Kansas Corporation Commission OIL & GAS CONSERVATION DIVISION

Form ACO-1 August 2013 Form must be Typed Form must be Signed All blanks must be Filled

WELL COMPLETION FORM WELL HISTORY - DESCRIPTION OF WELL & LEASE

OPERATOR: License #	API No. 15			
Name:	Spot Description:			
Address 1:	SecTwpS. R 🔲 East 🗌 West			
Address 2:	Feet from North / South Line of Section			
City:	Feet from _ East / _ West Line of Section			
Contact Person:	Footages Calculated from Nearest Outside Section Corner:			
Phone: ()	□NE □NW □SE □SW			
CONTRACTOR: License #	GPS Location: Lat:, Long:			
Name:	(e.g. xx.xxxxx) (e.gxxx.xxxxx) Datum: NAD27 NAD83 WGS84			
Wellsite Geologist:				
Purchaser:	County:			
Designate Type of Completion:	Lease Name: Well #:			
☐ New Well ☐ Re-Entry ☐ Workover	Field Name:			
☐ Oil ☐ WSW ☐ SWD ☐ SIOW	Producing Formation:			
Gas D&A ENHR SIGW	Elevation: Ground: Kelly Bushing:			
☐ OG ☐ GSW ☐ Temp. Abd.	Total Vertical Depth: Plug Back Total Depth:			
CM (Coal Bed Methane)	Amount of Surface Pipe Set and Cemented at: Feet			
Cathodic Other (Core, Expl., etc.):	Multiple Stage Cementing Collar Used? Yes No			
If Workover/Re-entry: Old Well Info as follows:	If yes, show depth set: Feet			
Operator:	If Alternate II completion, cement circulated from:			
Well Name:	feet depth to:w/sx cmt.			
Original Comp. Date: Original Total Depth:				
☐ Deepening ☐ Re-perf. ☐ Conv. to ENHR ☐ Conv. to SWD	Drilling Fluid Management Plan			
☐ Plug Back ☐ Conv. to GSW ☐ Conv. to Producer	(Data must be collected from the Reserve Pit)			
Commingled Permit #:	Chloride content:ppm Fluid volume:bbls			
Dual Completion Permit #:	Dewatering method used:			
SWD Permit #:	Location of fluid disposal if hauled offsite:			
ENHR Permit #:				
GSW Permit #:	Operator Name:			
	Lease Name: License #:			
Spud Date or Date Reached TD Completion Date or	QuarterSecTwpS. R East West			
Recompletion Date Recompletion Date	Countv: Permit #:			

AFFIDAVIT

I am the affiant and I hereby certify that all requirements of the statutes, rules and regulations promulgated to regulate the oil and gas industry have been fully complied with and the statements herein are complete and correct to the best of my knowledge.

Submitted Electronically

Confidentiality Requested:

Yes No

KCC Office Use ONLY			
Confidentiality Requested			
Date:			
Confidential Release Date:			
Wireline Log Received			
Geologist Report Received			
UIC Distribution			
ALT I III Approved by: Date:			

CORRECTION #1

Operator Name:			L	ease Name: _			Well #:	
Sec Twp	S. R	East We	est C	County:				
INSTRUCTIONS: Shopen and closed, flow and flow rates if gas to	ring and shut-in pres	sures, whether sh	ut-in pressur	e reached stati	c level, hydrosta	tic pressures, bott		
Final Radioactivity Lo files must be submitted					gs must be ema	iled to kcc-well-log	gs@kcc.ks.go	. Digital electronic log
Drill Stem Tests Taker (Attach Additional		Yes	No	L		n (Top), Depth an		Sample
Samples Sent to Geo	logical Survey	Yes	No	Nam	e		Тор	Datum
Cores Taken Electric Log Run		Yes Yes	No No					
List All E. Logs Run:								
		(CASING REC	ORD Ne	w Used			
		· ·		ıctor, surface, inte	ermediate, producti		T	
Purpose of String	Size Hole Drilled	Size Casin Set (In O.D		Weight Lbs. / Ft.	Setting Depth	Type of Cement	# Sacks Used	Type and Percent Additives
		ADD	ITIONAL CEN	MENTING / SQL	JEEZE RECORD			
Purpose:	Depth Top Bottom	Type of Cem	ent #	# Sacks Used Type and Percent Additives				
Perforate Protect Casing	100 20111111							
Plug Back TD Plug Off Zone								
1 lag on zono								
Did you perform a hydrau	ulic fracturing treatment	on this well?			Yes	No (If No, ski)	o questions 2 ar	nd 3)
Does the volume of the to		•				_	o question 3)	(" 100 ")
Was the hydraulic fractur	ing treatment information	on submitted to the c	hemical disclo	sure registry?	Yes	No (If No, fill o	out Page Three	of the ACO-1)
Shots Per Foot		ION RECORD - Bri Footage of Each Int				cture, Shot, Cement		d Depth
	, ,				,		,	
TUBING RECORD:	Size:	Set At:	Pa	acker At:	Liner Run:			
						Yes No		
Date of First, Resumed	Production, SWD or Ef		cing Method: owing	Pumping	Gas Lift C	ther <i>(Explain)</i>		
Estimated Production Per 24 Hours	Oil	Bbls. G	as Mcf	Wate	er Bl	ols. G	ias-Oil Ratio	Gravity
DIODOCITI	ON OF CAS:		, 4 CT - 1		TION:		DRODUCTIO	AN INTEDVAL.
Vented Solo	ON OF GAS: Used on Lease	Open Ho		IOD OF COMPLE \Box		nmingled	PHODUCIIC	ON INTERVAL:
	bmit ACO-18.)	Other (S	necify)	(Submit		mit ACO-4)		

Form	ACO1 - Well Completion			
Operator	TDI, Inc.			
Well Name	Raymond Trust 1			
Doc ID	1179417			

Tops

Name	Тор	Datum
Anhydrite	1500'	+648'
Topeka	3181'	-1033'
Heebner	3411'	-1263'
Lansing/Kansas City	3447'	-1299'
Base Kansas City	3689'	-1541'
Marmaton-Pawnee	3754'	-1606'
Conglomerate Sand	3830'	-1682'
Arbuckle	3850'	-1702

Form	CO1 - Well Completion			
Operator	TDI, Inc.			
Well Name	Raymond Trust 1			
Doc ID	1179417			

Casing

Purpose Of String	Size Hole Drilled	Size Casing Set	Weight	Setting Depth	Type Of Cement		Type and Percent Additives
Surface	12.25	8.625	23	1501	SMD	475	1/4# flo- seal
Production	7.875	5.5	14	3972	EA-2	130	

Summary of Changes

Lease Name and Number: Raymond Trust 1

API/Permit #: 15-051-26596-00-00

Doc ID: 1179417

Correction Number: 1

Approved By: NAOMI JAMES

Field Name	Previous Value	New Value	
Approved Date	01/02/2014	01/15/2014	
Producing Formation	Conglomerate Sand	Marmaton	
Save Link	//kcc/detail/operatorE ditDetail.cfm?docID=11 68009	//kcc/detail/operatorE ditDetail.cfm?docID=11 79417	

Confidentiality Requested:

Yes No

Kansas Corporation Commission Oil & Gas Conservation Division

1168009

Form ACO-1 August 2013 Form must be Typed Form must be Signed All blanks must be Filled

CONFIDENTIAL WELL COMPLETION FORM WELL HISTORY - DESCRIPTION OF WELL & LEASE

OPERATOR: License #			API No. 15			
Name:			Spot Description:			
Address 1:			Sec TwpS. R			
Address 2:			Feet from North / South Line of Section			
City: Sta	ate: Zi	p:+	Feet from East / West Line of Section			
Contact Person:			Footages Calculated from Nearest Outside Section Corner:			
Phone: ()			□ NE □ NW □ SE □ SW			
CONTRACTOR: License #			GPS Location: Lat:, Long:			
Name:			(e.g. xx.xxxxx) (e.gxxx.xxxxxx)			
Wellsite Geologist:			Datum: NAD27 NAD83 WGS84			
Purchaser:			County:			
Designate Type of Completion:			Lease Name: Well #:			
New Well Re-l	Entry	Workover	Field Name:			
			Producing Formation:			
Oil WSW SWD	☐ SWD	∐ SIOW □ SIGW	Elevation: Ground: Kelly Bushing:			
☐ Gas ☐ D&A	GSW	Temp. Abd.	Total Vertical Depth: Plug Back Total Depth:			
CM (Coal Bed Methane)	d3vv	remp. Abu.	Amount of Surface Pipe Set and Cemented at: Fee			
Cathodic Other (Core,	. Expl., etc.);		Multiple Stage Cementing Collar Used? Yes No			
If Workover/Re-entry: Old Well Info			If yes, show depth set: Feet			
Operator:			If Alternate II completion, cement circulated from:			
Well Name:			feet depth to:w/sx cmt			
Original Comp. Date:			·			
Deepening Re-perf.	Conv. to E	NHR Conv. to SWD	Drilling Fluid Management Plan			
☐ Plug Back	Conv. to G	SW Conv. to Producer	(Data must be collected from the Reserve Pit)			
O constituents at	D		Chloride content: ppm Fluid volume: bbls			
CommingledDual Completion			Dewatering method used:			
SWD			Location of fluid disposal if hauled offsite:			
☐ ENHR			Location of hala disposal in fladica offsite.			
☐ GSW			Operator Name:			
_			Lease Name: License #:			
Spud Date or Date Read	ched TD	Completion Date or	QuarterSecTwpS. R East Wes			
Recompletion Date		Recompletion Date	County: Permit #:			

AFFIDAVIT

I am the affiant and I hereby certify that all requirements of the statutes, rules and regulations promulgated to regulate the oil and gas industry have been fully complied with and the statements herein are complete and correct to the best of my knowledge.

Submitted Electronically

KCC Office Use ONLY					
Confidentiality Requested					
Date:					
Confidential Release Date:					
Wireline Log Received					
Geologist Report Received					
UIC Distribution					
ALT I II III Approved by: Date:					

KOLAR Document ID: 1168009

Page Two

Operator Name: _				Lease Name:			Well #:	
Sec Twp.	S. R.	E	ast West	County:				
	flowing and shu	ut-in pressures, v	vhether shut-in pre	ssure reached st	atic level, hydrosta	tic pressures, bot		val tested, time tool erature, fluid recovery,
Final Radioactivity files must be subm						iled to kcc-well-lo	gs@kcc.ks.gov	v. Digital electronic log
Drill Stem Tests Ta			Yes No			on (Top), Depth ar		Sample
Samples Sent to 0	Geological Surv	/ey	Yes No	Na	me		Тор	Datum
Cores Taken Electric Log Run Geologist Report / List All E. Logs Ru	_		Yes No Yes No Yes No					
		B	CASING eport all strings set-c		New Used	ion, etc.		
Purpose of Strir		Hole illed	Size Casing Set (In O.D.)	Weight Lbs. / Ft.	Setting Depth	Type of Cement	# Sacks Used	Type and Percent Additives
			ADDITIONAL	CEMENTING / SO	UEEZE RECORD			
Purpose:		epth T Bottom	ype of Cement	# Sacks Used		Type and F	Percent Additives	
Perforate Protect Casi Plug Back T								
Plug Off Zor								
Did you perform a Does the volume Was the hydraulic	of the total base f	fluid of the hydrauli		_	=	No (If No, sk	ip questions 2 an ip question 3) out Page Three	,
Date of first Product Injection:	tion/Injection or R	esumed Production	Producing Meth	nod:	Gas Lift 0	Other (Explain)		
Estimated Production Per 24 Hours	on	Oil Bbls.					Gas-Oil Ratio	Gravity
DISPOS	SITION OF GAS:		N	METHOD OF COMP	LETION:			DN INTERVAL: Bottom
	Sold Used	I on Lease	Open Hole			mmingled mit ACO-4)	Тор	BOROTT
,	,			B.11 B1				
Shots Per Foot	Perforation Top	Perforation Bottom	Bridge Plug Type	Bridge Plug Set At	Acid,	Fracture, Shot, Cer (Amount and Kind	menting Squeeze I of Material Used)	Record
TUBING RECORD:	: Size:	Set	Δ+-	Packer At:				
TODING RECORD:	. 3126.	Set	n.	i donei Al.				

Form	ACO1 - Well Completion			
Operator	TDI, Inc.			
Well Name	Raymond Trust 1			
Doc ID	1168009			

Tops

Name	Тор	Datum
Anhydrite	1500'	+648'
Topeka	3181'	-1033'
Heebner	3411'	-1263'
Lansing/Kansas City	3447'	-1299'
Base Kansas City	3689'	-1541'
Marmaton-Pawnee	3754'	-1606'
Conglomerate Sand	3830'	-1682'
Arbuckle	3850'	-1702

Form	ACO1 - Well Completion						
Operator	TDI, Inc.						
Well Name	Raymond Trust 1						
Doc ID	1168009						

Perforations

Shots Per Foot	Perforation Record	Material Record	Depth
4	3765'-3770'	750 gals 15%	

Form	ACO1 - Well Completion					
Operator	TDI, Inc.					
Well Name	Raymond Trust 1					
Doc ID	1168009					

Casing

Purpose Of String	Size Hole Drilled	Size Casing Set	Weight	Setting Depth	Type Of Cement		Type and Percent Additives
Surface	12.25	8.625	23	1501	SMD	475	1/4# flo- seal
Production	7.875	5.5	14	3972	EA-2	130	

OPERATOR

Company: TDI, INC.

Address: 1310 BISON ROAD HAYS, KANSAS 67601

Contact Geologist: TOM DENNING
Contact Phone Nbr: 785-628-2593
Well Name: RAYMOND TRUST # 1

Location: SW SW NE SW Sec.7-13s-20w API: 15-051-26,596-00-00 Pool: WILDCAT Field: UNNAMED

Pool: WILDCAT Field: UNNA State: KANSAS Country: USA

1310 BISON ROAD HAYS, KANSAS 67601 (785) 628-2593

Scale 1:240 Imperial

Time:

12:21 PM

1:00 AM

12:21 PM

3:30 PM

Well Name: RAYMOND TRUST # 1
Surface Location: SW SW NE SW Sec.7-13s-20w

Bottom Location: API:

15-051-26,596-00-00

License Number: 4787

Spud Date: 10/4/2013 Time: 1:00 AM

Region: ELLIS COUNTY

Drilling Completed: 10/9/2013 Surface Coordinates: 1385' FSL & 1335' FWL

Bottom Hole Coordinates:

Ground Elevation: 2138.00ft
K.B. Elevation: 2148.00ft

Logged Interval: 3100.00ft To: 3980.00ft

Total Depth: 3980.00ft Formation: ARBUCKLE

Drilling Fluid Type: CHEMICAL/FRESH WATER GEL

SURFACE CO-ORDINATES

Well Type: Vertical
Longitude: -99.5897419
Latitude: 38.9321944

N/S Co-ord: 1385' FSL E/W Co-ord: 1335' FWL

LOGGED BY

Company: SOLUTIONS CONSULTING, INC.

Address: 108 W 35TH

HAYS, KS 67601

Phone Nbr: (785) 639-1337

Logged By: Geologist Name: HERB DEINES

CONTRACTOR

Contractor: SOUTHWIND DRILLING, INC.

Rig #: Rig Type:

 Rig Type:
 MUD ROTARY

 Spud Date:
 10/4/2013
 Time:

 TD Date:
 10/9/2013
 Time:

 Rig Release:
 10/10/2013
 Time:

ELEVATIONS

K.B. Elevation: 2148.00ft Ground Elevation: 2138.00ft

K.B. to Ground: 10.00ft

NOTES

RECOMMENDATION TO RUN PRODUCTION CASING BASED ON POSITIVE RESULTS OF DST # 1

OPEN HOLE LOGGING BY PIONEER ENERGY SERVICES: DUAL INDUCTION LOG, DUAL COMPENSATED POROSITY LOG, MICRORESISTIVITY LOG.

DRILL STEM TESTING BY TRILOBITE TESTING INC: ONE (1) STRADDLE TEST

FORMATION TOPS SUMMARY AND CHRONOLOGY OF DAILY ACTIVITY

 Raymond Trust # 1
 Kohl A-7

 SW SW NE SW
 SE SE SW

 Sec. 7-13s-20w
 Sec. 7-13s-20w

 2138' GL 2148' KB
 Reference Well

FORMATION	SAMPLE TOPS	LOG TOPS	LOG TOPS
Anhydrite	1498+ 650	1500+ 648	+ 655
B-Anhydrite	1544+ 604	1543+ 605	+ 609
Topeka	3183-1035	3181-1033	
Heebner Shale	3412-1264	3411-1263	-1265
Toronto	3431-1283	3428-1280	-1284
LKC	3447-1299	3447-1299	-1303
ВКС	3690-1542	3689-1541	-1546
Marmaton-Pawnee	3750-1602	3754-1606	-1610
Conglomerate Sand	3830-1682	3830-1682	-1686
Arbuckle	3853-1705	3850-1702	<i>-1715</i>
RTD	3980-1832		
LTD		3982-1834	-1793

SUMMARY OF DAILY ACTIVITY

10-04-13 350', finish RU, spud 1:00AM, drilling

10-05-13 1415', set 8 5/8" to 1501' w/ 475 sxs SMD, plug down 7:00PM, WOC

12 hrs, slope 1/2 degree

10-06-13 1505', WOC, drill plug 8:10 AM

10-07-13 2510', drilling, displace 3090'-3113'

10-08-13 3245', drilling

10-09-13 3810', drilling, RTD 3980'@12:21PM, ST, CCH, TOWB, logs, start DST

#1 straddle test of Conglomerate sand 3762'-3853'

10-10-13 3980', finish DST # 1, TIWB, LDDP, run production casing, RD

DST # 1 STRADDLE TEST 3762'-3853' BOTTOM PACKER HELD

DRILL STEM TEST REPORT

7-13S-20W Ellis Co Ks

 1310 Bison Rd
 Raymond Trust #1

 Hays, Ks 67601
 Job Ticket: 54448
 DST#:1

ATTN: Herb Deines Test Start: 2013.10.10 @ 12:20:00

GENERAL INFORMATION:

Formation: Marmaton, Cong. SD

Deviated: No Whipstock: ft (KB) Test Type: Conventional Straddle (Initial)

Time Tool Opened: 15:11:00 Tester: Brett Dickinson/Tim

 Time Test Ended:
 20:06:00
 Unit No:
 59

 Interval:
 3762.00 ft (KB) To
 3853.00 ft (KB) (TVD)
 Reference Elevations:
 2148.00 ft (KB)

 Total Depth:
 3890.00 ft (KB) (TVD)
 2140.00 ft (CF)

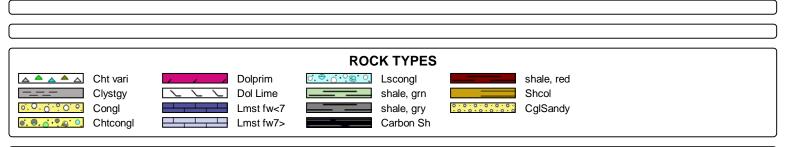
 Hole Diameter:
 7.88 inchesHole Condition: Fair
 KB to GR/CF: 8.00 ft

Serial #: 6753 Outside

346.31 psig @ Press@RunDepth: 3849.00 ft (KB) Capacity: 8000.00 psig 2013.10.10 2013.10.10 2013.10.10 Last Calib .: Start Date: End Date: 2013.10.10 @ 15:09:00 Start Time: 12:20:05 End Time: 20:05:59 Time On Btm: 2013.10.10 @ 17:10:30 Time Off Btm:

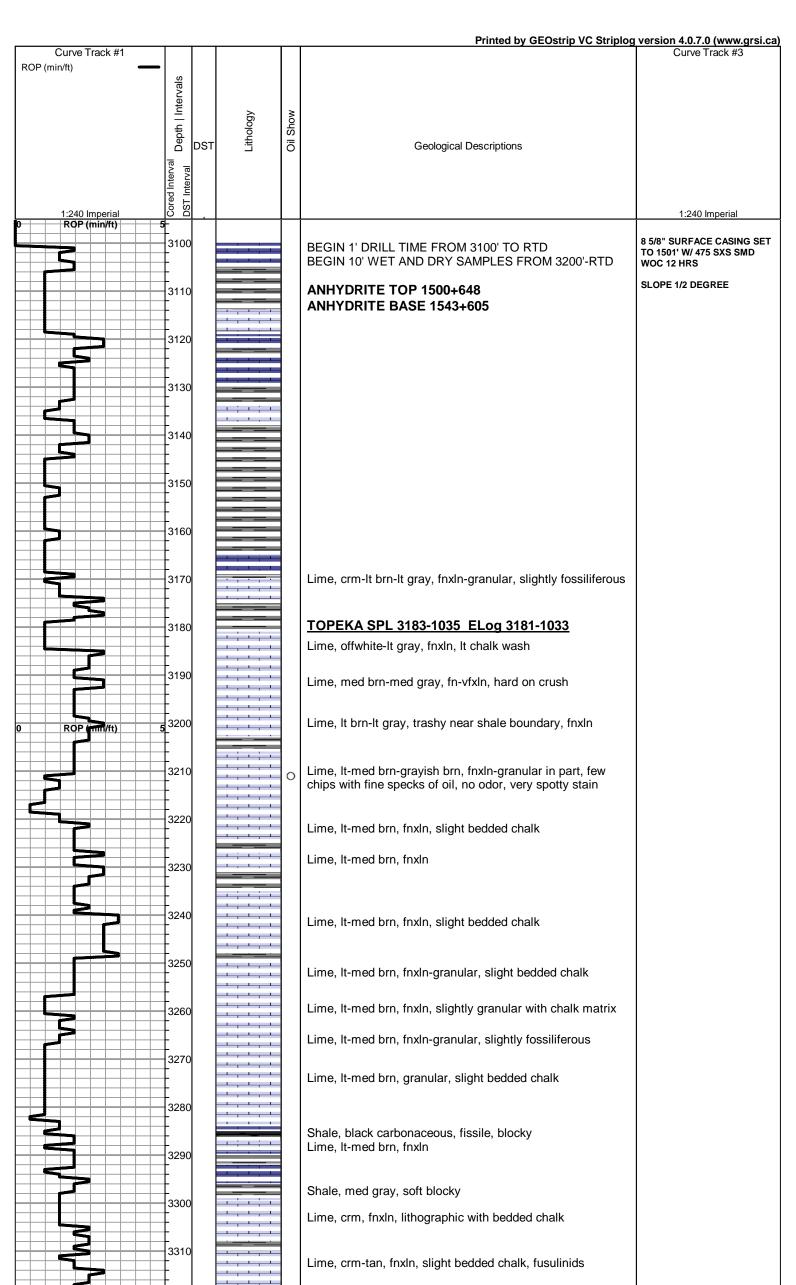
TEST COMMENT: IFP-30-BOB in 4 min.

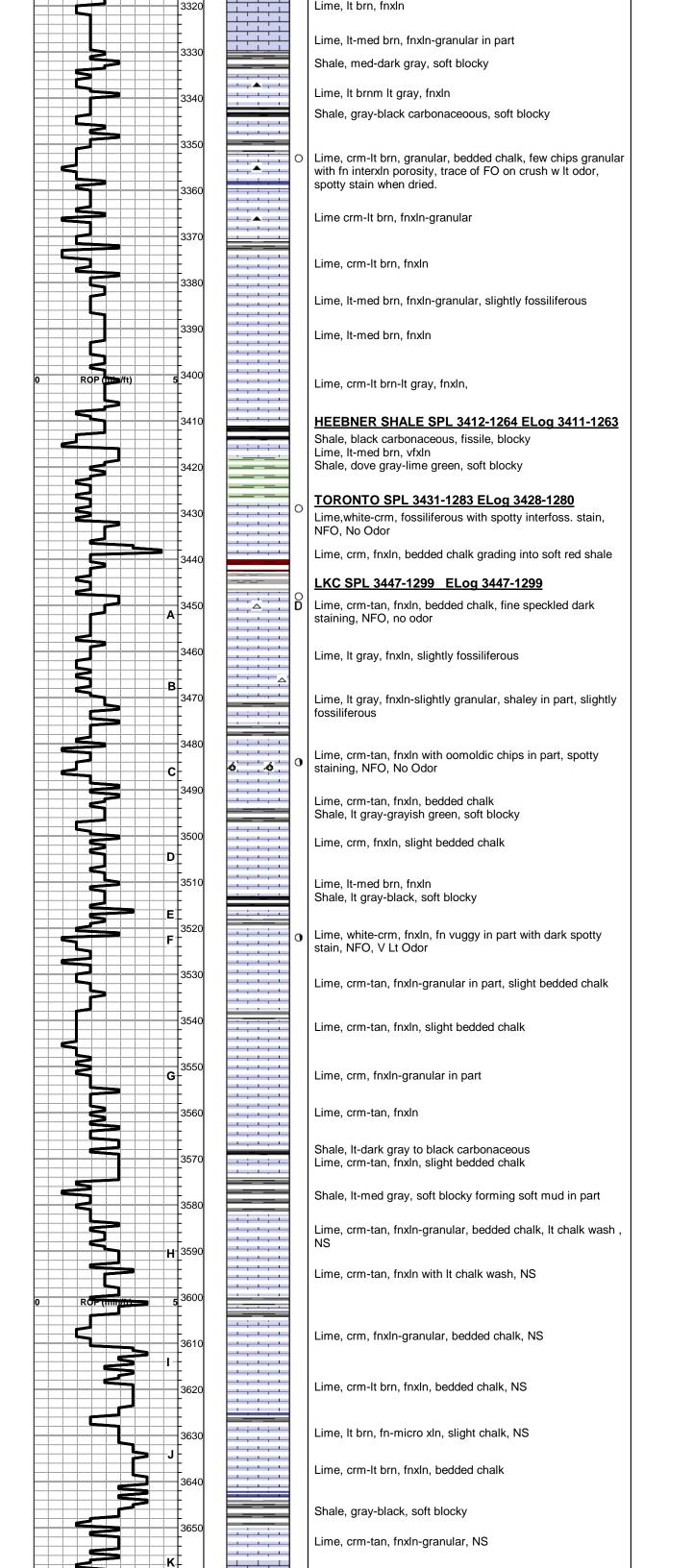
ISI-30-Blow back built to 4 in. in 18 min died back FF-30-BOB in 3 min FSI-30-Built to 2 in. in 12 min died back to 1 in.

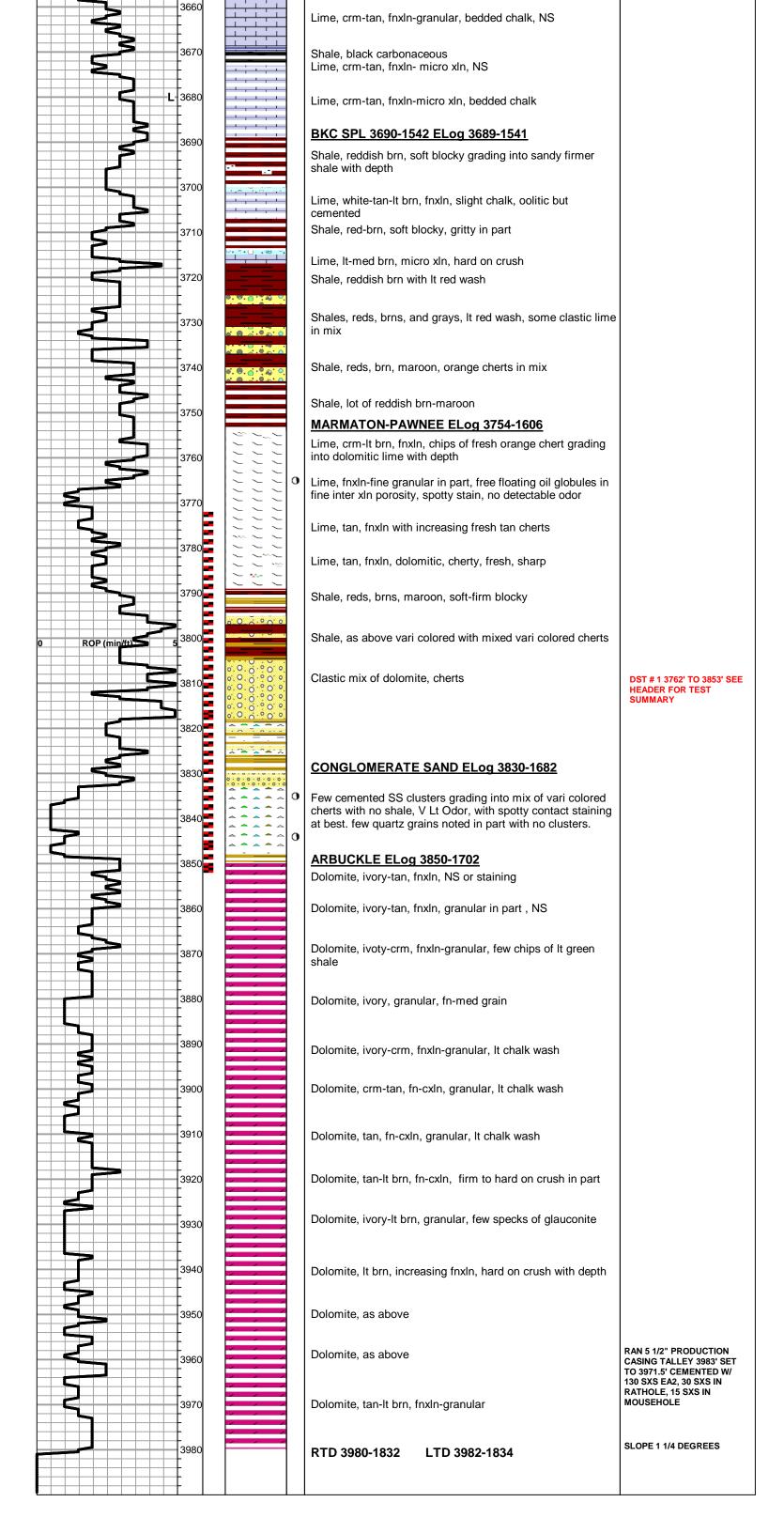

Pressure v.		PRESSURE SUMMARY							
5753 Phosaire	6753 Yemperature	Time	Pressure	Temp	Annotation				
ــــــــــــــــــــــــــــــــــــــ	1	(Min.)	(psig)	(deg F)					
1700	1 1 1	0	1903.78	114.59	Initial Hydro-static				
	1	2	76.37	114.68	Open To Flow (1)				
#	1 1	31	206.61	118.02	Shut-In(1)				
4	1 1 1 2	61	1062.11	120.39	End Shut-In(1)				
3 1 4 1		62	232.81	119.54	Open To Flow (2)				
	- 1	91	346.31	119.77	Shut-In(2)				
E 7 1		121	1015.73	121.60	End Shut-In(2)				
1 1 1	[122	1793.95	121.88	Final Hydro-static				
· ·	1 1								
700									
1									
• • • • • • • • • • • • • • • • • • • •									
10 Thu STM Time (Fig.									
w management and	~								

Recovery						
Length (ft)	Volume (bbl)					
370.00	GO 20%G 80%O	5.19				
560.00	GMCO 20%G 20%M 60%O	7.86				
0.00	0.00 120ft GIP					

Choke (inches) Pressure (psig) Gas Rate (Mct/d)


Gas Rates


Trilobite Testing, Inc Ref. No: 54448 Printed: 2013.10.10 @ 07:42:33



ACCESSORIES

MINERAL FOSSIL ▲ Chert, dark ♠ Oomoldic Sandy Varicolored chert △ Chert White

OB LO			WELL NO.	<i>+</i>				Lices, Inc. DATE 10-5-13 P
	TDI		P			Raymo	dTru	ust Deep Scarface TICKET NO. 2513
HART NO.	TIME	RATE (8PM)	VOLUME (BBL) (GAL)	PUM T	PS C	PRESSUR TUBING	E (PSI) CASING	DESCRIPTION OF OPERATION AND MATERIALS
	1210							onles witt
								TD 1502'
								TD 1503' 858'x23#x1503'x45'
								1000 10
	1430							Start FE
	1630							Break Circ
	16 16							BreakCire
	1766	5	0				l a serin	c+ + c : 1 11 11 1
	1762	<u> </u>	12/0				150	Start 500 gal Mudflush Start 150 sks SMD@ 11.8#
		5					150	STANT HOSKS SMDE 11.8
	17/7	<u> </u>	69/0			22	150	Start 1505ks SMD @ 12.5
	1730	<u>5</u>	57/6				150	Start joosks SMO@ 135#
.00.00000000000000000000000000000000000	1737		31/0				13-6	Start 75 sks SMD@ 145#
+	1742		19					End Coment
	1700							Drop Plug
	17.50	# 1.5	1400-1400-1400-1500-1500-1				50	
	1830	42	65				350	Circulate Cenent
	1840		93.3				500	Shat In
							800	Shat In
	_							
	-							
								circ, 50 sks to Pit
							8.	
								Thank you
								The state of the s
				_	1			Nick David E. & Isaac
								14, ck, vavial, 1 Locial
\dashv		1						

TOMER	TO		WELL NO.		SWIFT Services, 1			JOB TYPE La nectria	DATE 10 -10 -13 PAG TICKET NO. 25135
HART NO.	TIME	RATE (BPM)	VOLUME	PUMPS	PRESSURE	(PSI)	4-1	DESCRIPTION OF OPERAT	
NU.	1210	(BPM)	(BBL) (GAL)	T C	TUBING	CASING	. بم	loc WIFE.	
	1410		†				011	oc WIFE.	
		 					RT	n 2004	
							21 9	1 3 180	7' × 42
							5 2	X 19 - X 37/9	7 X 7 L
							2	1 3, 3, 1, 7,11,1	3,15
							12951	2 3 way w	ρ
	1210						C* #	+FE	
	1330							ak Circ	
	7300		8				0,00	ar Lac	
	1420	2	7/4				P/	PHUMII 2	por lasta
	1438	.5	0			7	ex	t - 30	161 1
	1440	5	12/0			200	C+ . +	20111201	Hush Flush
	1444		20/0		6	מינים (Ctan	+ 130ch FA	-2
	1450		31			200		Cenest	
			7					h PyL	
	1457	E	C			1000	et	+D /	est
	1510	5	7/			(مرس	1 = t	1 hacen	6.71
	15/5	<u>```</u>	96		7	00/	1	1 Plug	
	7.7.7		1		7	5%	10	90	γ
								tHeld	
							Flee	17110	

								nace	
								The Land	
		······································						Thankyou	
- 							1/	ck, David E.	4-1
_							///	CK, Vavid V.	7 3/h1
			-			-+			

Prepared For: TDI Inc

1310 Bison Rd Hays, KS 67601

ATTN: Herb Deines

Raymond Trust #1

7-13s-20w Ellis,Ks

Start Date: 2013.10.10 @ 12:20:00 End Date: 2013.10.10 @ 20:06:00 Job Ticket #: 54448 DST #: 1

Trilobite Testing, Inc

PO Box 362 Hays, KS 67601

ph: 785-625-4778 fax: 785-625-5620

TDI Inc

7-13s-20w Ellis, Ks

1310 Bison Rd

Raymond Trust #1

Hays, KS 67601

Job Ticket: 54448 **DST#:1**

ATTN: Herb Deines Test Start: 2013.10.10 @ 12:20:00

GENERAL INFORMATION:

Formation: Marmaton, Cong. SD

Deviated: No Whipstock: ft (KB) Test Type: Conventional Straddle (Initial)

Time Tool Opened: 15:11:00 Time Test Ended: 20:06:00

Interval: 3762.00 ft (KB) To 3853.00 ft (KB) (TVD)

Total Depth: 3890.00 ft (KB) (TVD)

Hole Diameter: 7.88 inches Hole Condition: Fair

Tester: Brett Dickinson/Tim

Unit No: 59

.

Reference Elevations:

2148.00 ft (KB) 2140.00 ft (CF)

KB to GR/CF: 8.00 ft

Serial #: 6753 Outside

Press@RunDepth: 346.31 psig @ 3849.00 ft (KB)

Start Date: 2013.10.09 End Date: Start Time: 21:30:05 End Time:

Capacity:
Last Calib.:

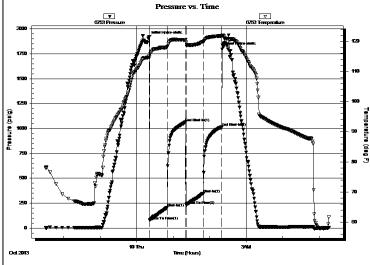
8000.00 psig 2013.10.10

05:15:59

2013.10.10

2013.10.10 @ 00:19:00

Time On Btm: Time Off Btm:


2013.10.10 @ 02:20:30

TEST COMMENT: IFP-30-BOB in 4 min.

ISI-30-Blow back built to 4 in. in 18 min died back

FF-30-BOB in 3 min

FSI-30-Built to 2 in. in 12 min died back to 1 in.

Time	Pressure	Temp	Annotation
(Min.)	(psig)	(deg F)	
0	1903.78	114.59	Initial Hydro-static
2	76.37	114.68	Open To Flow (1)
31	206.61	118.02	Shut-In(1)
61	1062.11	120.39	End Shut-In(1)
62	232.81	119.54	Open To Flow (2)
91	346.31	119.77	Shut-In(2)
121	1015.73	121.60	End Shut-In(2)
122	1793.95	121.88	Final Hydro-static
	(Min.) 0 2 31 61 62 91 121	(Min.) (psig) 0 1903.78 2 76.37 31 206.61 61 1062.11 62 232.81 91 346.31 121 1015.73	(Min.) (psig) (deg F) 0 1903.78 114.59 2 76.37 114.68 31 206.61 118.02 61 1062.11 120.39 62 232.81 119.54 91 346.31 119.77 121 1015.73 121.60

PRESSURE SUMMARY

Recovery

Length (ft)	Description	Volume (bbl)
370.00	GO 20%G 80%O	5.19
560.00	GMCO 20%G 20%M 60%O	7.86
0.00	120ft GIP	0.00

Gas Rates		
Choke (inches)	Pressure (psig)	Gas Rate (Mcf/d)

Trilobite Testing, Inc Ref. No: 54448 Printed: 2013.10.10 @ 09:17:33

TDI Inc

7-13s-20w Ellis, Ks

1310 Bison Rd Hays, KS 67601

ATTN: Herb Deines

Raymond Trust #1

Tester:

Job Ticket: 54448 DST#: 1

Test Start: 2013.10.10 @ 12:20:00

59

GENERAL INFORMATION:

Formation: Marmaton, Cong. SD

Deviated: Whipstock: Test Type: Conventional Straddle (Initial) ft (KB)

Time Tool Opened: 15:11:00 Time Test Ended: 20:06:00

Interval:

Unit No: Reference Elevations:

3762.00 ft (KB) To 3853.00 ft (KB) (TVD) Total Depth: 3890.00 ft (KB) (TVD)

7.88 inches Hole Condition: Fair Hole Diameter:

KB to GR/CF: 8.00 ft

2148.00 ft (KB)

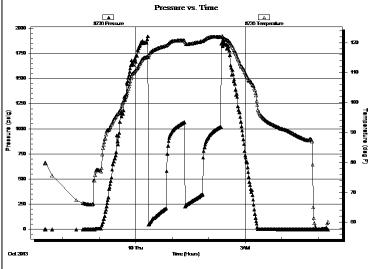
2140.00 ft (CF)

Brett Dickinson/Tim

Serial #: 8736 Inside

Press@RunDepth: 3849.00 ft (KB) 8000.00 psig psig @ Capacity:

Start Date: 2013.10.09 End Date: 2013.10.10 Last Calib.: 2013.10.10


Start Time: 21:30:05 End Time: Time On Btm: 05:15:59 Time Off Btm:

TEST COMMENT: IFP-30-BOB in 4 min.

ISI-30-Blow back built to 4 in. in 18 min died back

FF-30-BOB in 3 min

FSI-30-Built to 2 in. in 12 min died back to 1 in.

Ы	RESS	URE	SUM	IMARY

Ī	Time	Pressure	Temp	Annotation
	(Min.)	(psig)	(deg F)	
Temperature (deg F)				
2				
â				
Ĵ				

Recovery

Length (ft)	Description	Volume (bbl)
370.00	GO 20%G 80%O	5.19
560.00	GMCO 20%G 20%M 60%O	7.86
0.00	120ft GIP	0.00

Gas Rates

	Choke (inches)	Pressure (psig)	Gas Rate (Mcf/d)
--	----------------	-----------------	------------------

Trilobite Testing, Inc. Ref. No: 54448 Printed: 2013.10.10 @ 09:17:33

TDI Inc

7-13s-20w Ellis, Ks

1310 Bison Rd Hays, KS 67601 Raymond Trust #1

Job Ticket: 54448

DST#: 1

ATTN: Herb Deines

Test Start: 2013.10.10 @ 12:20:00

GENERAL INFORMATION:

Formation: Marmaton, Cong. SD

Deviated: Whipstock: ft (KB)

Time Tool Opened: 15:11:00 Time Test Ended: 20:06:00

Interval:

3762.00 ft (KB) To 3853.00 ft (KB) (TVD)

Total Depth: 3890.00 ft (KB) (TVD)

Hole Diameter: 7.88 inches Hole Condition: Fair Test Type: Conventional Straddle (Initial)

Tester: Brett Dickinson/Tim

Unit No: 59

Reference Elevations:

2148.00 ft (KB)

8000.00 psig

2013.10.10

2140.00 ft (CF) KB to GR/CF: 8.00 ft

Serial #: 8319 Below (Straddle)

TEST COMMENT: IFP-30-BOB in 4 min.

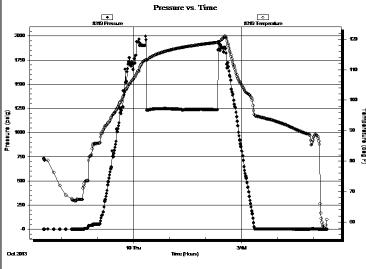
Press@RunDepth: 3858.00 ft (KB) psig @

> 2013.10.09 End Date:

2013.10.10 Last Calib.:

05:21:59

Start Date: Start Time: 21:30:05 End Time:


Time On Btm: Time Off Btm:

Capacity:

ISI-30-Blow back built to 4 in. in 18 min died back

FF-30-BOB in 3 min

FSI-30-Built to 2 in. in 12 min died back to 1 in.

PRESSURE S	SUMMARY
------------	---------

Ī	Time (Min.)	Pressure (psig)	Temp (deg F)	Annotation
	(171111.)	(psig)	(deg r)	
ĺ				
Townson in (dex E)				
,				

Recovery

Length (ft)	Description	Volume (bbl)
370.00	GO 20%G 80%O	5.19
560.00	GMCO 20%G 20%M 60%O	7.86
0.00	120ft GIP	0.00

Gas Rates

	Choke (inches)	Pressure (psig)	Gas Rate (Mcf/d)
--	----------------	-----------------	------------------

Printed: 2013.10.10 @ 09:17:33 Trilobite Testing, Inc. Ref. No: 54448

TOOL DIAGRAM

TDI Inc

7-13s-20w Ellis, Ks

1310 Bison Rd Hays, KS 67601 Raymond Trust #1

Job Ticket: 54448

DST#: 1

ATTN: Herb Deines

Test Start: 2013.10.10 @ 12:20:00

Tool Information

Drill Pipe: Heavy Wt. Pipe: Length: Drill Collar:

Length: 3753.00 ft Diameter: Length:

0.00 ft Diameter: 0.00 ft Diameter: 3.80 inches Volume: 52.64 bbl 2.70 inches Volume: 2.25 inches Volume: Total Volume:

0.00 bbl 0.00 bbl 52.64 bbl

Tool Weight: 2000.00 lb Weight set on Packer: 25000.00 lb Weight to Pull Loose: 45000.00 lb

Tool Chased 0.00 ft String Weight: Initial 38000.00 lb

Final 41000.00 lb

Drill Pipe Above KB: 11.00 ft Depth to Top Packer: 3762.00 ft

Depth to Bottom Packer: 3853.00 ft Interval between Packers: 91.00 ft Tool Length: 242.00 ft

Number of Packers:

3 Diameter: 6.75 inches

Tool Comments:

Tool Description	Length (ft)	Serial No.	Position	Depth (ft)	Accum. Lengths	
Change Over Sub	1.00			3743.00		
Shut In Tool	5.00			3748.00		
Hydraulic tool	5.00			3753.00		
Packer	4.00			3757.00	20.00	Bottom Of Top Packer
Packer	5.00			3762.00		
Stubb	1.00			3763.00		
Perforations	2.00			3765.00		
change Over Sub	1.00			3766.00		
Drill Pipe	63.00			3829.00		
Change Over Sub	1.00			3830.00		
Perforations	19.00			3849.00		
Recorder	0.00	8736	Inside	3849.00		
Recorder	0.00	6753	Outside	3849.00		
Blank Off Sub	4.00			3853.00	91.00	Tool Interval
Packer	4.00			3857.00		
Stubb	1.00			3858.00		
Recorder	0.00	8319	Below	3858.00		
perforations	1.00			3859.00		
Change Over Sub	1.00			3860.00		
Drill Pipe	124.00			3984.00	131.00	Bottom Packers & Anchor

Total Tool Length: 242.00

Printed: 2013.10.10 @ 09:17:34 Trilobite Testing, Inc Ref. No: 54448

FLUID SUMMARY

TDI Inc

7-13s-20w Ellis, Ks

1310 Bison Rd Hays, KS 67601 Raymond Trust #1

Job Ticket: 54448

DST#: 1

ATTN: Herb Deines

Test Start: 2013.10.10 @ 12:20:00

Mud and Cushion Information

Mud Type:Gel ChemCushion Type:Oil A Pl:37 deg A PlMud Weight:9.00 lb/galCushion Length:ftWater Salinity:ppm

Viscosity: 52.00 sec/qt Cushion Volume: bbl

5.98 in³ Gas Cushion Type:

Resistivity: ohm.m Gas Cushion Pressure: psig

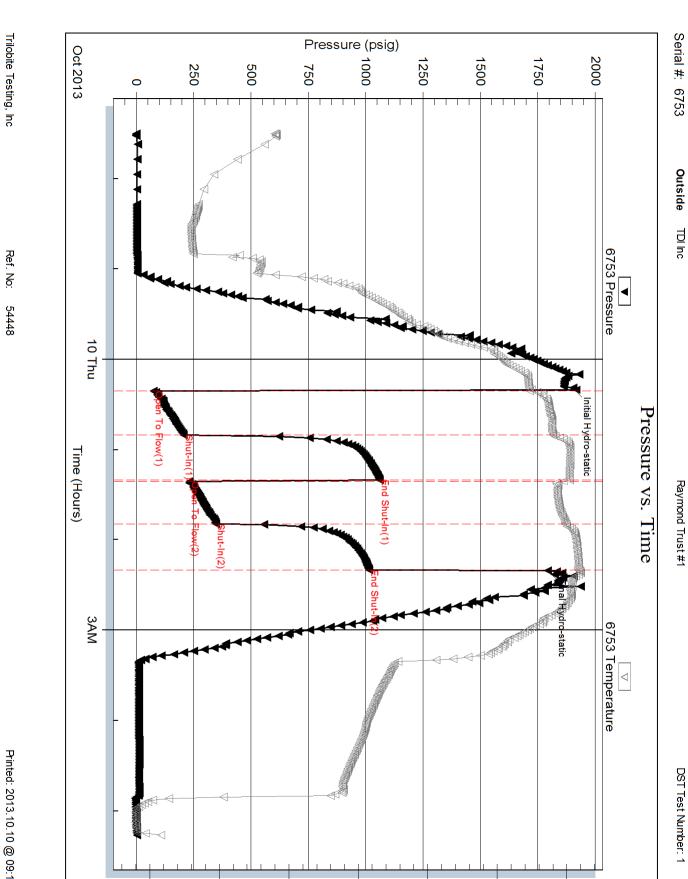
Salinity: 1600.00 ppm Filter Cake: 1.00 inches

Recovery Information

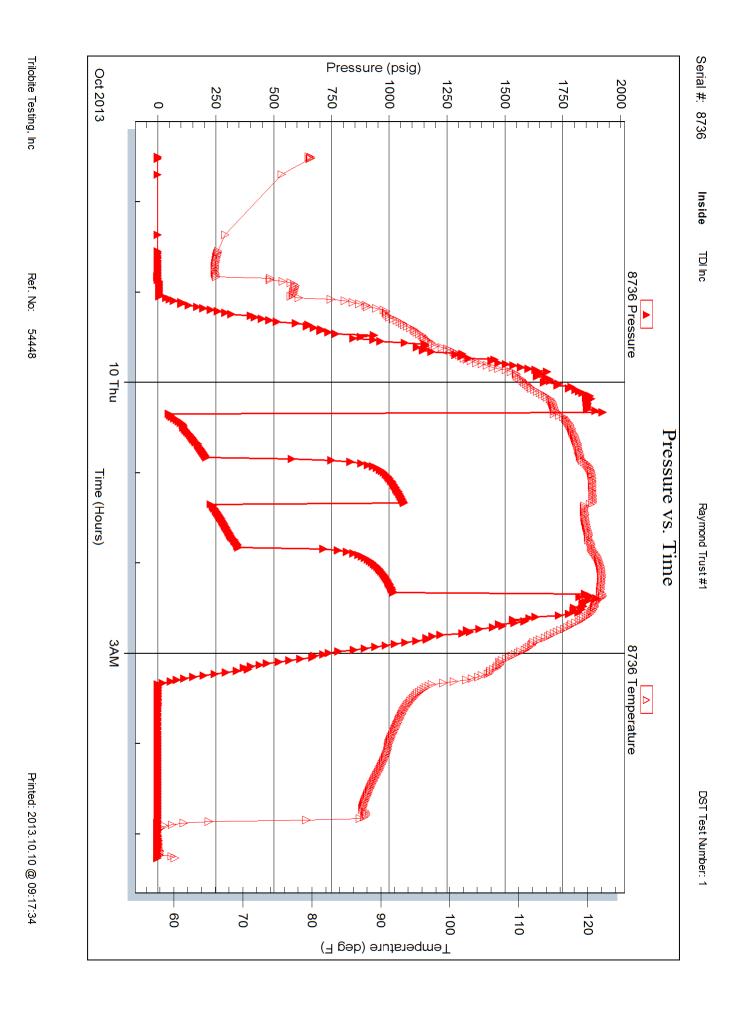
Water Loss:

Recovery Table

	Length ft	Description	Volume bbl	
	370.00	GO 20%G 80%O	5.190	
	560.00	GMCO 20%G 20%M 60%O	7.855	
ĺ	0.00	120ft GIP	0.000	


Total Length: 930.00 ft Total Volume: 13.045 bbl

Num Fluid Samples: 0 Num Gas Bombs: 0 Serial #:


Laboratory Name: Laboratory Location:

Recovery Comments:

Trilobite Testing, Inc Ref. No: 54448 Printed: 2013.10.10 @ 09:17:34

Temperature (deg F)

60

70

80

90

Temperature (deg F)

110

100

120

(P) TRILOBITE

30

30

Final Flow _

Final Shut-In_

Tost Ticket

Total 1812

MP/DST Disc't

ESTING INC. 1515 Commerce Parkway	Hays, Kansas 67601	89.53	54448	
Well Name & No. Raymond Trust # Company TDI INC Address 1310 Bison Rd Hays	K3 67601	2148	кв 2140	2013 GL
Co. Rep / Geo. Henb DeiNes Location: Sec. 7 Twp. 13 5	Rge. <u>20 W</u> Co. <u>E//.</u>	outhwind *	State	' S
Interval Tested 3762 - 3853 Anchor Length 9/ Top Packer Depth 3757, 3762 Bottom Packer Depth 3853 Total Depth 3890 Blow Description IFP-30-Bob IN Hmin	Drill Pipe Run 3753 Drill Collars Run 0	Mı Vis	ud Wt9.2 s52 L6.0	
ISI-30- Blowback FF-30- BOB IN 3mil FSI-30- Built to 2	١			
Rec 370 Feet of GD 20%G Rec 560 Feet of GMCO		80 ‰il	%water	%mud 20 %mud
Rec O Feet of 120 fb GIP	%gas		%water %water	%mud

Rec 560	Feet of GMCO		20 %gas	60 %oil	%water	20 %mud
RecO	Feet of 120 fb GI	P	%gas	%oil	%water	%mud
Rec	Feet of		%gas	%oil	%water	%mud
Rec	Feet of		%gas	%oil	%water	%mud
Rec Total 93	O BHT /22	Gravity 37	_ API RW	_@°F Chlo	rides	ppm
(A) Initial Hydrostatic	1904	Test 1150		T-On Location	820	28
(B) First Initial Flow_	76	1			2130	
(C) First Final Flow _	206	☐ Safety Joint		T-Open	0020	
(D) Initial Shut-In	. W . 1			T-Pulled		68
(E) Second Initial Flo				T-Out	0516	100
(F) Second Final Flow		Mileage 4/	/	Comments_		
(G) Final Shut-In	1015	☐ Sampler		-		
(H) Final Hydrostatic	1794	Straddle 60		— □ Ruined S	hale Packer_	
		☐ Shale Packer_			acker	
Initial Open	30	☐ Extra Packer			oies	
Initial Shut-In	30	☐ Extra Recorder		Sub Total 0		

1812

☐ Day Standby __

☐ Accessibility

Sub Total __