KANSAS CORPORATION COMMISSION ONE POINT STABILIZED OPEN FLOW OR DELIVERABILITY TEST | _ | en Flo | | | | | Test Date | | วแนบไ | ions on Re | VE136 310 | 15) | API N | lo. 15 | | | | | | |--|---------|---|---|---|--|-----------------------------|--|--------|--|---|--|--|-----------------------------|---------------------|--|------------------------------|--|--| | De | liverat | oilty | | | | 7/21 to | | 4 | | | | | 20,314-00 | 00 | | | | | | Company
Gemini Oil Co | | | | | Lease
North M | | | | files | les | | | | Well Number
1-A | | | | | | County
Kingman | | | Location
CSESE | | | Section
19 | | | TWP
27S | | | RNG (E/W)
10W | | | | Acres . | Attributed | | | ield
Cunning | | | | | | Reservoir
Towanda | | | | Gas Gathering Cor
Oneok | | | ering Conn | ection | 1 | | | | | Completion 19/73 | | te | | | | Plug Back Total Depth | | | 'n | Packer Set at none | | | | | | - | | | | Casing Size V
5 | | | Weigl | nt | | Internal Diameter | | | Set at
1759 | | | Perforations
1676.5 | | | то
1677.5 | | | | | ubing Size We | | | Weig | nt | | Internal Diameter | | | Set at
1676 | | | Perforations | | | То | | | | | ype Con
ingle | npletio | n (De | escribe) | | | Type Flui | d Produ | uction | | | Pur | | or Traveling | Plur | nger? Yes | / No | • | | | roducing | Thru | (Anı | nulus / Tubin | us / Tubing) | | | % Carbon Dioxid | | | le % | | | n | | Gas Gravity - G | | | | | tubing | | | | | .00 | | | | | | 18.632 | | | | .675
(Meter Run) (Prover) Size | | | | | Vertical Depth(H) | | | | | | | Pressure Taps
flange | | | | | | | | 3" | Hun) (F | rover) Size | | | ressure | Buildu | ıp: | Shut in | 8 | | | | | (AM) (PM) Taken 7/21 | | | | | at 10:15 | | (AM) (PM) | | | | ell on L | ine: | | Started 7/2 | 1 | 20 | 14 at 1 | 0:15 a | ım | (AM) (PM) | Taken 7 | /22 | | 20 | <u>14</u> | at 10:15 | am_ | (AM) (PM) | | | | | | | | | | OBSE | RVE | SURFAC | E DATA | | | | Dura | ition of Shut- | _{-in_} 72 | Hours | | | tatic / Orifice
rnamic Size
operty (inches | | :0 | Circle one:
Meter
Prover Press
psig (Pm) | Press Differe in Inches | ntial | Flowing
Temperature
t | Well Head
Temperature
t | | Casing Wellhead Pressure (P _w) or (P ₁) or (P _c) | | | Tubing Wellhead Pressure (P _w) or (P _t) or (P _c) psig psia | | Duration
(Hours) | | Liquid Produced
(Barrels) | | | | Shut-In | 1 | | | | - 2 | | | | 70.3 | 94.7 | \dagger | psig | psia | 72 | | | | | | Flow .375 | | 5 | 36.8 | .9 | .9 95 | | 5 | | 37.0 | 7.0 51.4 | | | | 24 | | | | | | | | | | 1 | | | FLOW | STR | EAM ATTR | IBUTES | | | _ | | | | | | | Plate
Coefficcient
(F _b) (F _p)
Mcfd | | Pro | Circle one:
Meter or
over Pressure
psia | Extens | Press
Extension
✓ P _m x h | | Gravity
Factor
F _g | | Flowing
Temperature
Factor
F _{It} | | Deviation
Factor
F _{pv} | | Metered Flow
R
(Mcfd) | | w GOR
(Cubic Fe
Barrel) | | Flowing
Fluid
Gravity
G _m | | | 6848 5 | | 51 | .2 | 6.78 | 3.78 | | 1.217 | | .9680 | | 5 | | | | | | | | | (_c) ² = 7 | .174 | _: | (P _w)² = | 2.641 | : | (OPEN FLO | OW) (DI | ELIVE | |) CALCU | | | : | | (P _a)
(P _d) | 2 = 0.2
2 = | 207 | | | $(P_c)^2 - (P_a)^2$ or $(P_c)^2 - (P_d)^2$ | | (P _c) ² - (P _w) ² | | 1. P _c ² - 2. P _c ² - | Choose formula 1 or 2:
1. $P_c^2 - P_a^2$
2. $P_c^2 - P_d^2$
ivided by: $P_c^2 - P_w^2$ | | LOG of formula 1, or 2, and divide by: | | Backpre
Slo
As | ssure Curv
pe = "n"
- or
signed
ard Slope | ure Curve
= "n" n
oned | | n x LOG | | Antilog | | Open Flow Deliverability Equals R x Antilog (Mcfd) | | | 3.967 | | 4.5 | 533 | 1.536 | | .1864 | | | .850 | | | .1584 | 1 | 1.4 | 4 | 7 | | | | | | | | | | | <u> </u> | | assigned | | | | | | | | | | | en Flov | | | 1 41 12 | Moid @ | | | 4-1 16 | | Deliverab | | | 41 | | | @ 14.65 psi | | | | | | | _ | d authority, o | | | | | | - | | | of Jul | - | ii an | u mai ne na | | 20 <u>14</u> . | | | | | | | | | | | _ | | | <i>~</i> | _ | n [// | _ | 1 | | WICH | | | | | | Witness (| if any) | | | | _ | _ | 4 | an | ly t
Br 1 | VC. For C | compan | У | AUG | 6 0 7 2014 | | | | | | For Comm | nission | | | | _ | - | | | | Che | ked by | | | ECEIVE | |