| | | | | WELL RECORD | Form WWC-5 | KSA 82a | | | | | |--|--|---|--|--|--|--|--|---|---------------------------------|---| | | OF WAT | | Fraction | 11 1 | Sect | ion Number | 1' | | i . | nge Number | | County: S | hawn | ree | Not 1/a | NE 1/4 N | 1W1/4 = | 2 5 | J T (0 | <u>(S)</u> | R | 79 E/W | | Distance ar | nd direction | from nearest town | or city street add | dress of well if locate | ed within city? 7 | erom s | iver lake | take | ttoch | HOLL NORTH | | to NY | 66 Rd | and 90 e | ast two | miles , lo | cated so | uth sy | de at R | dr | | | | 2 WATER | WELL OW | NER: Tom. | Arney. | | | | | | | 1 | | س
RR#∴St.A | ddress. Box | # 9431 | NAU, 40th | • | | | Board of | Agriculture, I | Division o | Water Resources | | City State | ZIP Code | Silve | 1-6 | Ks. 66539 | • | | | on Number: | | | | City, State, | AVELUO I | | | 13.00331 | 40 | | | | | | | J LOCATE | N SECTION | JUN WITH 4 | DEPTH OF CO | MPLETED WELL. | | . ft. ELEVA | TION: | | | | | 714 X 1 | N OLOTION | | | | | | | | | | | ī [| I Y | · v | VELL'S STATIC V | VATER LEVEL 🔨 | 5 ft. be | elow land sur | rface measured | on mo/day/yr | | | | 1 1 | _ !/^ | | Pump t | test data: Well wat | er was | ft. a | fter | hours pu | mping | gpm | | - | - NW | NE _E | st Yield | . gpm: Well wat | er was | ft a | fter | hours pu | mpina | apm | | <u> </u> | - | | • | er | CP A | | | • | | | | * w | | | | ~ | | | | | | | | _ | - | " | VELL WATER TO | | 5 Public water | | 8 Air conditionii | • | Injection | | | 1 1_ | _ sw | SE | Domestic | 3 Feedlot | 6 Oil field wat | | 9 Dewatering | | | ecify below) | | 1 1 | 1 | ī | 2 Irrigation | 4 Industrial | | | 10 Monitoring w | | | 1 | | 1 | i | ı İ v | Vas a chemical/ba | cteriological sample | submitted to De | partment? Y | esNo | ; If yes | , mo/day/y | r sample was sub- | | <u> </u> | S | _m | nitted | | | Wa | iter Well Disinfed | ted? Yes | _ | No | | 5 TYPE O | F BLANK C | ASING USED: | | 5 Wrought iron | 8 Concre | te tile | CASING J | OINTS: Glue | t | Clamped | | 1 Ste | | 3 RMP (SR) | | 6 Asbestos-Cement | 9 Other (| specify below | | | | | | | - | , , | | | ^ | | • | | | | | 2 PV | _ | 4 ABS | | 7 Fiberglass | | | | | | | | | - | 5 in | · ~ | ft., Dia | _ | | | | | · · · · · · · · · · · · · · · · · · · | | Casing heigh | ght above la | ınd surface | نا | n., weight <i>.SCh</i> . <i>Y</i> | <i>10</i> | | ft. Walf thicknes | s or gauge N | o | | | TYPE OF S | SCREEN OF | R PERFORATION | MATERIAL: | | 7 PV | | 10 A | sbestos-ceme | ent | | | 1 Ste | el | 3 Stainless s | steel | 5 Fiberglass | 8 RM | P (SR) | 11 0 | ther (specify) | | | | 2 Bra | ee | 4 Galvanized | | 6 Concrete tile | 9 ABS | | 12 N | one used (op | en hole) | | | | | RATION OPENING | | | zed wrapped | | 8 Saw cut | 0 uoou (op | | e (open hole) | | | | | | • | | | | _ | 11 110/1 | c (open noic) | | | ntinuous slo | | | | wrapped | | 9 Drilled hole | | | | | 2 Lou | vered shutt | er 4 Key | punched 🐪 | 7 Torci | 7 T | | , , | • / | | | | SCREEN-P | ERFORATE | ED INTERVALS: | From | ? O ft. to . | $\mathcal{K} \cup \ldots \cup \mathcal{K}$ | ft . Fro | m | ft. t | 0 | | | | | | | | | | | | | | | | | | From | . ft. to | | | | | | <i>.</i> | | G | RAVEL PAG | CK INTERVALS: | From | | | ft., Fro | m | ft. t | o | | | G | RAVEL PAG | CK INTERVALS: | From | ft. to . | | ft., Fro | m | ft. t
ft. t | o
o | | | -1 | | | From2 | ft. to | 80 | ft., Fro
ft., Fro
ft., Fro | m | ft. t
ft. t
ft. t | o
o
o_ | ft. | | 6 GROUT | MATERIAL | : 1 Neat ce | From 2 | ft. to Cement grout | %D Sentor | ft., Fro
ft., Fro
ft., Fro | m | ft. t | o
o
o | ft.
ft. | | 6 GROUT | MATERIAL
vals: Fron | : 1 Neat ce | From 2 ment 2 t to 25 | ft. to | %D Sentor | ft., Fro
ft., Fro
ft., Fro | m | ft. t | o | | | 6 GROUT | MATERIAL
vals: Fron | : 1 Neat ce | From. 2 From 2 to to 25 contamination: | ft. to Cement grout | %D Sentor | ft., Fro
ft., Fro
ft., Fro
nite 4
o | mm Other ft., From stock pens | ft. t. ft. t. ft. t | oo o ft. to | ft.
ft.
ft. | | 6 GROUT Grout Inten | MATERIAL
vals: Fron | : 1 Neat ce | From. 2 From 2 to to 25 contamination: | ft. to Cement grout | %D Sentor | ft., Fro
ft., Fro
ft., Fro | mm Other ft., From stock pens | ft. t. ft. t. ft. t | o | ft.
ft.
ft. | | 6 GROUT
Grout Inten
What is the
1 Sep | MATERIAL
vals: From | : 1 Neat ce | From Proment 2 to | ft. to . ft. to . Cement grout ft., From | 3 Benton | ft., Fro ft., Fro ft., Fro 10 Lives | mm Other ft., From stock pens | ft. t
ft. t
ft. t
14 A
15 C | oo oft. to bandoned | ft.
ft.
ft. | | 6 GROUT
Grout Intended
What is the
1 September 2 Sev | MATERIAL
vals: From
e nearest so
otic tank
wer lines | 1 Neat cem 6 | From Prome 2 to to 25 contamination: lines pool | Cement grout ft., From 7 Pit privy | 3 Benton | ft., Froft., Fro ft., Fro ft., Fro 10 Lives 11 Fuel 12 Fertil | mm Otherft., From stock pens storage | ft. t
ft. t
ft. t
14 A
15 C | oo ft. to bandoned bil well/Ga | ft. | | 6 GROUT
Grout Inten
What is the
1 Sep
2 Sev
3 Wa | MATERIAL vals: From e nearest so otic tank wer lines tertight sew | : 1 Neat ce
n 6 ft
ource of possible co
4 Lateral | From Prome 2 to to 25 contamination: lines pool | Cement grout ft. to ft. to Cement grout ft., From 7 Pit privy 8 Sewage lag | 3 Benton | ft., Froft., Fro ft., Fro ft., Fro 10 Lives 11 Fuel 12 Fertil 13 Insect | mm Otherft., From stock pens storage lizer storage cticide storage | ft. t
ft. t
ft. t
 | oo ft. to bandoned bil well/Ga | ft. | | 6 GROUT
Grout Inten
What is the
1 Sep
2 Sev
3 Wa
Direction fr | MATERIAL vals: From e nearest so otic tank wer lines tertight sew om well? | 1 Neat cem 6 | From ment 2 to to 25 contamination: lines pool ge pit | ft. to | 3 Benton | ft., Froft., Fro ft., Fro ft., Fro 10 Lives 11 Fuel 12 Fertil 13 Insect | mm Otherft., From stock pens storage sizer storage cticide storage any feet? | ft. t
ft. t
ft. t
14 A
15 C | oo ft. to bandoned bil well/Ga | ft. | | 6 GROUT Grout Intent What is the 1 Sep 2 Sev 3 Wa Direction fr | MATERIAL vals: From e nearest so otic tank wer lines tertight sew | 1 Neat cember of possible constructed of possible constructed 4 Lateral 5 Cess per lines 6 Seepage | From 2 From 2 The following property of | ft. to | 3 Benton ft. I | ft., Fro ft., Fro ft., Fro 10 Lives 11 Fuel 12 Fertil 13 Insec | mm Otherft., From stock pens storage sizer storage cticide storage any feet? | ft. t
ft. t
ft. t
 | oo ft. to bandoned bil well/Ga | ft. ft. ft. ft. ft. if water well s well cify below) | | 6 GROUT Grout Inten What is the 1 Sep 2 Sev 3 Wa Direction fr | MATERIAL
vals: From
e nearest so
otic tank
wer lines
tertight sew
om well? | 1 Neat cern 6 | From ment 2 to to 25 contamination: lines pool ge pit | ft. to | 3 Benton ft. I | ft., Fro ft., Fro ft., Fro 10 Lives 11 Fuel 12 Fertil 13 Insec | mm Otherft., From stock pens storage sizer storage cticide storage any feet? | ft. t
ft. t
ft. t
14 A
15 C | oo ft. to bandoned bil well/Ga | ft. ft. ft. ft. ft. if water well s well cify below) | | GROUT Grout Intent What is the 1 Sep 2 Sev 3 Wa Direction fr | MATERIAL vals: From e nearest so otic tank wer lines tertight sew om well? | 1 Neat center of possible control of possible control of Lateral 5 Cess per lines 6 Seepage | From Prom 2 From Prom 2 In to 25 Contamination: lines pool 2 LITHOLOGIC Live Prom 2 Clay 1 | ft. to | 3 Benton ft. I | ft., Fro ft., Fro ft., Fro 10 Lives 11 Fuel 12 Fertil 13 Insec | mm Otherft., From stock pens storage sizer storage cticide storage any feet? | ft. t
ft. t
ft. t
14 A
15 C | oo ft. to bandoned bil well/Ga | ft. | | 6 GROUT Grout Inten What is the 1 Sep 2 Sev 3 Wa Direction fr | MATERIAL vals: From e nearest so otic tank wer lines tertight sew om well? | 1 Neat ce
n 6 | From From ment 2 to 0.5 contamination: lines pool LITHOLOGIC LO | ft. to | 3 Benton ft. I | ft., Fro ft., Fro ft., Fro 10 Lives 11 Fuel 12 Fertil 13 Insec | mm Otherft., From stock pens storage sizer storage cticide storage any feet? | ft. t
ft. t
ft. t
14 A
15 C | oo ft. to bandoned bil well/Ga | ft. | | 6 GROUT Grout Inten What is the 1 Sep 2 Sev 3 Wa Direction fr | MATERIAL vals: From e nearest so otic tank wer lines tertight sew om well? TO 1 1 2 3 | 1 Neat center of possible control of possible control of Lateral 5 Cess per lines 6 Seepage | From From ment 2 to 0.5 contamination: lines pool LITHOLOGIC LO | ft. to | 3 Benton ft. I | ft., Fro ft., Fro ft., Fro 10 Lives 11 Fuel 12 Fertil 13 Insec | mm Otherft., From stock pens storage sizer storage cticide storage any feet? | ft. t
ft. t
ft. t
14 A
15 C | oo ft. to bandoned bil well/Ga | ft. | | 6 GROUT Grout Inten What is the 1 Sep 2 Sev 3 Wa Direction fr | MATERIAL vals: From e nearest so otic tank wer lines tertight sew om well? | 1 Neat ce
n 6 | From From ment 2 to 25 contamination: lines pool ge pit LITHOLOGIC LO Clay LITHOLOGIC LO | Cement grout ft. to ft. to Cement grout ft., From 7 Pit privy 8 Sewage lag 9 Feedyard OG | 3 Benton ft. I | ft., Fro ft., Fro ft., Fro 10 Lives 11 Fuel 12 Fertil 13 Insec | mm Otherft., From stock pens storage sizer storage cticide storage any feet? | ft. t
ft. t
ft. t
14 A
15 C | oo ft. to bandoned bil well/Ga | ft. | | 6 GROUT Grout Inten What is the 1 Sep 2 Sev 3 Wa Direction fr | MATERIAL vals: From enearest so otic tank wer lines tertight sew om well? | Top Soil Brown | From From ment 2 to 25 contamination: lines pool ge pit LITHOLOGIC LO Clay LITHOLOGIC LO | Cement grout ft. to ft. to Cement grout ft., From 7 Pit privy 8 Sewage lag 9 Feedyard OG | 3 Benton ft. I | ft., Fro ft., Fro ft., Fro 10 Lives 11 Fuel 12 Fertil 13 Insec | mm Otherft., From stock pens storage sizer storage cticide storage any feet? | ft. t
ft. t
ft. t
14 A
15 C | oo ft. to bandoned bil well/Ga | ft. | | 6 GROUT Grout Inten What is the 1 Sep 2 Sev 3 Wa Direction fr | MATERIAL vals: From enearest so otic tank wer lines tertight sew om well? | Top Soil Brown Screens Scoun Scoun Scoun Screens Scoun | From From Terom Tero | Cement grout ft. to ft. to Cement grout 7 Pit privy 8 Sewage lag 9 Feedyard OG | 3 Benton ft. I | ft., Fro ft., Fro ft., Fro 10 Lives 11 Fuel 12 Fertil 13 Insec | mm Otherft., From stock pens storage sizer storage cticide storage any feet? | ft. t
ft. t
ft. t
14 A
15 C | oo ft. to bandoned bil well/Ga | ft. | | 6 GROUT Grout Inten What is the 1 Sep 2 Sev 3 Wa Direction fr | MATERIAL vals: Fror e nearest so otic tank wer lines tertight sew om well? TO 1 2 7 3 4 3 7 4 | Top Soi
Brown
Green's
Ermestor | From From ment 2 to 25 contamination: lines pool LITHOLOGIC Li LI LITHOLOGIC Li LI LI LITHOLOGIC Li | Cement grout ft. to ft. to Cement grout 7 Pit privy 8 Sewage lag 9 Feedyard OG | 3 Benton ft. I | ft., Fro ft., Fro ft., Fro 10 Lives 11 Fuel 12 Fertil 13 Insec | mm Otherft., From stock pens storage sizer storage cticide storage any feet? | ft. t
ft. t
ft. t
14 A
15 C | oo ft. to bandoned bil well/Ga | ft. | | 6 GROUT Grout Inten What is the 1 Sep 2 Sev 3 Wa Direction fr | MATERIAL vals: From a nearest so offic tank wer lines tertight sew om well? TO 1 23 34 34 350 | Top Soi
Brown
Greenis
Limeston
Greenis
Limeston
Greenis
Limeston
Greenis | From From ment 2 to 25 contamination: lines pool LITHOLOGIC LO Clay h Shale he he he hale he shale shale he shale | Cement grout ft. to ft. to Cement grout 7 Pit privy 8 Sewage lag 9 Feedyard OG | 3 Benton ft. I | ft., Fro ft., Fro ft., Fro 10 Lives 11 Fuel 12 Fertil 13 Insec | mm Otherft., From stock pens storage sizer storage cticide storage any feet? | ft. t
ft. t
ft. t
14 A
15 C | oo ft. to bandoned bil well/Ga | ft. | | 6 GROUT Grout Inten What is the 1 Sep 2 Sev 3 Wa Direction fr | MATERIAL vals: From a nearest so offic tank wer lines tertight sew om well? TO II 23 34 36 40 64 | Top Soi
Brown
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's | From From ment 2 to 25 contamination: lines pool LITHOLOGIC LO Clay h Shale he he he hale he shale he he ale | Cement grout ft. to ft. to Cement grout 7 Pit privy 8 Sewage lag 9 Feedyard OG | 3 Benton ft. I | ft., Fro ft., Fro ft., Fro 10 Lives 11 Fuel 12 Fertil 13 Insec | mm Otherft., From stock pens storage sizer storage cticide storage any feet? | ft. t
ft. t
ft. t
14 A
15 C | oo ft. to bandoned bil well/Ga | ft. | | GROUT Grout Inten What is the 1 Sep 2 Sev 3 Wa Direction fr FROM O J 3 V 3 V 3 V 4 C 5 C 6 C | MATERIAL vals: From a nearest so offic tank wer lines tertight sew om well? TO II 2.3 3.4 3.6 4.0 6.6 6.6 | Top Soi
Brown
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's | From From ment 2 to 25 contamination: lines pool LITHOLOGIC LO Clay h Shale he | Cement grout ft. to ft. to Cement grout 7 Pit privy 8 Sewage lag 9 Feedyard OG | 3 Benton ft. I | ft., Fro ft., Fro ft., Fro 10 Lives 11 Fuel 12 Fertil 13 Insec | mm Otherft., From stock pens storage sizer storage cticide storage any feet? | ft. t
ft. t
ft. t
14 A
15 C | oo ft. to bandoned bil well/Ga | ft. | | 6 GROUT Grout Inten What is the 1 Sep 2 Sev 3 Wa Direction fr | MATERIAL vals: From a nearest so offic tank wer lines tertight sew om well? TO II 23 34 36 40 64 | Top Soi
Brown
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's | From From ment 2 to 25 contamination: lines pool LITHOLOGIC LO Clay h Shale he | Cement grout ft. to ft. to Cement grout 7 Pit privy 8 Sewage lag 9 Feedyard OG | 3 Benton ft. I | ft., Fro ft., Fro ft., Fro 10 Lives 11 Fuel 12 Fertil 13 Insec | mm Otherft., From stock pens storage sizer storage cticide storage any feet? | ft. t
ft. t
ft. t
14 A
15 C | oo ft. to bandoned bil well/Ga | ft. | | GROUT Grout Inten What is the 1 Sep 2 Sev 3 Wa Direction fr FROM O J 3 V 3 V 3 V 4 C 5 C 6 C 6 C 6 C 6 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7 | MATERIAL vals: From a nearest so offic tank wer lines tertight sew om well? TO II 2.3 2.7 3.4 3.6 6.6 6.6 | Top Soi
Brown
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's | From From ment 2 to 25 contamination: lines pool LITHOLOGIC LO Clay h Shale he | Cement grout ft. to ft. to Cement grout 7 Pit privy 8 Sewage lag 9 Feedyard OG | 3 Benton ft. I | ft., Fro ft., Fro ft., Fro 10 Lives 11 Fuel 12 Fertil 13 Insec | mm Otherft., From stock pens storage sizer storage cticide storage any feet? | ft. t
ft. t
ft. t
14 A
15 C | oo ft. to bandoned bil well/Ga | ft. | | GROUT Grout Inten What is the 1 Sep 2 Sev 3 Wa Direction fr FROM O J 3 V 3 V 3 V 4 C 5 C 6 C 6 C 6 C 6 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7 | MATERIAL vals: From a nearest so offic tank wer lines tertight sew om well? TO II 2.3 2.7 3.4 3.6 6.6 6.6 | Top Soi
Brown
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's | From From ment 2 to 25 contamination: lines pool LITHOLOGIC LO Clay h Shale he | Cement grout ft. to ft. to Cement grout 7 Pit privy 8 Sewage lag 9 Feedyard OG | 3 Benton ft. I | ft., Fro ft., Fro ft., Fro 10 Lives 11 Fuel 12 Fertil 13 Insec | mm Otherft., From stock pens storage sizer storage cticide storage any feet? | ft. t
ft. t
ft. t
14 A
15 C | oo ft. to bandoned bil well/Ga | ft. | | GROUT Grout Inten What is the 1 Sep 2 Sev 3 Wa Direction fr FROM O J 3 V 3 V 3 V 4 C 5 C 6 C 6 C 6 C 6 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7 | MATERIAL vals: From a nearest so offic tank wer lines tertight sew om well? TO II 2.3 2.7 3.4 3.6 6.6 6.6 | Top Soi
Brown
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's | From From ment 2 to 25 contamination: lines pool LITHOLOGIC LO Clay h Shale he | Cement grout ft. to ft. to Cement grout 7 Pit privy 8 Sewage lag 9 Feedyard OG | 3 Benton ft. I | ft., Fro ft., Fro ft., Fro 10 Lives 11 Fuel 12 Fertil 13 Insec | mm Otherft., From stock pens storage sizer storage cticide storage any feet? | ft. t
ft. t
ft. t
14 A
15 C | oo ft. to bandoned bil well/Ga | ft. | | GROUT Grout Inten What is the 1 Sep 2 Sev 3 Wa Direction fr FROM O J 3 V 3 V 3 V 4 C 5 C 6 C 6 C 6 C 6 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7 | MATERIAL vals: From a nearest so offic tank wer lines tertight sew om well? TO II 2.3 2.7 3.4 3.6 6.6 6.6 | Top Soi
Brown
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's | From From ment 2 to 25 contamination: lines pool LITHOLOGIC LO Clay h Shale he | Cement grout ft. to ft. to Cement grout 7 Pit privy 8 Sewage lag 9 Feedyard OG | 3 Benton ft. I | ft., Fro ft., Fro ft., Fro 10 Lives 11 Fuel 12 Fertil 13 Insec | mm Otherft., From stock pens storage sizer storage cticide storage any feet? | ft. t
ft. t
ft. t
14 A
15 C | oo ft. to bandoned bil well/Ga | ft. | | GROUT Grout Inten What is the 1 Sep 2 Sev 3 Wa Direction fr FROM O J 3 Y 3 Y 4 C 5 C 6 Y | MATERIAL vals: From a nearest so offic tank wer lines tertight sew om well? TO III 227 344 350 644 | Top Soi
Brown
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's | From From ment 2 to 25 contamination: lines pool LITHOLOGIC Li Clay h Shale he Shale ne (Work shale ne ale shale ne ale shale | Cement grout ft. to Cement grout 7 Pit privy 8 Sewage lag 9 Feedyard OG | 3 Benton ft. | 10 Lives 11 Fuel 12 Fertil 13 Insect How ma | m | 14 A 15 C 16 C | o | ft. ft. ft. ft. ft. I water well s well cify below) | | GROUT Grout Inten What is the 1 Sep 2 Sev 3 Wa Direction fr FROM O J 3 Y 3 Y 4 C 5 C 6 Y | MATERIAL vals: From a nearest so offic tank wer lines tertight sew om well? TO III 227 344 350 644 | Top Soi
Brown
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's | From From ment 2 to 25 contamination: lines pool LITHOLOGIC Li Clay h Shale he Shale ne (Work shale ne ale shale ne ale shale | Cement grout ft. to ft. to Cement grout 7 Pit privy 8 Sewage lag 9 Feedyard OG | 3 Benton ft. | 10 Lives 11 Fuel 12 Fertil 13 Insect How ma | m | 14 A 15 C 16 C | o | ft. ft. ft. ft. ft. I water well s well cify below) | | 6 GROUT Grout Inten What is the 1 Sep 2 Sev 3 Wa Direction fr FROM O J J J J J J J J J J J J J J J J J J | MATERIAL vals: From a nearest so otic tank wer lines tertight sew om well? TO J J J J J J J J J J J J J | Top Soi
Brown
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's | From From ment 2 to 25 contamination: lines pool LITHOLOGIC Li Clay h Shale he Shale ne (Work shale ne ale shale ne ale shale | Cement grout ft. to Cement grout ft., From 7 Pit privy 8 Sewage lag 9 Feedyard OG | 3 Benton ft. | 10 Lives 11 Fuel 12 Fertil 13 Insect How ma | m | ft. t
ft. t
ft. t
14 A
15 C
16 C | o | ft. ft. ft. ft. ft. I water well s well cify below) | | 6 GROUT Grout Inten What is the 1 Sep 2 Sev 3 Wa Direction fr FROM O J J Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z | MATERIAL vals: From enearest so otic tank wer lines tertight sew om well? TO J J ACTOR'S Con (mo/day/ | Top Soi
Brown
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Limeston
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Control
Green's
Contr | From From ment 2 to 25 contamination: lines pool LITHOLOGIC Li Clay h Shale he Shale ne (Work shale ne ale shale ne ale shale | Cement grout ft. to Cement grout ft., From 7 Pit privy 8 Sewage lag 9 Feedyard OG | 3 Benton ft. | 10 Lives 11 Fuel 12 Fertil 13 Insect How ma TO | m | ft. t
ft. t
ft. t
14 A
15 C
16 C | o | ft. ft. ft. ft. ft. water well s well cify below) | | 6 GROUT Grout Inten What is the 1 Sep 2 Sev 3 Wa Direction fr FROM O J J J J J J J J J J J J J J J J J J | MATERIAL vals: From a nearest so otic tank wer lines tertight sew om well? TO 11 27 34 37 42 ACTOR'S Con (mo/day/Contractor/C | Top Soil Brown Green's Limeston Limest | From From Prom The prom The promition of the property t | Cement grout ft., From 7 Pit privy 8 Sewage lag 9 Feedyard OG N: This water well water wa | 3 Benton ft. | tt., Fro ft., Fro ft., Fro ft., Fro ft., Fro 10 Lives 11 Fuel 12 Fertil 13 Insect How ma TO tted, (2) rect and this rects s completed | onstructed, or (3 ord is true to the on (mo/day/yr) | ft. t
ft. t
ft. t
14 A
15 C
16 C | o | ft. ft. ft. ft. ft. water well s well cify below) | | 6 GROUT Grout Inten What is the 1 Sep 2 Sev 3 Wa Direction fr FROM O 33 27 34 42 50 68 7 CONTR completed of Water Well under the b | MATERIAL vals: From e nearest so otic tank wer lines tertight sew om well? TO 1 27 34 42 50 64 Con (mo/day/ Contractor' ousiness nai | Top Soil Brown Green's Limeston Limeston Limeston Green's Lime | From From From Perom The state of sta | Cement grout ft. to Cement grout ft., From 7 Pit privy 8 Sewage lag 9 Feedyard OG | 3 Benton ft. | tt., Fro ft., Fro ft., Fro ft., Fro ft., Fro ft., Fro ft., Fro tt., Fro ft., Fro tt., F | onstructed, or (3 ord is true to the on (mo/day/yr) | 14 A 15 C 16 C PLUGGING I | o | ft. ft. ft. ft. I water well s well cify below) |