	1108	•		
FORMATION:		(PERFS):			•		
FORMATION:		(PERFS):			•		
2 ESTIMATED AN	MOUNT OF FLUID PRODUCTION	ON TO BE COMMINGLED FROM EACH	H INT	ERVAL			
FORMATION:	BEVIER	BOPD:	0	MCFPD:	4.625	BWPD:	5
FORMATION:	MULKY	BOPD:	0	MCFPD:	4.625	BWPD:	5
FORMATION:	SUMMITT	BOPD:	0	MCFPD:	4.625	BWPD:	5
FORMATION:	BARTLESVILLE	BOPD:	3	MCFPD:		BWPD:	20
FORMATION:		BOPD:		MCFPD:		BWPD:	
FORMATION:		 BOPD:		MCFPD:		BWPD:	

·

•

Conservation Division Finney State Office Building 130 S. Market, Rm. 2078 Wichita, KS 67202-3802

Phone: 316-337-6200 Fax: 316-337-6211 http://kcc.ks.gov/

Sam Brownback, Governor

Mark Sievers, Chairman Ward Loyd, Commissioner Thomas E. Wright, Commissioner

June 28, 2012

Clark Edwards
PostRock Midcontinent Production LLC
Oklahoma Tower
210 Park Ave, Ste 2750
Oklahoma City, OK 73102

RE:

Approved Commingling CO061203

Morris Wiltse. 11-1, Sec.15-T28S-R16E, Wilson County

API No. 15-205-25423-00-01

Dear Mr. Edwards:

Your Application for Commingling (ACO-4) for the above described well has been reviewed and approved by the Kansas Corporation Commission (KCC) per K.A.R. 82-3-123. Notice was examined and found to be proper per K.A.R. 82-3-135a. No protest had been filed within the 15-day protest period. This application, which was received by the KCC on June 15, 2012, concerns approval to simultaneously produce from the following sources of supply through the same tubing string in the same wellbore:

		Estimated Current Production		
Source of Supply	BOPD	MCFPD	BWPD	Perf Depth
Riverton	0.00	4.625	5.00	1227-1229
Weir	0.00	4.625	5.00	1068-1090
Fleming	0.00	4.625	5.00	972-974
Crowburg	0.00	4.625	5.00	935-938
Bevier	0.00	4.625	5.00	921-923
Mulky	0.00	4.625	5.00	854-859
Summitt	0.00	4.625	5.00	839-843
Bartlesville	3.00	0.00	20.00	1096-1108
Total Estimated Current Production	3.00	27.75	50.00	

Based upon the depth of the Riverton formation perforations, total oil production shall not exceed 100 BOPD and total gas production shall not exceed 50% of the absolute open flow (AOF).

Commingling ID number CO061203 has been assigned to this approved application. Use this number for well completion reports (ACO-1) and other correspondence that may concern this approved commingling.

Sincerely,

Rick Hestermann Production Department