KANSAS CORPORATION COMMISSION ONE POINT STABLIZED OPEN FLOW OR DELIVERABILITY TEST

FORM G-2 (Rev.8/98)

TYPE TEST:

Well on Line:

Started

7/30/2013 @ 1200

Open Flow

Deliverabili	ity	TEST DATE: 7	/31/2012	API No.	15-047-10091 - 000	
Company			Lease		Well Number	
Citation Oil & 0	Эas		Newsome A		1	
County		Location	Section TWP	RNG (E/W)	Acres Attributed	
Edwards			7 26s 17	•		
Field		Reservoir		Gas Gather	ring Connection	
McClanahan		E Mississippi		Oneok		
Completion Date	<u></u>	Plug Back Total Depth		Packer Set	at	
12/26/1963		4585		none		
Casing Size	Weight	Internal Diameter	Set at	Perforation	ons To	
4.500	9.500	4.090	4625	45	48 4552	
Tubing Size	Weight	Internal Diameter	Set at	Perforation	ons To	
2.375	4.700	1.995	4553	45	32 4535	
Type Completion (Describe)		Type Fluid Production	RECEIVED	Pump Unit or Traveling Plunger? SSION Pumping unit		
single		brine	KANSAS CORPORATION COMM	ISSION Pumping	g unit	
Producing Thru (Annulus/Tubing)		% Carbon Dioxide		% Nitrogen		
annulus		0.011	AUG 1 4 2013	2.670	0.623	
Vertical Depth (H)		Pressure Taps	CONSERVATION DIVISION		Meter Run Size	
4550		flange	WICHITA, KS		2.067	
Pressure Buildup: S	hut in 7/	/28/2013 @ 1200	TAKEN	7/31	1/2013 @ 1200	

OBSERVED SURFACE DATA

TAKEN

Static/ Dynamic	Oynamic Size Pressure		Pressure Flowing Diff. Temp.	WellHead Temp.	Casing WellHead Press. (P _W) (P _t) (P _C)		Tubing WellHead Press. (Pw) (Pt) (Fc)		Duration	Liquid Prod.	
Property	in.	psig	In. H 20	t.	t.	psig	psia	psig	psia	(Hours)	Barrels
Shut-in						46	60			72.0	
Flow	0.375	46.0	60.00	86	86	5	19			24.0	

FLOW STREAM ATTRIBUTES

COEFFICIENT (F _b) Mcfd	(METER) PRESSURE Psia	EXTENSION Very Harmonia Marketine M	GRAVITY FACTOR Fg	FLOWING TEMP FACTOR Ft	DEVIATION FACTOR FPV	RATE OF FLOW R Mcfd	GOR	G m
0.686	60.4	60.20	1.2669	0.9759	1.0042	51	-	0.623

(OPEN FLOW)(DELIVERABILITY) CALCULATIONS

(Pc) ² = 3.	7 (Pw)	• • • • • • • • • • • • • • • • • • •	Pd =	75.8 %	(Pc - 14.4) + 14		$(Pa)^2 = 0.207$ $(Pd)^2 = 2.12$
$(P_c)^2 - (P_a)^2$ or $(P_c)^2 - (P_d)^2$	/n \2 /n \2	$\begin{bmatrix} (P_{c})^{2} - (P_{a})^{2} \\ or \\ (P_{c})^{2} - (P_{d})^{2} \\ \hline (P_{c})^{2} - (P_{w})^{2} \end{bmatrix}$	ros	Backpressure Curve Slope"n" or Assigned Standard Slope	n x LOG	Antilog	Open Flow Deliverability = R x Antilog Mcfd
3.48	3.30	1.054	0.0230	0.850	0.0196	1.046	53
1.57	3.30	0.476		0.850		0.532	27

OPEN FLOW

53

Mcfd @ 14.65 psia

DELIVERABILITY

27

7/31/2013 @ 1200

Mcfd @ 14.65 psia

The undersigned authority, on behaf of the Company, states that he is duly authorized to make the above report and that he has knowledge of the facts stated herein and that said report is true and correct. Executed this the FIVED day of 100 d

No Witness (if any)
No Witness (if any)
For Commission

For Commission

AUG - 5 2013

KCC DODGE CITY

Checked by

I decl	are under penelty or perjury under the laws of the state of kansas that I am authorized to request
exempt	status under rule K.A.R. 82-3-304 on behalf of the operator Citation Oil & Gas
	t the foregoing information and statements contained on this application form are true and correct to
he bes	t of my knowledge and belief based upon gas production records and records of equipment installa-
ion and	d/or of type completion or upon use of the gas well herein named.
I here	by request a permanent exemption from open flow testing for the Newsome A
jas we	ll on the grounds that said well:
	(check one)
	is a coalbed methane producer
	is cycled on plunger lift due to water
	is a source of natural gas for injection into an oil reservoir undergoing ER
	is on vacum at the present time; KCC approval Docket No
	is incapable of producing at a daily rate in exess of 250 mcf/D
Date: _	8-1-13
	Signature: (em

Instructions:

All active gas wells must have at least an original G-2 form on file with the conservation division. If a gas well meets the eligibility criteria set out in KCC regulation K.A.R. 82-3-304, the operator may complete the statement provided above in order to obtain a testing exemption.

At some point during the succeeding calendar year, wellhead shut-in pressure shall be measured after a minimum of 24 hours shut-in/buildup time and shall be reported on the front side of this form under "observed surface data." Shut-in pressure shall thereafter be reported yearly in the same manner.

The G-2 form conveying the newest shut-in pressure reading shall be filed with the Wichita office no later than thirty (30) days after the taking of the pressure reading. The form must be signed and dated on the front side as though it was a verified report of test results.