KANSAS CORPORATION COMMISSION ONE POINT STABILIZED OPEN FLOW OR DELIVERABILITY TEST | Type Test | t:
en Flov | N | | | | | | tructi | ions on Re | everse Side | e) | | | | | | | | |---|---------------|---|-------------------------------------|--|--|---|--|--------------------|---|------------------------------|--|--|-----------------------------|---------------------------------|--------------------------------|--|------------------------------|--| | ✓ Deliverabilty | | | | Test Date
11/17 to | | API No. 15
057-20,842-00-00 | | | | | | | | | | | | | | Company
Vincent Oil Co. | | | | | Lease | | | | | | | | | | Well Number
2-9 | | | | | County Location Ford SENEN | | | | | SE | Section
9 | | | | TWP 5 | | | W) | Acres Attributed | | | ttributed | | | Field
Kingsdown NW | | | | - | Reservoii
Miss | r | Gas Gathering
DCP | | | | hering Conn | ection | | | | | | | | Completion Date 11/06/12 | | | | | | Plug Back Total Depth
5434 | | | ח | Packer Set at
NONE | | | Set at | | | | | | | Casing S
4.5 | | Weigl | ht | • | Internal Diameter | | | Set at 5434 | | | Perfo
523 | rations
B | т _о
5252 | | | | | | | Tubing Size Weight 2.375 | | | | | Internal I | Diamete | r | | Set at 5244 | | | Perforations | | | | | | | | Type Completion (Describe) single | | | | | Type Flui
none | d Produ | ction | Pump Unit o | | | | nit or Traveling | Traveling Plunger? Yes / No | | | | | | | Producing Thru (Annulus / Tubing) | | | | | | arbon [| Dloxic | de | • | | | | Gas Gravity - G | | | | | | | tubing | | | | | .1984 | | | | 8.0606 | | | | .657 | | | | | | | Vertical E | | | | | Pressure Taps
flange | | | | | (Meter Run) (Prover) S
2" | | | | | rover) Size | | | | | Pressure | Buildu | p: 4 | Shut in 11 | /14 | | 0 14 at 8 | | | | | | | 20 | <u>14</u> | _{at} 8:45 ar | n (| AM) (PM) | | | Well on L | ine: | ; | Started 11/ | 17 | 20 | 0 <u>14</u> at <u>9</u> | :00 an | <u> </u> | (AM) (PM) | Taken 1 | 1/1 | 8 | 20 | <u>14</u> | at <u>9:00 ar</u> | n(| AM) (PM) | | | | | | | | | | OBSE | RVE | D SURFAC | E DATA | . | | | Dura | tion of Shut-i | <u>72</u> | Hours | | | Static /
Dynamic
Property | Dynamic Size | | Circle one: Meter Prover Pressure | | Pressure
Differential
in | fferential Temperature | | ead
ature | Casing Wellhead Pressure (P_w) or (P_t) or (P_c) | | | Tubing Wellhead Pressure (P_w) or (P_t) or (P_o) | | Duration
(Hours) | | Liquid Produced
(Barrels) | | | | Shut-In | ut-la | | psig (Pm) | | Inches H ₂ 0 | i - | l <u>.</u> | | 769 | 783.4 | 7 | psig
'64 | 778.4 | 72 | KANS | AS COR | Received
PORATION COMMISS | | | Flow | 1.00 | 0 | 230 | | 80 | 61 | | | 723 | 737.4 | 6 | 94 | 708.4 | 24 | | DE | C 1 5 2014 | | | | | | | | | | FLOW | STR | EAM ATTE | RIBUTES | | | | | | ONSER | RVATION DIVISION | | | Plate Coeffiecient (F _b) (F _p) Mcfd | | Circle one: Meter or Prover Pressure psia | | | Press
Extension
✓ P _m x h | Fac | Gravity
Factor
F _g | | Flowing
emperature
Factor
F _{II} | F | Deviation
Factor
F _{pv} | | Metered Flor
R
(Mcfd) | w GOR
(Cubic Feet
Barrel) | | | Flowing Fluid Gravity G_m | | | 5.073 | | 24 | 4.4 | 1 | 39.82 | 1.234 | | .99 | 990 | 1.024 | 1 | | 895 | | - | | | | | | 40 745 | | | | 10.750 | (OPEN FL | OW) (DI | ELIV | | • | | | | | (P _a) ² | = 0.20 | 07 | | | $(P_e)^2 = 6$ | 13.715 | <u>:</u> | (P _w)² : | | 43.758 : | $P_d =$ | | <u> </u> | <u>د</u> (ا | P _e - 14.4) 4 | - 14. | 4 = | : | | (P _d) ² | = | | | | $(P_c)^2 - (P_a)^2$
or
$(P_c)^2 - (P_d)^2$ | | (P _c) ² - (P _w) ² | | Choose formula 1 or 2: 1. P _c ² -P _a ² 2. P _c ² -P _d ² divided by: P _c ² -P _d ² | | LOG of
formula
1. or 2.
and divide | formula
1. or 2.
and divide p2. p2 | | Backpressure Curve Slope = "n" or Assigned Standard Slope | | - | n x LOG | | Antilog | | Open Flow Deliverability Equals R x Antilog (Mcfd) | | | | 613.50 |)8 | 69.957 | | 8.769 | | .9429 | .9429 | | | .794 | | .7486 | | 5.60 | | 5012 | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | Open Flow 5012 Mcfd @ 14.65 psia x .50 = | | | | | | | | | Deliverability 2506 | | | | Mcfd @ 14.65 psia | | | | | | | | | _ | - | | ehalf of the report is true | | | | · · | | to m | | ovember | ort and | d that he has | | ledge of
20 <u>14</u> . | | | | | | Witness | (if an | у) | | | _ | - | /e | <u>M</u> | m | INC. | Compan | у | | | | | | | | For Com | missio | on | | | _ | - | | | V 11/ | Che | cked by | - | | | |