Confidentiality Requested:

CORRECTION #1

KANSAS CORPORATION COMMISSION OIL & GAS CONSERVATION DIVISION 1147452

Form ACO-1 August 2013 Form must be Typed Form must be Signed All blanks must be Filled

WELL COMPLETION FORM WELL HISTORY - DESCRIPTION OF WELL & LEASE

OPERATOR: License #	API No. 15
Name:	Spot Description:
Address 1:	
Address 2:	Feet from North / South Line of Section
City: State: Zip:+	Feet from East / West Line of Section
Contact Person:	Footages Calculated from Nearest Outside Section Corner:
Phone: ()	
CONTRACTOR: License #	GPS Location: Lat:, Long:
Name:	(e.g. xx.xxxx) (e.gxxx.xxxxx)
Wellsite Geologist:	Datum: NAD27 NAD83 WGS84
Purchaser:	County:
Designate Type of Completion:	Lease Name: Well #:
	Field Name:
	Producing Formation:
	Elevation: Ground: Kelly Bushing:
	Total Vertical Depth: Plug Back Total Depth:
CM (Coal Red Mathana)	Amount of Surface Pipe Set and Cemented at: Feet
\square Cathodic \square Other (Core. Expl., etc.):	Multiple Stage Cementing Collar Used? Yes No
If Workover/Re-entry: Old Well Info as follows:	If yes, show depth set: Feet
Operator:	If Alternate II completion, cement circulated from:
Well Name:	feet depth to:w/sx cmt.
Original Comp. Date: Original Total Depth:	
Deepening Re-perf. Conv. to ENHR Conv. to SWD	Drilling Fluid Management Plan
Plug Back Conv. to GSW Conv. to Producer	(Data must be collected from the Reserve Pit)
	Chloride content: ppm Fluid volume: bbls
Commingled Permit #: Dual Commingled Devreit #:	Dewatering method used:
Dual Completion Permit #:	
	Location of fluid disposal if nauled offsite:
	Operator Name:
	Lease Name: License #:
Soud Date or Date Deschod TD Completion Date or	Quarter Sec Twp S. R East West
Recompletion Date Recompletion Date Recompletion Date	County: Permit #:

AFFIDAVIT

I am the affiant and I hereby certify that all requirements of the statutes, rules and regulations promulgated to regulate the oil and gas industry have been fully complied with and the statements herein are complete and correct to the best of my knowledge.

Submitted Electronically

KCC Office Use ONLY
Confidentiality Requested
Date:
Confidential Release Date:
Wireline Log Received
Geologist Report Received
UIC Distribution
ALT I II III Approved by: Date:

1147452

Operator Name:	Lease Name:	. Well #:
Sec TwpS. R East _ West	County:	

INSTRUCTIONS: Show important tops of formations penetrated. Detail all cores. Report all final copies of drill stems tests giving interval tested, time tool open and closed, flowing and shut-in pressures, whether shut-in pressure reached static level, hydrostatic pressures, bottom hole temperature, fluid recovery, and flow rates if gas to surface test, along with final chart(s). Attach extra sheet if more space is needed.

Final Radioactivity Log, Final Logs run to obtain Geophysical Data and Final Electric Logs must be emailed to kcc-well-logs@kcc.ks.gov. Digital electronic log files must be submitted in LAS version 2.0 or newer AND an image file (TIFF or PDF).

Drill Stem Tests Taken Yes No			🗌 L	pg Formation (Top), Depth and Datum			Sample
Samples Sent to Geological Survey		Yes No	Nam	e		Тор	Datum
Cores Taken Electric Log Run		Yes No					
List All E. Logs Run:							
		CASING Report all strings set-c	RECORD Ne	ew Used ermediate, producti	on, etc.		
Purpose of String	Size Hole Drilled	Size Casing Set (In O.D.)	Weight Lbs. / Ft.	Setting Depth	Type of Cement	# Sacks Used	Type and Percent Additives
		ADDITIONAL	CEMENTING / SQU	JEEZE RECORD			
Purpose: Perforate	Depth Top Bottom	Type of Cement	# Sacks Used		Type and Pe	ercent Additives	
Protect Casing Plug Back TD							
Plug Off Zone							
Did you perform a hydraulic	fracturing treatment of	on this well?		Yes	No (If No, ski	o questions 2 an	ad 3)
Does the volume of the tota	I base fluid of the hydr	aulic fracturing treatment ex	ceed 350,000 gallons	? Yes	No (If No, ski	o question 3)	
Was the hydraulic fracturing	treatment information	n submitted to the chemical of	disclosure registry?	Yes	No (If No, fill o	out Page Three o	of the ACO-1)

Shots Per Foot	PERFORATION RECORD - Bridge Plugs Set/Type Specify Footage of Each Interval Perforated					e		Acid, Fracture, Shot, Ce (Amount and King	ement Squeeze Record I of Material Used)	Depth
TUBING RECORD:	Size: Set At: Packer A			r At:	Liner F	Run:	No			
Date of First, Resumed	I Production	on, SWD or ENHF	} .	Producing Me	ethod:	ping	Gas Lift	Other (Explain)		
Estimated Production Per 24 Hours		Oil Bb	ls.	Gas	Mcf	Wate	er	Bbls.	Gas-Oil Ratio	Gravity
DISPOSITI		۵S [.]			METHOD					3\/ΔI ·
	ented Sold Used on Lease Open Hole Perf. Used (Sub		Un COMPLE	Comp. ACO-5)	Commingled (Submit ACO-4)					
(It vented, Su	ibmit ACO-	-18.)		Other (Specify)						

Summary of Changes

Lease Name and Number: SCHMIDT 'C' 6-29 API/Permit #: 15-081-22014-00-00 Doc ID: 1147452 Correction Number: 1 Approved By: NAOMI JAMES

Field Name	Previous Value	New Value
Approved Date	06/13/2013	06/14/2013
Perf_Material_4	RBP @ 4546	Set CIBP @ 5300'. RBP @ 4546
Production Interval #1	LKC:4519-4677 Morr:5315-5321	LKC:4519-4677
Production Interval #2	Miss: 5596-5635	
Save Link	//kcc/detail/operatorE ditDetail.cfm?docID=11 46236	//kcc/detail/operatorE ditDetail.cfm?docID=11 47452

CONFIDENTIAL WELL COMPLETION FORM

1146236

Form ACO-1 June 2009 Form Must Be Typed Form must be Signed All blanks must be Filled

WELL COMPLETION FORM

	LICTORY			
VVELL	HISTORT	- DESCRIP	WELL &	LEASE

OPERATOR: License #	API No. 15
Name:	Spot Description:
Address 1:	
Address 2:	Feet from North / South Line of Section
City: State: Zip:+	Feet from Cast / West Line of Section
Contact Person:	Footages Calculated from Nearest Outside Section Corner:
Phone: ()	
CONTRACTOR: License #	County:
	Lesse Name: Well #*
	Field Name:
Purchasor:	Producing Formation:
	Elevation. Ground Keiry Bushing
	Amount of Surface Pipe Set and Cemented at: Feet
Gas D&A ENHR SIGW	Multiple Stage Cementing Collar Used?
GG GSW Temp. Abd.	If yes, show depth set: Feet
CM (Coal Bed Methane)	If Alternate II completion, cement circulated from:
Cathodic Other (Core, Expl., etc.):	feet depth to:w/sx cmt.
If Workover/Re-entry: Old Well Into as follows:	
Operator:	Drilling Fluid Management Plan
Well Name:	(Data must be collected from the Reserve Pit)
Original Comp. Date: Original Total Depth:	Chloride content: ppm Fluid volume: bbls
Deepening Re-perf. Conv. to ENHR Conv. to SWD	Downstering method used:
Conv. to GSW	Dewalening method used.
Plug Back: Plug Back Total Depth	Location of fluid disposal if hauled offsite:
Commingled Permit #:	Operator Name:
Dual Completion Permit #:	
SWD Permit #:	
ENHR Permit #:	Quarter Sec TwpS. R [] East [] West
GSW Permit #:	County: Permit #:
Spud Date or Date Reached TD Completion Date or Recompletion Date Recompletion Date Recompletion Date	

AFFIDAVIT

I am the affiant and I hereby certify that all requirements of the statutes, rules and regulations promulgated to regulate the oil and gas industry have been fully complied with and the statements herein are complete and correct to the best of my knowledge.

Submitted Electronically

KCC Office Use ONLY
Letter of Confidentiality Received
Date:
Confidential Release Date:
Wireline Log Received
Geologist Report Received
UIC Distribution
ALT I II III Approved by: Date:

KOLAR Document ID: 1146236

Operator Nam	ne:			Lease Name:	Well #:
Sec	Twp	S. R	East West	County:	

Page Two

INSTRUCTIONS: Show important tops of formations penetrated. Detail all cores. Report all final copies of drill stems tests giving interval tested, time tool open and closed, flowing and shut-in pressures, whether shut-in pressure reached static level, hydrostatic pressures, bottom hole temperature, fluid recovery, and flow rates if gas to surface test, along with final chart(s). Attach extra sheet if more space is needed.

Final Radioactivity Log, Final Logs run to obtain Geophysical Data and Final Electric Logs must be emailed to kcc-well-logs@kcc.ks.gov. Digital electronic log files must be submitted in LAS version 2.0 or newer AND an image file (TIFF or PDF).

Drill Stem Tests Taken	acate)	Y	′es 🗌 No	[og Formatio	n (Top), Depth a	and Datum	Sample	
Samples Sent to Geolo	aical Survey		les No	1	Name	Э		Тор	Datum	
Cores Taken Electric Log Run Geologist Report / Mud List All E. Logs Run:	Logs	□ Y □ Y □ Y	és ☐ No és ☐ No és ☐ No							
		Rep	CASING ort all strings set-c	RECORD] Ne	w Used	on, etc.			
Purpose of String	Size Hole Drilled	Siz	ze Casing et (In O.D.)	Weight Lbs. / Ft.		Setting Depth	Type of Cement	# Sacks Used	Type and Percent Additives	
[1		ADDITIONAL	CEMENTING /	SQU	EEZE RECORD				
Purpose:	Purpose: Depth Top Bottom Perforate Protect Casing Plug Back TD Plug Off Zone		Type of Cement # Sacks		Used Type			and Percent Additives		
Protect Casing Plug Back TD Plug Off Zone										
 Did you perform a hydra Does the volume of the Was the hydraulic fractu 	aulic fracturing treatme total base fluid of the uring treatment informa	ent on this v hydraulic fr ation submi	vell? acturing treatment tted to the chemic	exceed 350,000 al disclosure regi	gallo stry?	Nes Yes	 No (If No, s No (If No, s No (If No, f 	kip questions 2 ar kip question 3) ill out Page Three	nd 3) of the ACO-1)	
Date of first Production/Inj Injection:	jection or Resumed Pr	oduction/	Producing Meth	iod:		Gas Lift 🗌 O	ther <i>(Explain)</i>			
Estimated Production Per 24 Hours	Oil	Bbls.	Gas	Mcf	Icf Water Bbls. Gas-Oil Ratio				Gravity	
DISPOSITION	N OF GAS:		N		OF COMPLETION: PRODUCTION INTERV				ON INTERVAL:	
Vented Sold (If vented, Subn	Used on Lease		Open Hole	_ Perf C <i>(S</i>	Dually Comp. Commingled (Submit ACO-5) (Submit ACO-4)		nit ACO-4)			
Shots Per Per Foot	foration Perfor Top Botte	ation om	Bridge Plug Type	Bridge Plug Set At		Acid,	Fracture, Shot, C (Amount and Ki	ementing Squeezend of Material Used)	Record	
TUBING RECORD:	Size:	Set At:		Packer At:						

Form	ACO1 - Well Completion
Operator	McCoy Petroleum Corporation
Well Name	SCHMIDT 'C' 6-29
Doc ID	1146236

Perforations

Shots Per Foot	Perforation Record	Material Record	Depth
4	St. Louis: 5632-5635	AC: 500gals 15% NE- FE	5635
4	St. Louis "A": 5596- 5600	AC: 500gals 15% NE- FE	5600
4	Morrow: 5315-5321	AC:250gals 7.5% MCA	5321
4	LKC Swope: 4674- 4677	RBP @ 4546	4677
4	LKC "G": 4519-4524	AC: 1000gals 15% NE-FE	4677

Form	ACO1 - Well Completion
Operator	McCoy Petroleum Corporation
Well Name	SCHMIDT 'C' 6-29
Doc ID	1146236

Casing

Purpose Of String	Size Hole Drilled	Size Casing Set	Weight	Setting Depth	Type Of Cement	Number of Sacks Used	Type and Percent Additives
Surface	12.25	8.625	24	1829	Class A	600	3%CC, 2%Gypse al, 2%Mesob eads, 1/4#/sx Floseal
Production	7.875	5.5	15.5	5697	ASC	250	1500gals Mudflush, 5bbls wtr spacer / 6%Gyp, 10%Salt, 2%Gel, 5#/sx Gils, .5% FL- 160, 1/4#/sx Flocele

Conservation Division Finney State Office Building 130 S. Market, Rm. 2078 Wichita, KS 67202-3802

Mark Sievers, Chairman Thomas E. Wright, Commissioner Shari Feist Albrecht, Commissioner

Phone: 316-337-6200 Fax: 316-337-6211 http://kcc.ks.gov/

Sam Brownback, Governor

June 07, 2013

Scott Hampel McCoy Petroleum Corporation 8080 E CENTRAL STE 300 WICHITA, KS 67206-2366

Re: ACO1 API 15-081-22014-00-00 SCHMIDT 'C' 6-29 NW/4 Sec.29-30S-31W Haskell County, Kansas

Dear Production Department:

We are herewith requesting that the Well Completion Form ACO-1 and attached information for the subject well be held confidential for a period of two years.

Should you have any questions or need additional information regarding subject well, please contact our office.

Respectfully, Scott Hampel

ACO -1 Supplemental Information

SAMPLE TOPS: McCoy Petroleum Corp Schmidt "C" #6-29 330'FNL & 660'FWL Sec. 29-30S-31W Haskell County, KS KB: 2856' 4167 -1311 4228 -1372 Heebner Lansing Lansing 'G' 4520 -1664 4671 -1815 Stark
 Swope Por.
 4676 -1820

 Hushpuckney
 4752 -1896

 Hertha Por.
 4769 -1913

 Marmaton
 4858
 -2002

 Marmaton
 'B'
 4884
 -2028

 Pawnee
 4965
 -2109
 -2109
 5018 -2162 Cherokee 5244 -2388 5290 -2434 Atoka Atoka Morrow Sh. 5290 2... 5370 -2514 Chester Marker 5420 -2564 St. Genevieve 5474 -2618 St. Louis 'A' 5599 -2743 St. Louis 'B' 5635 -2779 RTD 5700 -2844 LOG TOPS: McCoy Petroleum Corp Schmidt "C" #6-29 330'FNL & 660'FWL Sec. 29-30S-31W Haskell County, KS KB: 2856' 4166 -1310 4226 -1370 Heebner Lansing Lansing `G' 4520 -1664 Stark 4667 -1811 Swope Por. 4674 -1818 Hushpuckney 4748 -1892 4765 -1909 Hertha Por. 4854 -1998 Marmaton Marmaton 'B' 4878 -2022 4960 -2104 Pawnee 5014 -2158 Cherokee Atoka 5240 -2384 Morrow Sh. 5286 -2430 5370 -2514 Chester Chester Marker 5413 -2557 St. Genevieve 5470 -2614 St. Louis 'A' 5596 -2740 St. Louis 'B' 5632 -2776 LTD 5698 -2842

ALLIED OIL & GAS SERVICES, LLC 052695

Federal Tax 1.D.# 20-5975804

REMIT TO P.O. BOX 31 RUSSELL, KANSAS 67665 SERVICE POINT: Libera RANGE 31 W SEC. JOS CALLED OUT JOB START ON LOCATION JOB FINISH DATE 3/31 10:00 COUNTY Haskell STATE Kansas LEASE Schmidt WELL # C6-29 LOCATION Sublette Kansas OLD OR NEW (Circle one) CONTRACTOR Sterling TYPE OF JOB Surface OWNER HOLE SIZE 12 14 CEMENT Lead AMOUNT ORDERED 4505Ks ClassA T.D. CASING SIZE 85/8 1.814 DEPTH 2% sodium Metas Tirate, 2% Gupseal 25145K Flo-Seal Tail + 150 SKS Class C, 2% CC **TUBING SIZE** DEPTH DRILL PIPE DEPTH TOOL DEPTH PRES. MAX @ 17.90/ \$8055 07 MINIMUM 450 COMMON. MEAS, LINE SHOE JOINT POZMIX 0 CEMENT LEFT IN CSG. GEL @ PERFS. CHLORIDE @ DISPLACEMENT ASC. @ EQUIPMENT Class C 150 @ 24.49 GYPSEAL 846 @ 307 @ 37. PUMPTRUCK CEMENTER TimC #530-484 @1.4 HELPER Lenny B FID-SEAL @ BULK TRUCK 0 DRIVER Angel G # 457-251 @ BULK TRUCK @ 562-554 DRIVER Ricardo E 657.40 HANDLING @ 2.481 630. MILEAGE Drayage 1045. 80 0 \$2,719 **REMARKS:** TOTAL \$20, 709. Thank You SERVICE 814 DEPTH OF JOB PUMP TRUCK CHARGE \$2,213.79 EXTRA FOOTAGE @ MILEAGE @ @ 275.09 \$ 275,00/ MANIFOLD @ 4.4% 00 35 Light 1/chick 154 @ 7,7% 4269.5% 35 Heavy Vehicle CHARGE TO: Mc Coy TOTAL \$2,912.25 STREET ____ CITY____ STATE_ ZIP PLUG & FLOAT EQUIPMENT Guide Shoe @ 41.0.98 @ <u>44</u>(.94 @ <u>24</u> 88 @ <u>559.24</u> @ <u>131.04</u> AFU Float Shoe 444 Centralizer To: Allied Oil & Gas Services, LLC. 2m Cement Basket You are hereby requested to rent cementing equipment Top Plug and furnish cementer and helper(s) to assist owner or contractor to do work as is listed. The above work was TOTAL \$2,122.34 done to satisfaction and supervision of owner agent or

PRINTED NAME Calvin Mitkelson SIGNATURE Calut

contractor. I have read and understand the "GENERAL

TERMS AND CONDITIONS" listed on the reverse side.

SALES TAX (If Any) TOTAL CHARGES 125, 143, 13DISCOUNT 35.% IF PAID IN 30 DAYS

NET=\$16,733.

ALLIED OIL & GAS SERVICES, LLC 052696

REMITTO P.O. BOX 31 RUSSELL, KANSAS 67665	SERVICE POINT: L. berg
DATE 4/6/13 29 305 31 W	CALLED OUT ON LOCATION JOB START JOB FINISH
LEASE Schwidt- WELL #C. 6-29 LOCATION Suble OLD OR NEW (Circle one)	Hee Kansas Haskell Kansas
CONTRACTOR Sterling #5	OWNER
TYPE OF JOB Production	
HOLE SIZE 199 718 T.D. 5699	CEMENT D. 1.2 Ha cal
CASING SIZE 51/2. DEPTH 5, 699	AMOUNT ORDERED TOLE STOSKS (A:40.7
TUBING SIZE DEPTH	class A. Poz. Gel Conent 250 SKS class H 1 2 Guass
DRILL PIPE DEPTH	10% selt 2% Gel 5#/5K Gilsonite. 5%74-160
TOOL DEPTH	······································
PRES. MAX 2 000 MINIMUM	COMMON 30 @ 17.99 \$537.99
MEAS. LINE SHOE JOINT 42'	POZMIX 20 @ 9.357 \$187. 97
CEMENT LEFT IN CSG. 42	GEL <u>2</u> @ 23. 49 \$ 41, 89
PERFS.	CHLORIDE@
DISPLACEMENT 135	ASC@
EQUIPMENT	710 seal 2.5 @
	ASCA 300 @ 20.94 \$1.270.97
PLIMPTRUCK CEMENTER TIM C	71-16D 117 @ 18,94 \$2,211,37
#S30-984 HELPER Law R	Gilsonite 1,250 @ 94 \$1,225 0%
BULK TRUCK	Superflush 18 @ 58,79 # 704, 497
#457-251 DRIVER Anal G	
BULK TRUCK	@
# DRIVER	@
	HANDLING 371.04 @ 2.48 49.20. 4 MILEAGE Drayege 571.90 @ 2.69 41.48.94
REMARKS:	TOTAL #13, 5 88. 63
	SERVICE
Additional Ars. le only clarged for	
12 of 115,	DEPTH OF JOB 5, 644
	PUMP TRUCK CHARGE
	EXTRA FOOTAGE@
	MILEAGE @
	MANIFOLD @ 200. 7 \$200. 7
	Light Vehicle 35 @ 1. 17 \$ 159. 7
automme A A Dilis	AUSIN (1 - 2 6)(11 - 05 #1 220 007
CHARGETO: MELOY Petroleum	modifional Ars J @770, 7 Disca J
STREET	TOTAL #5,047. 4
CITYSTATEZIP	PLUG & FLOAT EQUIPMENT
To: Allied Oil & Gas Services, LLC. You are hereby requested to rent cementing equipment and furnish cementer and helper(s) to assist owner or contractor to do work as is listed. The above work was done to satisfaction and supervision of owner agent or contractor. I have read and understand the "GENERAL	Azu Flost shoe 1 @ 408, 37 \$ 408, 57 Letch down Plus 1 @ 324, 97 \$ 324, 97 Contralizer 10 @ 57, 37 \$ 513, 37 CMT Basket 2 @ 394, 37 \$ 138, 58 @ TOTAL \$ 2,094, 39

SALES TAX (If Any)

. IF PAID IN 30 DAYS

TERMS AND CONDITIONS" listed on the reverse side.

PRINTED NAME alwin Mikkelson 1 SIGNATURE (

Natural Gas • Crude Oil **Exploration & Production** McCOY PETROLEUM CORPORATION Wichita, Kansas Scale 1:240 (5"=100') Imperial Measured Depth Log Well Name: Schmidt 'C' #6-29 Location: Sec. 29 - T30S - R31W, Haskell County, KS License Number: API #: 15-081-22014 Region: Lette SE Spud Date: March 29, 2013 Drilling Completed: April 5, 2013 Surface Coordinates: 330' FNL & 660' FWL Bottom Hole **Coordinates:** Ground Elevation (ft): 2843' K.B. Elevation (ft): 2856' Logged Interval (ft): 4000' To: 5700' Total Depth (ft): 5700' RTD 5698' LTD Formation: Mississippian Type of Drilling Fluid: Chemical Mud Printed by MUD.LOG from WellSight Systems 1-800-447-1534 www.WellSight.com

OPERATOR

Company: McCoy Petroleum Corporation, License #5003 Address: 8080 E. Central Ave. Suite 300 Wichita, KS 67206

GEOLOGIST

Name: Evan Stone Company: McCoy Petroleum Corporation Address: 8080 E. Central Ave. Suite 300 Wichita, KS 67206

REMARKS

Surface Casing: Spud at 7:15 pm on 03/29/13. Drilled 12-1/4" to 1833'. Ran 43 joints of new 24#, 8-5/8" casing. Tallied 1814.' Set at 1829' KB. Welded straps on bottom 3 joints, tacked collars on the remainder. Centralizers (7) on joints 1;4;6;8;10;12;39. Basket at 120'. Float insert in top of 1st joint. Cemented with 450 sks Class A; 2% Gypseal, 3% CC, 2% Metsobeads & 1/4# FS; Plus tailed with 150 sks Class A with 2% Gel; 2% CC. Cement did circulate. Plug down at 10:45 am on 03/31/13. Allied Cementing ticket #052695. Deviation Survey Taken @ 1833' = $1-1/2^{\circ}$

<u>LITHOL</u> OGY		LEGEND Salt 🔤 Glaucon	ite <u>O</u> IL/GAS S	HOW
Chert Conglomera Dolomite Gypsum Limestone Oolitic Is Cherty Is	te	Shale Pyrite Carb shale Sand Sandy shale Silt Siltstone Sandstone STRINGER Fill Dolomite Supsum	Case Gase Gase Case	s show od r or ad
Salidy is Shaly is TTTT Mrist		Calcite Siltstone Chert Sandsto	ne	losity
SCHMIDT 'C' #6-29 ROP (Min/Ft) Gamma (API)	DEPTH	SAMPLE DESCRIPTIONS	REMARKS	TOTAL GAS TG (Units)
0 ROP (Min/Ft) 5 0 Gamma (API) 150	3950	McCoy Petroleum Corporation		0 TG (Units) 1000
		Schmidt 'C' #6-29 330' FNL & 660' FWL Sec. 29 - T30S - R31W Haskell County, KS		
		API: 15-081-22014		
		Sterling Drilling: Rig #5		
0 ROP (mm/Fi) 5 0 example (API) 150	4000	Start 10' wet & dry samples @ 4000' Limestone: white-tan, fxIn, chalky, no vis porosity		0 TG (Units) 1000
		Limestone: white-tan, fxIn, chalky, sucrosic, scattered poor vuggy-interxIn porosity, no shows or odor		
	4050	Limestone: mix of tan-brown, fxln, sl chalky, fossiliferous, no vis porosity, and white-tan, fxln, chalky, sl sucrosic, no vis porosity		
		Mix of Limestone: (as above), and Shale: dk gray-brown, silty		
		Limestone: gray-tan-brown, vf-fxln, sucrosic, fossiliferous, scattered poor pp porosity, no shows or odor		

	4100	Limestone: gray-tan, fxIn, sucrosic, sI chalky, sI fossiliferous, poor pp-vuggy porosity, no shows or odor Limestone: It gray-tan, fxIn, sucrosic, sI chalky, sI fossiliferous, poor-fair vuggy porosity, no shows or odor Shale: dk gray-dk brown		
	4150	Shale: black-dk gray, carbonaceous Limestone: It gray-tan, fxIn, sucrosic, sI chalky, poor-fair vuggy porosity, no shows or odor, trc opaque white chert Mix of Limestone: (as above) and Shale: dk gray-brown	HEEBNER	
	4200	Shale: black, carbonaceous Shale: gray-dk brown, trc green-red Limestone: gray-brown, fxln, dense, no vis porosity, trc opaque white chert	4167' (-1311)	
0 ROP (Min/Ft) 5 0 Gimma (API) 150	4200	Limestone: tan-gray-It brown, fxIn, dense, chalky, fossiliferous, no vis porosity Shale: gray-green-It brown-red	LANSING	0 TG (Units) 1000 1 1 1 1 1 <
	4250	Limestone: It gray-tan-white, txin, dense, sl chalky, fossiliferous, no vis porosity, scattered opaque white-dk gray chert, trc pyrite inclusions Shale: gray-green-red Shale: dk gray-green-red	4220 (1972)	
		Mix of Shale: (as above) and Limestone: white-gray-tan, fxIn, dense, chalky, fossiliferous, no vis porosity, trc gray chert		
		Limestone: white-gray-tan, vf-fxln, chalky, fossiliferous, poor-fair vuggy-interxln porosity, no shows or odor		

CFS @ 4530'-		بليب ه يب	in tray w/ fair odor on break sl show gas hubbles			
			in tray w/ ian odor on break, si snow gas bubbles			
		<u></u>				
		ці ф				
			Shale: dk gray-green			
	4550					
		<u> </u>	Lineartenes white measure fronds denote al			
			Limestone: white-gray-tan, t-mxin, dense, si			
			chalky, fossiliferous, no vis porosity, trc opaque			
			gray chert			
			Limestone: tan-gray, f-mxln, dense, sl			
			fossiliferous, increased chert, trc scattered vugs,			
			no vis porosity, no shows or odor			
		<u></u>				
			1		┠╋╎┼┼┼┼┼┼	
	4600					1000
			Mix of Shale: It grav-green-red. and Limestone:			
			grav-tan-brown, fxln. dense. fossiliferous. no vis			
		<u> </u>	porosity		$ \{ + + + + + + + + + $	
		<u> </u>				
					┝┫┼┼┼┼┼┤	
		-	Limestone: It gray-tan-white, fxIn, soft,			
			v chalky, sl fossiliferous, few scattered vugs, no			
			shows or odor, trc dk gray chert			
			Limestone: tan-brown, vf-fxln, dense, sl chalky,			
			Limestone: tan-brown, vf-fxln, dense, sl chalky, abundant brown-gray chert, no vis porosity			
			Limestone: tan-brown, vf-fxln, dense, sl chalky, abundant brown-gray chert, no vis porosity			
	4650		Limestone: tan-brown, vf-fxln, dense, sl chalky, abundant brown-gray chert, no vis porosity			
	4650		Limestone: tan-brown, vf-fxln, dense, sl chalky, abundant brown-gray chert, no vis porosity			
	4650		Limestone: tan-brown, vf-fxln, dense, sl chalky, abundant brown-gray chert, no vis porosity			
	4650		Limestone: tan-brown, vf-fxln, dense, sl chalky, abundant brown-gray chert, no vis porosity			
	4650		Limestone: tan-brown, vf-fxln, dense, sl chalky, abundant brown-gray chert, no vis porosity			
	4650		Limestone: tan-brown, vf-fxln, dense, sl chalky, abundant brown-gray chert, no vis porosity Limestone: tan-brown, vf-fxln, dense, sl chalky, decreased chert, no vis porosity			
	4650		Limestone: tan-brown, vf-fxln, dense, sl chalky, abundant brown-gray chert, no vis porosity Limestone: tan-brown, vf-fxln, dense, sl chalky, decreased chert, no vis porosity			
	4650		Limestone: tan-brown, vf-fxln, dense, sl chalky, abundant brown-gray chert, no vis porosity Limestone: tan-brown, vf-fxln, dense, sl chalky, decreased chert, no vis porosity	STARK		
	4650		Limestone: tan-brown, vf-fxln, dense, sl chalky, abundant brown-gray chert, no vis porosity Limestone: tan-brown, vf-fxln, dense, sl chalky, decreased chert, no vis porosity	STARK		
	4650		Limestone: tan-brown, vf-fxln, dense, sl chalky, abundant brown-gray chert, no vis porosity Limestone: tan-brown, vf-fxln, dense, sl chalky, decreased chert, no vis porosity Shale: black, carbonaceous	STARK 4672' (-1816)		
	4650		Limestone: tan-brown, vf-fxIn, dense, sI chalky, abundant brown-gray chert, no vis porosity Limestone: tan-brown, vf-fxIn, dense, sI chalky, decreased chert, no vis porosity Shale: black, carbonaceous	STARK 4672' (-1816) SWOPE Ø		
	4650		Limestone: tan-brown, vf-fxIn, dense, sI chalky, abundant brown-gray chert, no vis porosity Limestone: tan-brown, vf-fxIn, dense, sI chalky, decreased chert, no vis porosity Shale: black, carbonaceous	STARK 4672' (-1816) SWOPE Ø 4679' (-1823)		
	4650		Limestone: tan-brown, vf-fxIn, dense, sI chalky, abundant brown-gray chert, no vis porosity Limestone: tan-brown, vf-fxIn, dense, sI chalky, decreased chert, no vis porosity Shale: black, carbonaceous	STARK 4672' (-1816) SWOPE Ø 4679' (-1823)		
CFS @ 4685'	4650		Limestone: tan-brown, vf-fxln, dense, sl chalky, abundant brown-gray chert, no vis porosity Limestone: tan-brown, vf-fxln, dense, sl chalky, decreased chert, no vis porosity Shale: black, carbonaceous Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, It	STARK 4672' (-1816) SWOPE Ø 4679' (-1823) 6:00 AM - 4/3/2013		
CFS @ 4685'-	4650		Limestone: tan-brown, vf-fxln, dense, sl chalky, abundant brown-gray chert, no vis porosity Limestone: tan-brown, vf-fxln, dense, sl chalky, decreased chert, no vis porosity Shale: black, carbonaceous Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, It sat stain, sl show light fo, strong odor, bleeding	STARK 4672' (-1816) SWOPE Ø 4679' (-1823) 6:00 AM - 4/3/2013		
CFS @ 4685'-	4650		Limestone: tan-brown, vf-fxln, dense, sl chalky, abundant brown-gray chert, no vis porosity Limestone: tan-brown, vf-fxln, dense, sl chalky, decreased chert, no vis porosity Shale: black, carbonaceous Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, sl show light fo, strong odor, bleeding light oil droplets and trc slow streaming gas	STARK 4672' (-1816) SWOPE Ø 4679' (-1823) 6:00 AM - 4/3/2013		
CFS @ 4685'-	4650		Limestone: tan-brown, vf-fxln, dense, sl chalky, abundant brown-gray chert, no vis porosity Limestone: tan-brown, vf-fxln, dense, sl chalky, decreased chert, no vis porosity Shale: black, carbonaceous Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, It sat stain, sl show light fo, strong odor, bleeding light oil droplets and trc slow streaming gas bubbles on break	STARK 4672' (-1816) SWOPE Ø 4679' (-1823) 6:00 AM - 4/3/2013		
CFS @ 4685'-	4650		Limestone: tan-brown, vf-fxIn, dense, sI chalky, abundant brown-gray chert, no vis porosity Limestone: tan-brown, vf-fxIn, dense, sI chalky, decreased chert, no vis porosity Shale: black, carbonaceous Limestone: tan, fxIn, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, It sat stain, sI show light fo, strong odor, bleeding light oil droplets and trc slow streaming gas bubbles on break	STARK 4672' (-1816) SWOPE Ø 4679' (-1823) 6:00 AM - 4/3/2013		
CFS @ 4685'-	4650		Limestone: tan-brown, vf-fxIn, dense, sI chalky, abundant brown-gray chert, no vis porosity Limestone: tan-brown, vf-fxIn, dense, sI chalky, decreased chert, no vis porosity Shale: black, carbonaceous Limestone: tan, fxIn, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, It sat stain, sI show light fo, strong odor, bleeding light oil droplets and trc slow streaming gas bubbles on break	STARK 4672' (-1816) SWOPE Ø 4679' (-1823) 6:00 AM - 4/3/2013		
CFS @ 4685'-	4650		Limestone: tan-brown, vf-fxln, dense, sl chalky, abundant brown-gray chert, no vis porosity Limestone: tan-brown, vf-fxln, dense, sl chalky, decreased chert, no vis porosity Shale: black, carbonaceous Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, It sat stain, sl show light fo, strong odor, bleeding light oil droplets and trc slow streaming gas bubbles on break	STARK 4672' (-1816) SWOPE Ø 4679' (-1823) 6:00 AM - 4/3/2013		
CFS @ 4685'-	4650		Limestone: tan-brown, vf-fxln, dense, sl chalky, abundant brown-gray chert, no vis porosity Limestone: tan-brown, vf-fxln, dense, sl chalky, decreased chert, no vis porosity Shale: black, carbonaceous Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, sl show light fo, strong odor, bleeding light oil droplets and trc slow streaming gas bubbles on break	STARK 4672' (-1816) SWOPE Ø 4679' (-1823) 6:00 AM - 4/3/2013		
CFS @ 4685'-	4650		 Limestone: tan-brown, vf-fxln, dense, sl chalky, abundant brown-gray chert, no vis porosity Limestone: tan-brown, vf-fxln, dense, sl chalky, decreased chert, no vis porosity Shale: black, carbonaceous Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, sl show light fo, strong odor, bleeding light oil droplets and trc slow streaming gas bubbles on break Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, sl show light fo, strong odor, bleeding light oil droplets and trc slow streaming gas bubbles on break 	STARK 4672' (-1816) SWOPE Ø 4679' (-1823) 6:00 AM - 4/3/2013		
CFS @ 4685'-	4650		 Limestone: tan-brown, vf-fxln, dense, sl chalky, abundant brown-gray chert, no vis porosity Limestone: tan-brown, vf-fxln, dense, sl chalky, decreased chert, no vis porosity Shale: black, carbonaceous Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, sl show light fo, strong odor, bleeding light oil droplets and trc slow streaming gas bubbles on break Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, ssfo, fair odor 	STARK 4672' (-1816) SWOPE Ø 4679' (-1823) 6:00 AM - 4/3/2013		
CFS @ 4685'-	4650		 Limestone: tan-brown, vf-fxln, dense, sl chalky, abundant brown-gray chert, no vis porosity Limestone: tan-brown, vf-fxln, dense, sl chalky, decreased chert, no vis porosity Shale: black, carbonaceous Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, sl show light fo, strong odor, bleeding light oil droplets and trc slow streaming gas bubbles on break Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, sl show light fo, strong odor, bleeding light oil droplets and trc slow streaming gas bubbles on break 	STARK 4672' (-1816) SWOPE Ø 4679' (-1823) 6:00 AM - 4/3/2013		
CFS @ 4685'-	4650		 Limestone: tan-brown, vf-fxln, dense, sl chalky, abundant brown-gray chert, no vis porosity Limestone: tan-brown, vf-fxln, dense, sl chalky, decreased chert, no vis porosity Shale: black, carbonaceous Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, sl show light fo, strong odor, bleeding light oil droplets and trc slow streaming gas bubbles on break Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, sl show light fo, strong odor, bleeding light oil droplets and trc slow streaming gas bubbles on break 	STARK 4672' (-1816) SWOPE Ø 4679' (-1823) 6:00 AM - 4/3/2013		
CFS @ 4685'-	4650		 Limestone: tan-brown, vf-fxln, dense, sl chalky, abundant brown-gray chert, no vis porosity Limestone: tan-brown, vf-fxln, dense, sl chalky, decreased chert, no vis porosity Shale: black, carbonaceous Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, sl show light fo, strong odor, bleeding light oil droplets and trc slow streaming gas bubbles on break Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, sl show light fo, strong odor, bleeding light oil droplets and trc slow streaming gas bubbles on break 	STARK 4672' (-1816) SWOPE Ø 4679' (-1823) 6:00 AM - 4/3/2013		
CFS @ 4685	4650		 Limestone: tan-brown, vf-fxln, dense, sl chalky, abundant brown-gray chert, no vis porosity Limestone: tan-brown, vf-fxln, dense, sl chalky, decreased chert, no vis porosity Shale: black, carbonaceous Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, sl show light fo, strong odor, bleeding light oil droplets and trc slow streaming gas bubbles on break Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, sl show light fo, strong odor, bleeding light oil droplets and trc slow streaming gas bubbles on break Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, ssfo, fair odor 	STARK 4672' (-1816) SWOPE Ø 4679' (-1823) 6:00 AM - 4/3/2013		
CFS @ 4685	4650 4700		 Limestone: tan-brown, vf-fxln, dense, sl chalky, abundant brown-gray chert, no vis porosity Limestone: tan-brown, vf-fxln, dense, sl chalky, decreased chert, no vis porosity Shale: black, carbonaceous Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, sl show light fo, strong odor, bleeding light oil droplets and trc slow streaming gas bubbles on break Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, sl show light fo, strong odor, bleeding light oil droplets and trc slow streaming gas bubbles on break Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, ssfo, fair odor Limestone: brown, fxln, oolitic, good colicastic porosity is to fare the fare tan bright yellow fluorescence, lt sat stain, ssfo, fair odor 	STARK 4672' (-1816) SWOPE Ø 4679' (-1823) 6:00 AM - 4/3/2013		
	4650		 Limestone: tan-brown, vf-fxln, dense, sl chalky, abundant brown-gray chert, no vis porosity Limestone: tan-brown, vf-fxln, dense, sl chalky, decreased chert, no vis porosity Shale: black, carbonaceous Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, sl show light fo, strong odor, bleeding light oil droplets and trc slow streaming gas bubbles on break Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, sl show light fo, strong odor, bleeding light oil droplets and trc slow streaming gas bubbles on break Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, ssfo, fair odor Limestone: brown, fxln, oolitic, good oolicastic-trc fenestral porosity, bright yellow fluorescence 	STARK 4672' (-1816) SWOPE Ø 4679' (-1823) 6:00 AM - 4/3/2013		
	4650		 Limestone: tan-brown, vf-fxln, dense, sl chalky, abundant brown-gray chert, no vis porosity Limestone: tan-brown, vf-fxln, dense, sl chalky, decreased chert, no vis porosity Shale: black, carbonaceous Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, sl show light fo, strong odor, bleeding light oil droplets and trc slow streaming gas bubbles on break Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, sl show light fo, strong odor, bleeding light oil droplets and trc slow streaming gas bubbles on break Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, ssfo, fair odor Limestone: brown, fxln, oolitic, good oolicastic-trc fenestral porosity, bright yellow fluorescence, scattered It sat stain, ssfo, good oolicastic-trc fenestral porosity, bright yellow fluorescence, scattered It sat stain, ssfo, good oolicastic-trc fenestral porosity, bright yellow fluorescence, scattered It sat stain, ssfo, good oolicastic porosity, bright porosity, bright yellow fluorescence, scattered It sat stain, ssfo, good oolicastic-trc fenestral porosity, bright yellow fluorescence, scattered It sat stain, ssfo, good oolicastic porosity, scattered It sat stain, ssfo, good oolicastic-trc fenestral porosity, bright yellow fluorescence, scattered It sat stain, ssfo, good oolicastic-trc fenestral porosity, bright yellow fluorescence, scattered It sat stain, ssfo, good oolicastic porosity scattered It sat stain, ssfo, good oolicastic-trc fenestral porosity, bright yellow fluorescence, scattered It sat stain, ssfo, good oolicastic-trc fenestral porosity, bright yellow fluorescence, scattered It sat stain, ssfo, good oolicastic-trc fenestral porosity, scattered bright yellow fluorescence, scattered It sat stain, ssfo, good oolicastic-trc fenestral porosity, bright yellow fluorescence, scattered It	STARK 4672' (-1816) SWOPE Ø 4679' (-1823) 6:00 AM - 4/3/2013		
	4650		 Limestone: tan-brown, vf-fxln, dense, sl chalky, abundant brown-gray chert, no vis porosity Limestone: tan-brown, vf-fxln, dense, sl chalky, decreased chert, no vis porosity Shale: black, carbonaceous Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, sl show light fo, strong odor, bleeding light oil droplets and trc slow streaming gas bubbles on break Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, sl show light fo, strong odor, bleeding light oil droplets and trc slow streaming gas bubbles on break Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, ssfo, fair odor Limestone: brown, fxln, oolitic, good oolicastic-trc fenestral porosity, bright yellow fluorescence, scattered It sat stain, ssfo, good odor, trc bleeding oil droplets 	STARK 4672' (-1816) SWOPE Ø 4679' (-1823) 6:00 AM - 4/3/2013		
	4650		 Limestone: tan-brown, vf-fxln, dense, sl chalky, abundant brown-gray chert, no vis porosity Limestone: tan-brown, vf-fxln, dense, sl chalky, decreased chert, no vis porosity Shale: black, carbonaceous Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, sl show light fo, strong odor, bleeding light oil droplets and trc slow streaming gas bubbles on break Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, sl show light fo, strong odor, bleeding light oil droplets and trc slow streaming gas bubbles on break Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, ssfo, fair odor Limestone: brown, fxln, oolitic, good oolicastic-trc fenestral porosity, bright yellow fluorescence, scattered It sat stain, ssfo, good odor, trc bleeding oil droplets 	STARK 4672' (-1816) SWOPE Ø 4679' (-1823) 6:00 AM - 4/3/2013		
	4650		 Limestone: tan-brown, vf-fxln, dense, sl chalky, abundant brown-gray chert, no vis porosity Limestone: tan-brown, vf-fxln, dense, sl chalky, decreased chert, no vis porosity Shale: black, carbonaceous Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, sl show light fo, strong odor, bleeding light oil droplets and trc slow streaming gas bubbles on break Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, sl show light fo, strong odor, bleeding light oil droplets and trc slow streaming gas bubbles on break Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, ssfo, fair odor Limestone: brown, fxln, oolitic, good oolicastic-trc fenestral porosity, bright yellow fluorescence, scattered It sat stain, ssfo, good odor, trc bleeding oil droplets Limestone: tan-brown fxln dense contered 	STARK 4672' (-1816) SWOPE Ø 4679' (-1823) 6:00 AM - 4/3/2013		
	4650		 Limestone: tan-brown, vf-fxln, dense, sl chalky, abundant brown-gray chert, no vis porosity Limestone: tan-brown, vf-fxln, dense, sl chalky, decreased chert, no vis porosity Shale: black, carbonaceous Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, sl show light fo, strong odor, bleeding light oil droplets and trc slow streaming gas bubbles on break Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, sl show light fo, strong odor, bleeding light oil droplets and trc slow streaming gas bubbles on break Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, ssfo, fair odor Limestone: brown, fxln, oolitic, good oolicastic-trc fenestral porosity, bright yellow fluorescence, scattered It sat stain, ssfo, good odor, trc bleeding oil droplets Limestone: tan-brown, fxln, dense, scattered brown-gray chert no vis persoity for the der point of the provide the pr	STARK 4672' (-1816) SWOPE Ø 4679' (-1823) 6:00 AM - 4/3/2013		
	4650		 Limestone: tan-brown, vf-fxln, dense, sl chalky, abundant brown-gray chert, no vis porosity Limestone: tan-brown, vf-fxln, dense, sl chalky, decreased chert, no vis porosity Shale: black, carbonaceous Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, sl show light fo, strong odor, bleeding light oil droplets and trc slow streaming gas bubbles on break Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, sl show light fo, strong odor, bleeding light oil droplets and trc slow streaming gas bubbles on break Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, ssfo, fair odor Limestone: brown, fxln, oolitic, good oolicastic-trc fenestral porosity, bright yellow fluorescence, scattered It sat stain, ssfo, good odor, trc bleeding oil droplets Limestone: tan-brown, fxln, dense, scattered brown-gray chert, no vis porosity, faint odor, no chows pated 	STARK 4672' (-1816) SWOPE Ø 4679' (-1823) 6:00 AM - 4/3/2013		
	4650		 Limestone: tan-brown, vf-fxln, dense, sl chalky, abundant brown-gray chert, no vis porosity Limestone: tan-brown, vf-fxln, dense, sl chalky, decreased chert, no vis porosity Shale: black, carbonaceous Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, sl show light fo, strong odor, bleeding light oil droplets and trc slow streaming gas bubbles on break Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, sl show light fo, strong odor, bleeding light oil droplets and trc slow streaming gas bubbles on break Limestone: tan, fxln, oolitic, fair-good oolicastic porosity, scattered bright yellow fluorescence, lt sat stain, ssfo, fair odor Limestone: brown, fxln, oolitic, good oolicastic-trc fenestral porosity, bright yellow fluorescence, scattered It sat stain, ssfo, good odor, trc bleeding oil droplets Limestone: tan-brown, fxln, dense, scattered brown-gray chert, no vis porosity, faint odor, no shows noted 	STARK 4672' (-1816) SWOPE Ø 4679' (-1823) 6:00 AM - 4/3/2013		

	4750		Shale: It gray-brown, slity	HUSHPUCKNEY	
		×	Shale: black, carbonaceous	4752' (-1896)	
			limestone brown-tan fxln dense no vis		
			porosity, faint odor, no shows noted		
				HERTHAØ	
			Limestone: tan, fxln, dense, sl chalky, cherty,	4769' (-1913)	
			oolitic, poor-fair oolicastic porosity, no shows or	Mud-Co Mud Ck @ 4765'	
		φ	odor	8:20 AM 4/3/2013	
				WT: 9.1 VIS: 52 PV: 15 YP: 17	
			Shalar dk aray brown silty	CHL: 2,500 LCM: 2#	
			Shale. uk gray-brown, shty		
	4000	····			
0 ROP (Min/Fr) 5 0 Gamma (API) 150	4800		Mix of Shale: (as above) and Limestone:		0 🕻 TG (Units) 1000
			porosity, and Limestone: tan, fxln, oolitic,		
			poor-fair oolicastic porosity, trc dull yellow		
			indorescence, v famil odor, no vis snows		
$2 \leq$			Limestone: brown-tan, fxIn, sucrosic in part,		
			dense, nard, lossimerous, no vis porosity		
			Limestone: brown-tan-gray, fxln, dense, sl chalky sl fossiliferous, no vis porosity, sl odor		
			no vis shows		
	4850				
			Shale: dk gray-black, silty		
			Limestone: tan-gray, fxln, dense, sl chalky,	4858' (-2002)	
			inclusions, trc opaque gray chert		
			Mix of Limestone: (as above) and Shale:		
			gray-brown, silty, pyritic in part		
			Limestone: tan-gray, vf-fxln, dense, chalky, sl	4884" (-2028)	
			porosity, no shows or odor		
		<u> </u>			
	4900		Limestone: tan-gray, fxIn, dense. sl chalky. sl		
			fossiliferous, no vis porosity, scattered dk gray		
			Chert		
			Shale: dk grav		
		<u>hinnini</u>	Limestone: tan, fxln, dense, sl chalky,		
			fossiliferous, oolitic in part, no vis porosity,		
			Scallereu lan-yldy cherl		
	4950		Mix of Limestone: (as above) and Shale: dk		
			gray-black, silty, sl pyritic		
		×	Shale: black, carbonaceous	PAWNEE	

			sl fossiliferous, oolitic in part, poor-fair		
			inter-oolitic porosity, no vis shows, v faint odor,		
		<u> </u>	scattered opaque brown chert		
			Shale: dk gray-brown		
			Limestone: tan-brown, fxIn, chalky, cherty, sl		
			tossiliterous, no vis porosity		
	5000				
0 ROP (Min/Ft) 5	5000	с, p	Shale: black, carbonaceous		0 TG (Units) 1000
Gamma (API)				FT. SCOTT	
			Limestone: tan-white, fxIn, sI chalky,	5006' (-2150)	
			fossiliferous, oolitic in part, poor interxIn-		
		• <u>•</u> •	interoolitic porosity, no shows or odor	CHEBOKEE	
			Shale: black, carbonaceous	5018' (-2162)	
		· · · · · · · · · · · · · · · · · · ·		5010 (-2102)	
		┿┯┻╪			
			Limestone: tan-white, vf-fxln, fossiliferous,		
			dense, no vis porosity, scattered opaque		
			white-gray chert, it's rea-green sity shale		
			Limestone: tan-brown, fxln, sl chalky,		
			tossiliterous, si argillaceous, poor interxin		
	5050		shale and dk brown-grav chert		
			Shalo and an bronn gray onort		
			Mix of Limestone and Shale (as above)		
		<u> </u>	Mix of Linestone and Shale (as above)		
			Limestone: off white-tan-brown, f-mxIn, soft, sl		
			chalky, sl fossiliferous, argillaceous- sucrosic in		
			part, no vis porosity		
			Mix of Limestone: (as above) and Shale: dk		
	5100		gray-brown, trc calcite inclusions		
	5100				
			Limestone: white-tan, fxIn, soft, sI chalky,		
			sl fossiliferous, argillaceous-sucrosic, no vis		
			porosity		
			Limestone: tan-brown fxln_sl argillaceous_no		
			vis porosity, v faint odor, no vis shows		
		Þ	Shale: black-dk gray, carbonaceous		
			Limestone: tan, fxln, dense, cherty, fossiliferous,		
	5150		tew pieces w/ poor interxin porosity and spotty dull vellow fluorescence, v faint odor, no vis		
			shows		
			Limestone: tan-grav-brown, vfxln, dense, cherty		
			sl fossiliferous, no vis porosity,		
			Limestone: white-tan, f-vfxln, sl chalkv, sl chertv.		
			fair-good pp-interxIn porosity, It brown sat stain,		
			good odor on break, nsfo		

			Limestone: tan-gray-white, fxIn, dense, sI chalky,		
			cherty, si lossimerous,		
0 ROP/ In/Ft) 5 0 Gauge (API) 150	5200				
			Shale: dk grav-dk brown		
			ondioi di gray di bronn	Gas curve scale change @ 5210	Scele Change
			Limestone: dk gray, fxln, dense, hard,		
			si tossiliterous, no vis porosity		
			Limestone: dk gray-brown, vf-fxIn, dense, hard,		
			fossiliferous, no vis porosity, abundant It grav-red-black shale and opague brown chert		
				ΑΤΟΚΑ	
	5050		Shale: black-dk gray, carboniferous, pyritic	5244' (-2388)	
	5250				
			Limestone: dk gray, fxln, dense, hard, some argillaceous, fossilferous, no vis porosity,		
			abundant dk gray-black shale and opaque gray chert. trc calcite and glauconite		
			Limootonou dk grou dk brown ut fyln donoo		
			hard, sl argillaceous, some mottled,		
			silty shale, trc tan-gray chert, trc spotty		
			glauconite	MORROW SHALE	
			Shale: dk gray-dk brown	5290' (-2434)	
	5300		Shale: dk gray-red-green; Limestone: dk gray, fxln, fossiliferous,		
			no vis porosity, glauconitic in part, trc pyrite and calcite:		
			Sandstone: white, glauconitic, vf-fgr, sub		
			shows or odor		
CFS @ 5320'-			60" sample: Limestone & Shale (as above) (5% of sample) Sandstone: tan-brown, vf-fgr,		
			friable, sub angular clear qtz, lt sat stain, fair odor, no free oil		
			chalky, fossiliferous, no vis porosity, Sandstone:		
			(as above) and pale green shale		
			60" sample: Limestone & Sandstone: (as above),		
CFS @ 5350'-	5350		(5% of sample) Limestone: brown, oolitic, poor	6:00 AM - 4/4/2013	
			free oil		
			Shale: It gray-green-black, fissile, pyritic		
			Limestone: white-tan, fxln, dense, chalky	5370' (-2514)	
			fossiliferous, no vis porosity	· · /	
CFS @ 5380'-			Shale: It gray-dk gray-pale green, biotitic, free		
		- <u>P</u>	pyrite nodules		
			Shale: (as above)		
			Shalor (ap abovo) w/ tro l importance white ter		
0 ROP (Min/Ft) 5	5400		fxln, chalky, no vis porosity;		0 TG (Units) 500
V Leterminia (APU) 150			trc Sandstone clusters: white-gray, fgr, sub angular clear qtz, calc cmnt		

				Shale: It grav-green, biotitic, pyritic, fossiliferous		
				scattered free pyrite nodules, trc Sandstone		
	CFS @ 5420'-		<u>-P</u>	clusters: (as above)	CHESTER SAND	
				Sandstone: white-dk gray, fgr, angular-sub	5420' (-2564)	
				angular clear qtz, calc cmnt, v faint odor, no vis		
\square				Shows	Mud Co Mud Ck	
	CFS @ 5434'-			Shale: It gray, soft, sandy, fissile, sl biotitic, trc	@ 5435'	
				pyrite inclusions	10:20 AM 4/4/2013	
					WT: 9.2 VIS: 53	
				Shale: It gray, soft, sandy, platy-fissile, sl biotitic,	CHL: 2,200 LCM: 2.5#	
				abundant Sandstone clusters: white-gray, fgr, sub		
		5450				
				l'ann de mar a bhla da mar a bha de a bh		
				Limestone: white-tan, txin, dense, cherty, si chalky fossiliferous, no vis porosity, abundant		
				Shale: It gray, sandy, biotitic		
	2					
				Shale: gray-red-green, fossiliferous, pyritic	ST. GENEVIEVE	
				Limestone: tan-grav-white vf-fxln sandv sl	5474' (-2618)	
Ħ				chalky, fossiliferous, poor interxin porosity,		
				oolitic in part, trc poor oolicastic porosity, no		
				shows or odor		
			• • • • • • • • • • • • • •	Limestone: white-tan, fxIn, sandy, chalky, soft, sl		
				fossiliferous, poor interxIn porosity, no shows or		
		5500		odor		
		5500				
			, trittering	Limestone: dk gray-tan-brown, f-mxIn, dense, sl		
				chalky, fossiliferous, oolitic in part, no vis		
				porosity		
			<u> </u>	Limestone: white-tan-dk gray, fxIn, dense, some		
				arenaceous and friable, poor interxIn porosity, no		
				vis shows or odor, sl glauconitic		
	5			Limestone: white-tan, fxIn, dense, some		
			······································	arenaceous and friable, sl chalky, fossiliferous,		
				no vis porosity, scattered calcite and glauconite		
		5550				
		0000				
				Limestone: (as above), w/ trc Shale: green,		
Ħ				sandy, glauconitic		
H				Limestone: gray-tan-white, fxIn, dense, cherty, sl		
				спаіку, si tossiliterous, no vis porosity, trc green-red shale		
				groon rou shulo		
Ħ				Limestone: (as above), oolitic in part, poor		
				oolicastic porosity, no vis shows or odor,		
\vdash				scattered opaque white- gray chert		
\square				Limestone: tan, f-mxln, dense, fossiliferous, oolitic, poor-fair		
				interoolitic porosity, trc scattered It sat stain, vssfo, several oil dronlets in trav fair odor	ST. I OUIS 'A'	
Þ		5600		Limostono: tan.white f.mvln	5500' (-27/2)	
0	Gamma(192) @ 560450		•	sl arenaceous, poor-fair interxin porosity. oolitic.	0000 (-2140)	
				fair-good interoolitic porosity, vssfo, fair odor,		
H				spotty dull fluorescence		
\square				Limestone: It brown-white-tan, f-mxln, v chalky,		
			•	tossiliferous, oolitic, good interoolitic porosity,		
				fluorescence		
				Limostonou tan dkavou frin al aballuu abartu		
			mm	Linestone, tareak gray, ikin, Si Charky, Cherly,		

		tossiliterous, oolitic, fair-good interoolitic		
		porosity, vssfo, good odor	ST. LOUIS 'B'	
		Limestone: white-tan, fxIn, v chalky, v soft,	5635 (-2779)	
		oolitic, good interoolitic-oolicastic porosity, fsgo,		
		good odor		
CFS @ 5645'		60" cample: Limestone: white tan fyln		
		v shalky v soft solitis read intercelitis revealt		
5650		v chalky, v soft, oolitic, good interoolitic porosity,		
		good show it gto, strong odor		
		Limestone: white-tan, txin, si chaiky, oolitic, poor		
		intercolitic porosity, no shows or odor		
		Limestone: tan-white-gray, fxIn, chalky, dense, sl		
		fossiliferous, arenaceous, oolitic in part, poor		
		interoolitic porosity, no shows or odor		
		I have the second		
		Limestone: tan-white-gray, txin, si chaiky, dense,		
	••••••	tossiliterous, arenaceous, oolitic in part, no vis		
		porosity		
5700	20000000			
		RTD 5700' @ 1:00 AM on 4/5/2013		
E750				